Tensor Categorical Foundations of Algebraic Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Tensor Categorical Foundations of Algebraic Geometry Mathematik Tensor categorical foundations of algebraic geometry Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Mathematik und Informatik der Mathematisch-Naturwissenschaftlichen Fakult¨at der Westf¨alischen Wilhelms-Universit¨atM¨unster vorgelegt von Martin Brandenburg aus Berlin { 2014 { Dekan: Prof. Dr. Martin Stein Erster Gutachter: Prof. Dr. Christopher Deninger Zweiter Gutachter: Priv. Doz. Dr. Christian Serp´e Tag der m¨undlichen Pr¨ufung: 10. Juli 2014 Tag der Promotion: 10. Juli 2014 Jano gewidmet. Zusammenfassung Nach den Arbeiten von Saavedra Rivano, Deligne, Lurie, Sch¨appiu.a. lassen sich viele Schemata sowie algebraische Stacks mit ihren Tensorkategorien von quasikoh¨arenten Garben identifizieren. In dieser Arbeit studieren wir Kon- struktionen mit kovollst¨andigenTensorkategorien (bzw. kostetigen Tensorfunk- toren), die in der Regel im Falle von quasikoh¨arenten Garben zu Konstruktio- nen von Schemata (bzw. ihren Morphismen) korrespondieren. Das bedeutet, die gew¨ohnliche lokal-globale algebraische Geometrie zu globalisieren und einen ersten Schritt in Richtung einer 2-algebraischen Geometrie zu machen. Als Beispiele behandeln wir affine Morphismen, projektive Morphismen, Immersio- nen, klassische projektive Einbettungen (Segre, Pl¨ucker, Veronese), Aufblasun- gen, Faserprodukte, klassifizierende Stacks und schließlich Tangentialb¨undel.Es stellt sich heraus, dass sich die universellen Eigenschaften auf der geometrischen Seite oftmals auch auf der Seite der Tensorkategorien finden lassen. Bei der The- orie erweist es sich als n¨utzlich, Grundz¨ugeder kommutativen Algebra in einer beliebigen kovollst¨andigenTensorkategorie zu entwickeln. Abstract Several results by Saavedra Rivano, Deligne, Lurie, Sch¨appiand others shown that many schemes as well as algebraic stacks may be identified with their tensor categories of quasi-coherent sheaves. In this thesis we study constructions of cocomplete tensor categories (resp. cocontinuous tensor functors) which usually correspond to constructions of schemes (resp. their morphisms) in the case of quasi-coherent sheaves. This means to globalize the usual local-global algebraic geometry and to make a first step towards 2-algebraic geometry. We discuss for example affine morphisms, projective morphisms, immersions, classical projec- tive embeddings (Segre, Pl¨ucker, Veronese), blow-ups, fiber products, classifying stacks and finally tangent bundles. It turns out that often the universal prop- erties on the geometric side also appear on the side of tensor categories. For the theory it turns out to be useful to develop basic commutative algebra in an arbitrary cocomplete tensor category. \According to Peter Freyd: 'Perhaps the purpose of categorical al- gebra is to show that which is trivial is trivially trivial.' That was written early on, in 1966. I prefer an update of that quote: \Perhaps the purpose of categorical algebra is to show that which is formal is formally formal". It is by now abundantly clear that mathematics can be formal without being trivial. Categorical algebra allows one to articulate analogies and to perceive unexpected relationships between concepts in different branches of mathematics." Peter May, [May01] Contents 1 Introduction 1 1.1 Background . 1 1.2 Results . 3 1.3 Acknowledgements . 13 2 Preliminaries 14 2.1 Category theory . 14 2.2 Algebraic geometry . 17 2.3 Presentability . 21 2.4 Density and Adams stacks . 22 2.5 Extension result . 27 3 Introduction to cocomplete tensor categories 36 3.1 Definitions and examples . 36 3.2 Categorification . 43 3.3 Element notation . 46 3.4 Adjunction between stacks and cocomplete tensor categories . 49 4 Commutative algebra in a cocomplete tensor category 53 4.1 Algebras and modules . 53 4.2 Ideals and affine schemes . 58 4.3 Symtrivial objects . 63 4.4 Symmetric and exterior powers . 65 4.5 Derivations . 74 4.6 Flat objects . 81 4.7 Dualizable objects . 83 4.8 Invertible objects . 86 4.9 Locally free objects . 90 4.10 Descent theory . 94 4.11 Cohomology . 100 5 Constructions with cocomplete tensor categories 102 5.1 Basic free constructions . 102 5.1.1 Free tensor categories . 102 5.1.2 Cocompletions . 103 5.1.3 Indization . 108 5.1.4 Limits and colimits . 109 5.2 Global schemes and stacks . 111 5.3 Module categories over algebras . 114 5.4 Gradings . 118 5.5 Representations . 124 5.6 Local functors . 129 5.7 Tensoriality . 133 5.7.1 The case of qc qs schemes . 134 5.7.2 The case of algebraic stacks . 136 5.8 Localization . 139 5.8.1 General theory . 139 5.8.2 Examples . 147 5.8.3 Localization at sections . 151 5.8.4 Ideals . 153 5.9 Idempotents . 155 5.10 Projective tensor categories . 159 5.10.1 Definition and comparison to schemes . 159 5.10.2 Blow-ups . 164 5.10.3 The Segre embedding . 167 5.10.4 The Veronese embedding . 171 5.10.5 The Pl¨ucker embedding . 173 5.11 Products of schemes . 176 5.11.1 Tensorial base change . 176 5.11.2 The case of qc qs schemes over a field . 179 5.12 Tangent tensor categories . 186 6 Monoidal monads and their modules 204 6.1 Overview . 204 6.2 Reflexive coequalizers . 206 6.3 Monoidal monads . 210 6.4 Tensor product of modules . 216 6.5 Module categories . 226 Bibliography 233 Chapter 1 Introduction 1.1 Background It is a common principle of mathematics to study geometric objects by consid- ering categories of algebraic objects acting on them. For example in algebraic geometry one tries to understand a scheme X via its category of quasi-coherent sheaves Qcoh(X). Do we really understand X by looking at Qcoh(X)? This has been answered in 1962 by Gabriel ([Gab62]) who proved his famous Reconstruction Theorem: A noetherian scheme X can be reconstructed from Qcoh(X). The idea is to associate to an abelian category A a ringed space Spec(A), its spectrum, and then prove X ∼= SpecQcoh(X). Later this paved the way for the vision of noncommutative algebraic geometry in which abelian categories are regarded as noncommutative schemes ([Ros95], [AZ94]). In 1998 A. L. Rosenberg used a different spectrum construction to give a short proof of the Reconstruction Theorem for arbitrary schemes ([Ros96], [Ros98]), then in 2004 another proof for quasi-separated schemes ([Ros04]). The proof has been corrected and simplified by Gabber ([Bra13]). In 2013 Antieau obtained a generalization of the Reconstruction Theorem to twisted quasi-coherent sheaves on quasi-compact quasi-separated schemes ([Ant13]). With a completely new approach Calabrese and Groechenig have proven a Reconstruction Theorem for quasi-compact separated algebraic spaces ([CG13]). Although a smooth variety X cannot be reconstructed from its derived category of quasi-coherent sheaves Db(Qcoh(X)), Bondal and Orlov have shown in 2001 that this works at least if the canonical bundle of X is ample or anti-ample ([BO01]). However, Qcoh(X) is actually a tensor category, so it is reasonable to use this additional structure. In 2002 Balmer has reconstructed a noetherian scheme from its tensor triangulated category of perfect complexes ([Bal02]). This lead to the development of tensor triangular geometry ([Bal10]). Balmer's result has been generalized to quasi-compact quasi-separated schemes by Buan, Krause and Solberg ([BKS07]). 1 Chapter 1. Introduction What about reconstruction for algebraic stacks? Classical Tannaka duality gives an affirmative answer in the case of classifying stacks since it reconstructs an affine group scheme from its tensor category of representations ([Del90]). More generally, Lurie has reconstructed an arbitrary geometric stack from its tensor category of quasi-coherent sheaves ([Lur04]). In the case of algebraic stacks the tensor structure becomes essential, since for example the discrete scheme with two points and the classifying stack of a group of order 2 have the same category of quasi-coherent sheaves { but not the same tensor category of quasi-coherent sheaves. Obviously very much has been done in order to recover the object of interest X from Qcoh(X). However, it seems that little has been done towards the reconstruction of morphisms of schemes, which is certainly useful for recovering properties of X (such as smoothness) from Qcoh(X). One might ask which functors Qcoh(X) ! Qcoh(Y ) are induced by morphisms Y ! X via the pullback construction. A minimal requirement is that these functors preserve colimits and tensor prod- ucts (up to specified isomorphisms). Therefore, let us call a scheme (or stack) X tensorial if colimit-preserving tensor functors Qcoh(X) ! Qcoh(Y ) are induced by morphisms Y ! X. Then for example affine and projective schemes are ten- sorial ([Bra11]). More generally, in 2012 Chirvasitu and the author showed that any quasi-compact quasi-separated scheme is tensorial ([BC14]). In the same year, Sch¨appiproved that Adams stacks (i.e. geometric stacks with enough lo- cally free sheaves) are tensorial ([Sch12a]). He even gave a classification of those tensor categories which are equivalent to Qcoh(X) for some Adams stack X ([Sch12a],[Sch13]). It seems to be an open problem if every algebraic stack is tensorial and to charac- terize those tensor categories which are equivalent to Qcoh(X) for some algebraic stack X. This thesis aims to expand the relationship between algebraic geometry and cocomplete tensor categories. We will find constructions with cocomplete ten- sor categories which correspond to constructions with schemes or stacks un- der Qcoh(−). This leads to a theory which might be called tensor categori- cal algebraic geometry or 2-algebraic geometry which has been already intro- duced by Chirvasitu and Johnson-Freyd ([CJF13]). In some sense this is like Rosenberg's noncommutative algebraic geometry with additional tensor products (which makes it commutative) or Balmer's tensor triangular geometry without triangulations. The precise results will be explained in the next section. 2 1.2. Results 1.2 Results Tensoriality A cocomplete tensor category is a symmetric monoidal category with all colimits which commute with the tensor product in each variable (section 3.1).
Recommended publications
  • Stack Completions and Morita Equivalence for Categories in a Topos Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 20, No 4 (1979), P
    CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES MARTA BUNGE Stack completions and Morita equivalence for categories in a topos Cahiers de topologie et géométrie différentielle catégoriques, tome 20, no 4 (1979), p. 401-436 <http://www.numdam.org/item?id=CTGDC_1979__20_4_401_0> © Andrée C. Ehresmann et les auteurs, 1979, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE Vol. XX-4 (1979) ET GEOMETRIE DIFFERENTIELLE STACK COMPLETIONS AND MORITA EQUIVALENCE FOR CATEGORIES IN A TOPOS by Marta BUNGE 1) 0. INTRODUCTION. The origin of this paper can be traced back to one of a series of lectures given by F.W. Lawvere [10, Lecture V]. In it, Lawvere dealt for the case of an arbitrary topos S , with the notion of stack, a notion which, for Grothendieck toposes, had been considered by J. Giraud [6], and which is given relative to a site. A topos S may always be regarded as a site with the regular epi- morphism topology, and the notion of stack over S is then defined with respect to this particular topology. Special as it may be, this notion of stack over a topos S plays an important role in the development of Category Theory over a base to- pos S .
    [Show full text]
  • Vector Bundles As Generators on Schemes and Stacks
    Vector Bundles as Generators on Schemes and Stacks Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Philipp Gross aus D¨usseldorf D¨usseldorf,Mai 2010 Aus dem Mathematischen Institut der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Stefan Schr¨oer Koreferent: Prof. Dr. Holger Reich Acknowledgments The work on this dissertation has been one of the most significant academic challenges I have ever had to face. This study would not have been completed without the support, patience and guidance of the following people. It is to them that I owe my deepest gratitude. I am indebted to my advisor Stefan Schr¨oerfor his encouragement to pursue this project. He taught me algebraic geometry and how to write academic papers, made me a better mathematician, brought out the good ideas in me, and gave me the opportunity to attend many conferences and schools in Europe. I also thank Holger Reich, not only for agreeing to review the dissertation and to sit on my committee, but also for showing an interest in my research. Next, I thank the members of the local algebraic geometry research group for their time, energy and for the many inspiring discussions: Christian Liedtke, Sasa Novakovic, Holger Partsch and Felix Sch¨uller.I have had the pleasure of learning from them in many other ways as well. A special thanks goes to Holger for being a friend, helping me complete the writing of this dissertation as well as the challenging research that lies behind it.
    [Show full text]
  • X → S Be a Proper Morphism of Locally Noetherian Schemes and Let F Be a Coherent Sheaf on X That Is flat Over S (E.G., F Is Smooth and F Is a Vector Bundle)
    COHOMOLOGY AND BASE CHANGE FOR ALGEBRAIC STACKS JACK HALL Abstract. We prove that cohomology and base change holds for algebraic stacks, generalizing work of Brochard in the tame case. We also show that Hom-spaces on algebraic stacks are represented by abelian cones, generaliz- ing results of Grothendieck, Brochard, Olsson, Lieblich, and Roth{Starr. To accomplish all of this, we prove that a wide class of relative Ext-functors in algebraic geometry are coherent (in the sense of M. Auslander). Introduction Let f : X ! S be a proper morphism of locally noetherian schemes and let F be a coherent sheaf on X that is flat over S (e.g., f is smooth and F is a vector bundle). If s 2 S is a point, then define Xs to be the fiber of f over s. If s has residue field κ(s), then for each integer q there is a natural base change morphism of κ(s)-vector spaces q q q b (s):(R f∗F) ⊗OS κ(s) ! H (Xs; FXs ): Cohomology and Base Change originally appeared in [EGA, III.7.7.5] in a quite sophisticated form. Mumford [Mum70, xII.5] and Hartshorne [Har77, xIII.12], how- ever, were responsible for popularizing a version similar to the following. Let s 2 S and let q be an integer. (1) The following are equivalent. (a) The morphism bq(s) is surjective. (b) There exists an open neighbourhood U of s such that bq(u) is an iso- morphism for all u 2 U. (c) There exists an open neighbourhood U of s, a coherent OU -module Q, and an isomorphism of functors: Rq+1(f ) (F ⊗ f ∗ I) =∼ Hom (Q; I); U ∗ XU OXU U OU where fU : XU ! U is the pullback of f along U ⊆ S.
    [Show full text]
  • The Orbifold Chow Ring of Toric Deligne-Mumford Stacks
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 18, Number 1, Pages 193–215 S 0894-0347(04)00471-0 Article electronically published on November 3, 2004 THE ORBIFOLD CHOW RING OF TORIC DELIGNE-MUMFORD STACKS LEVA.BORISOV,LINDACHEN,ANDGREGORYG.SMITH 1. Introduction The orbifold Chow ring of a Deligne-Mumford stack, defined by Abramovich, Graber and Vistoli [2], is the algebraic version of the orbifold cohomology ring in- troduced by W. Chen and Ruan [7], [8]. By design, this ring incorporates numerical invariants, such as the orbifold Euler characteristic and the orbifold Hodge num- bers, of the underlying variety. The product structure is induced by the degree zero part of the quantum product; in particular, it involves Gromov-Witten invariants. Inspired by string theory and results in Batyrev [3] and Yasuda [28], one expects that, in nice situations, the orbifold Chow ring coincides with the Chow ring of a resolution of singularities. Fantechi and G¨ottsche [14] and Uribe [25] verify this conjecture when the orbifold is Symn(S)whereS is a smooth projective surface n with KS = 0 and the resolution is Hilb (S). The initial motivation for this project was to compare the orbifold Chow ring of a simplicial toric variety with the Chow ring of a crepant resolution. To achieve this goal, we first develop the theory of toric Deligne-Mumford stacks. Modeled on simplicial toric varieties, a toric Deligne-Mumford stack corresponds to a combinatorial object called a stacky fan. As a first approximation, this object is a simplicial fan with a distinguished lattice point on each ray in the fan.
    [Show full text]
  • Day Convolution for Monoidal Bicategories
    Day convolution for monoidal bicategories Alexander S. Corner School of Mathematics and Statistics University of Sheffield A thesis submitted for the degree of Doctor of Philosophy August 2016 i Abstract Ends and coends, as described in [Kel05], can be described as objects which are universal amongst extranatural transformations [EK66b]. We describe a cate- gorification of this idea, extrapseudonatural transformations, in such a way that bicodescent objects are the objects which are universal amongst such transfor- mations. We recast familiar results about coends in this new setting, providing analogous results for bicodescent objects. In particular we prove a Fubini theorem for bicodescent objects. The free cocompletion of a category C is given by its category of presheaves [Cop; Set]. If C is also monoidal then its category of presheaves can be pro- vided with a monoidal structure via the convolution product of Day [Day70]. This monoidal structure describes [Cop; Set] as the free monoidal cocompletion of C. Day's more general statement, in the V-enriched setting, is that if C is a promonoidal V-category then [Cop; V] possesses a monoidal structure via the convolution product. We define promonoidal bicategories and go on to show that if A is a promonoidal bicategory then the bicategory of pseudofunctors Bicat(Aop; Cat) is a monoidal bicategory. ii Acknowledgements First I would like to thank my supervisor Nick Gurski, who has helped guide me from the definition of a category all the way into the wonderful, and often confusing, world of higher category theory. Nick has been a great supervisor and a great friend to have had through all of this who has introduced me to many new things, mathematical and otherwise.
    [Show full text]
  • Finite Field
    Finite field From Wikipedia, the free encyclopedia In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod n when n is a prime number. TheFinite number field - Wikipedia,of elements the of free a finite encyclopedia field is called its order. A finite field of order q exists if and only if the order q is a prime power p18/09/15k (where 12:06p is a amprime number and k is a positive integer). All fields of a given order are isomorphic. In a field of order pk, adding p copies of any element always results in zero; that is, the characteristic of the field is p. In a finite field of order q, the polynomial Xq − X has all q elements of the finite field as roots. The non-zero elements of a finite field form a multiplicative group. This group is cyclic, so all non-zero elements can be expressed as powers of a single element called a primitive element of the field (in general there will be several primitive elements for a given field.) A field has, by definition, a commutative multiplication operation. A more general algebraic structure that satisfies all the other axioms of a field but isn't required to have a commutative multiplication is called a division ring (or sometimes skewfield).
    [Show full text]
  • $\Mathbb {F} 1 $ for Everyone
    F1 for everyone Oliver Lorscheid Abstract. This text serves as an introduction to F1-geometry for the general math- ematician. We explain the initial motivations for F1-geometry in detail, provide an overview of the different approaches to F1 and describe the main achievements of the field. Prologue F1-geometry is a recent area of mathematics that emerged from certain heuristics in combinatorics, number theory and homotopy theory that could not be explained in the frame work of Grothendieck’s scheme theory. These ideas involve a theory of algebraic geometry over a hypothetical field F1 with one element, which includes a theory of algebraic groups and their homogeneous spaces, an arithmetic curve SpecZ over F1 that compactifies the arithmetic line SpecZ and K-theory that stays in close relation to homotopy theory of topological spaces such as spheres. Starting in the mid 2000’s, there was an outburst of different approaches towards such theories, which bent and extended scheme theory. Meanwhile some of the initial problems for F1-geometry have been settled and new applications have been found, for instance in cyclic homology and tropical geometry. The first thought that crosses one’s mind in this context is probably the question: What is the “field with one element”? Obviously, this oxymoron cannot be taken literally as it would imply a mathematical contradiction. It is resolved as follows. First of all we remark that we do not need to define F1 itself—what is needed for the aims of F1-geometry is a suitable category of schemes over F1. However, many approaches contain an explicit definition of F1, and in most cases, the field with one element is not a field and has two elements.
    [Show full text]
  • Abstract Motivic Homotopy Theory
    Abstract motivic homotopy theory Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften (Dr. rer. nat.) des Fachbereiches Mathematik/Informatik der Universitat¨ Osnabruck¨ vorgelegt von Peter Arndt Betreuer Prof. Dr. Markus Spitzweck Osnabruck,¨ September 2016 Erstgutachter: Prof. Dr. Markus Spitzweck Zweitgutachter: Prof. David Gepner, PhD 2010 AMS Mathematics Subject Classification: 55U35, 19D99, 19E15, 55R45, 55P99, 18E30 2 Abstract Motivic Homotopy Theory Peter Arndt February 7, 2017 Contents 1 Introduction5 2 Some 1-categorical technicalities7 2.1 A criterion for a map to be constant......................7 2.2 Colimit pasting for hypercubes.........................8 2.3 A pullback calculation............................. 11 2.4 A formula for smash products......................... 14 2.5 G-modules.................................... 17 2.6 Powers in commutative monoids........................ 20 3 Abstract Motivic Homotopy Theory 24 3.1 Basic unstable objects and calculations..................... 24 3.1.1 Punctured affine spaces......................... 24 3.1.2 Projective spaces............................ 33 3.1.3 Pointed projective spaces........................ 34 3.2 Stabilization and the Snaith spectrum...................... 40 3.2.1 Stabilization.............................. 40 3.2.2 The Snaith spectrum and other stable objects............. 42 3.2.3 Cohomology theories.......................... 43 3.2.4 Oriented ring spectra.......................... 45 3.3 Cohomology operations............................. 50 3.3.1 Adams operations............................ 50 3.3.2 Cohomology operations........................ 53 3.3.3 Rational splitting d’apres` Riou..................... 56 3.4 The positive rational stable category...................... 58 3.4.1 The splitting of the sphere and the Morel spectrum.......... 58 1 1 3.4.2 PQ+ is the free commutative algebra over PQ+ ............. 59 3.4.3 Splitting of the rational Snaith spectrum................ 60 3.5 Functoriality..................................
    [Show full text]
  • Moduli Stack of Oriented Formal Groups and Periodic Complex Bordism
    MODULI STACK OF ORIENTED FORMAL GROUPS AND PERIODIC COMPLEX BORDISM ROK GREGORIC or Abstract. We study the non-connective spectral stack MFG, the moduli stack of ori- ented formal groups in the sense of Lurie. We show that its descent spectral sequence recovers the Adams-Novikov spectral sequence. For two E -forms of periodic complex bordism MP, the Thom spectrum and Snaith construction model, we describe the univer- ∞ or sal property of the cover Spec(MP) → MFG. We show that Quillen’s celebrated theorem on complex bordism is equivalent to the assertion that the underlying ordinary stack of or MFG is the classical stack of ordinary formal groups MFG. In order to carry out all of the above, we develop foundations of a functor of points approach♡ to non-connective spectral algebraic geometry. Introduction The goal of this paper is to show that the connection between the homotopy category of spectra and formal groups, which is at the heart of chromatic homotopy theory, may be interpreted in terms of spectral algebraic geometry. By formal group, we mean a smooth 1-dimensional commutative formal group, as is traditional in homotopy theory. These are classified by an algebro-geometric moduli stack, the moduli stack of formal groups, which ♡ we shall denote MFG. Here and in the rest of the paper, we will use the heart symbol ♡ in the subscript to emphasize the classical nature of algebro-geometric objects considered, in contrast to spectral algebro-geometric objects which will be our main focus. This notation is motivated by the fact that ordinary abelian groups sit inside spectra as the heart of the usual t- ♡ structure.
    [Show full text]
  • Unbounded Quantifiers and Strong Axioms in Topos Theory
    Unbounded quantifiers & strong axioms Michael Shulman The Question Two kinds of set theory Strong axioms Unbounded quantifiers and strong axioms Internalization The Answer in topos theory Stack semantics Logic in stack semantics Strong axioms Michael A. Shulman University of Chicago November 14, 2009 Unbounded quantifiers & strong axioms The motivating question Michael Shulman The Question Two kinds of set theory Strong axioms Internalization The Answer Stack semantics Logic in stack semantics What is the topos-theoretic counterpart of the Strong axioms strong set-theoretic axioms of Separation, Replacement, and Collection? Unbounded quantifiers & strong axioms Outline Michael Shulman The Question Two kinds of set theory Strong axioms 1 The Question Internalization The Answer Two kinds of set theory Stack semantics Logic in stack Strong axioms semantics Strong axioms Internalization 2 The Answer Stack semantics Logic in stack semantics Strong axioms Following Lawvere and others, I prefer to view this as an equivalence between two kinds of set theory. Unbounded quantifiers & strong axioms Basic fact Michael Shulman The Question Two kinds of set theory Strong axioms Internalization The Answer Stack semantics Elementary topos theory is equiconsistent with a Logic in stack semantics weak form of set theory. Strong axioms Unbounded quantifiers & strong axioms Basic fact Michael Shulman The Question Two kinds of set theory Strong axioms Internalization The Answer Stack semantics Elementary topos theory is equiconsistent with a Logic in stack semantics weak form of set theory. Strong axioms Following Lawvere and others, I prefer to view this as an equivalence between two kinds of set theory. Unbounded quantifiers & strong axioms “Membership-based” or Michael Shulman “material” set theory The Question Two kinds of set theory Strong axioms Data: Internalization The Answer • A collection of sets.
    [Show full text]
  • Noncommutative Geometry and Arithmetic
    Noncommutative Geometry and Arithmetic. Johns Hopkins University, March 22-25, 2011 JAMI Conference - Spring 2011 Conference Schedule TUESDAY MARCH 22, 2011 8:00-9:00 a.m. Registration and Breakfast Registration and Breakfast 9:00-10:00 a.m. A. Connes (IHES) An overview on the Jami Conference topics 10:00-10:30 a.m. Coffee Break Coffe Break 10:30-11:30 a.m. O. Viro (SUNY) Patchworking, tropical geometry and hyperfields 11:45-12:45 p.m. P. Lescot (U. de Rouen) The spectrum of a characteristic one algebra Lunch Break Lunch Break 2:30-3:30 p.m. C. Popescu (UCSD) Classical and Equivariant Iwasawa Theory 3:30-4:15 p.m. Refreshments Refreschments 4:15-5:15 p.m. G. Litvinov (Indep. U. of Moscow) Dequantization and mathematics over tropical and idempotent arithmetics 1 WEDNESDAY MARCH 23, 2011 8:00-9:00 a.m. Breakfast Breakfast 9:00-10:00 a.m. O. Lorsheid (CUNY) Blueprints and K-theory over F1 10:15-11:15 a.m. C. Consani (JHU) On the arithmetic of the BC-system I. 11:15-11:45 a.m. Coffee Break Coffee Break 11:45-12:45 p.m. A. Connes (IHES) On the arithmetic of the BC-system II. Lunch Break Lunch Break Lunch Break 2:30-3:30 p.m. Y. Andr´e(ENS Paris) Gevrey series and arithmetic Gevrey series. A survey. 3:30-4:15 p.m. Refreshments Refreschments 4:15-5:15 p.m. K. Thas (U. Gent) Incidental geometries over F1 2 THURSDAY MARCH 24, 2011 8:00-9:00 a.m.
    [Show full text]
  • Introduction to Algebraic Stacks
    Introduction to Algebraic Stacks K. Behrend December 17, 2012 Abstract These are lecture notes based on a short course on stacks given at the Newton Institute in Cambridge in January 2011. They form a self-contained introduction to some of the basic ideas of stack theory. Contents Introduction 3 1 Topological stacks: Triangles 8 1.1 Families and their symmetry groupoids . 8 Various types of symmetry groupoids . 9 1.2 Continuous families . 12 Gluing families . 13 1.3 Classification . 15 Pulling back families . 17 The moduli map of a family . 18 Fine moduli spaces . 18 Coarse moduli spaces . 21 1.4 Scalene triangles . 22 1.5 Isosceles triangles . 23 1.6 Equilateral triangles . 25 1.7 Oriented triangles . 25 Non-equilateral oriented triangles . 30 1.8 Stacks . 31 1.9 Versal families . 33 Generalized moduli maps . 35 Reconstructing a family from its generalized moduli map . 37 Versal families: definition . 38 Isosceles triangles . 40 Equilateral triangles . 40 Oriented triangles . 41 1 1.10 Degenerate triangles . 42 Lengths of sides viewpoint . 43 Embedded viewpoint . 46 Complex viewpoint . 52 Oriented degenerate triangles . 54 1.11 Change of versal family . 57 Oriented triangles by projecting equilateral ones . 57 Comparison . 61 The comparison theorem . 61 1.12 Weierstrass compactification . 64 The j-plane . 69 2 Formalism 73 2.1 Objects in continuous families: Categories fibered in groupoids 73 Fibered products of groupoid fibrations . 77 2.2 Families characterized locally: Prestacks . 78 Versal families . 79 2.3 Families which can be glued: Stacks . 80 2.4 Topological stacks . 81 Topological groupoids . 81 Generalized moduli maps: Groupoid Torsors .
    [Show full text]