Unbounded Quantifiers and Strong Axioms in Topos Theory

Total Page:16

File Type:pdf, Size:1020Kb

Unbounded Quantifiers and Strong Axioms in Topos Theory Unbounded quantifiers & strong axioms Michael Shulman The Question Two kinds of set theory Strong axioms Unbounded quantifiers and strong axioms Internalization The Answer in topos theory Stack semantics Logic in stack semantics Strong axioms Michael A. Shulman University of Chicago November 14, 2009 Unbounded quantifiers & strong axioms The motivating question Michael Shulman The Question Two kinds of set theory Strong axioms Internalization The Answer Stack semantics Logic in stack semantics What is the topos-theoretic counterpart of the Strong axioms strong set-theoretic axioms of Separation, Replacement, and Collection? Unbounded quantifiers & strong axioms Outline Michael Shulman The Question Two kinds of set theory Strong axioms 1 The Question Internalization The Answer Two kinds of set theory Stack semantics Logic in stack Strong axioms semantics Strong axioms Internalization 2 The Answer Stack semantics Logic in stack semantics Strong axioms Following Lawvere and others, I prefer to view this as an equivalence between two kinds of set theory. Unbounded quantifiers & strong axioms Basic fact Michael Shulman The Question Two kinds of set theory Strong axioms Internalization The Answer Stack semantics Elementary topos theory is equiconsistent with a Logic in stack semantics weak form of set theory. Strong axioms Unbounded quantifiers & strong axioms Basic fact Michael Shulman The Question Two kinds of set theory Strong axioms Internalization The Answer Stack semantics Elementary topos theory is equiconsistent with a Logic in stack semantics weak form of set theory. Strong axioms Following Lawvere and others, I prefer to view this as an equivalence between two kinds of set theory. Unbounded quantifiers & strong axioms “Membership-based” or Michael Shulman “material” set theory The Question Two kinds of set theory Strong axioms Data: Internalization The Answer • A collection of sets. Stack semantics Logic in stack • A membership relation 2 between sets. semantics Strong axioms Sample axioms: • Extensionality: if x 2 a () x 2 b for all x, then a = b. • Pairing: for all x and y, the set fx; yg exists. • Power set: for all sets a, the set P(a) = fx j x ⊆ ag exists. • ... Example: ZFC (Zermelo-Fraenkel set theory with Choice). Unbounded quantifiers & strong axioms “Structural” or “categorical” Michael Shulman set theory The Question Two kinds of set Data: theory Strong axioms • Internalization A collection of sets. The Answer • A collection of functions. Stack semantics Logic in stack semantics • Composition and identity operations on functions. Strong axioms Sample axioms: • Sets and functions form a category Set. • Set has finite limits and power objects. • Well-pointedness: The terminal set 1 is a generator. • ... Example: Lawvere’s ETCS (Elementary Theory of the Category of Sets). Note: An element of a set A is a function 1 ! A. NB: This has nothing to do with the “internal logic” (yet)! Unbounded quantifiers & strong axioms The basic comparison Michael Shulman Theorem (Cole, Mitchell, Osius) The Question Two kinds of set theory ETCS is equiconsistent with BZC. Strong axioms Internalization The Answer BZC = Bounded Zermelo set theory with Choice Stack semantics Logic in stack = ZFC without Replacement, and with Separation semantics Strong axioms restricted to formulas with bounded quantifiers (“8x 2 a” rather than “8x”) Proof (Sketch). 1 BZC)ETCS: The category of sets and functions in BZC satisfies ETCS. 2 ETCS)BZC: The collection of “pointed well-founded trees” in an ETCS-category satisfies BZC. Unbounded quantifiers & strong axioms The basic comparison Michael Shulman Theorem (Cole, Mitchell, Osius) The Question Two kinds of set theory ETCS is equiconsistent with BZC. Strong axioms Internalization The Answer BZC = Bounded Zermelo set theory with Choice Stack semantics Logic in stack = ZFC without Replacement, and with Separation semantics Strong axioms restricted to formulas with bounded quantifiers (“8x 2 a” rather than “8x”) Proof (Sketch). 1 BZC)ETCS: The category of sets and functions in BZC satisfies ETCS. 2 ETCS)BZC: The collection of “pointed well-founded trees” in an ETCS-category satisfies BZC. NB: This has nothing to do with the “internal logic” (yet)! Unbounded quantifiers & strong axioms Why do we care? Michael Shulman Why is this equivalence useful? The Question Two kinds of set 1 We can use either one as a foundation for theory Strong axioms mathematics, according to taste. Internalization The Answer 2 Some constructions are easier or more intuitive in one Stack semantics Logic in stack context or the other. semantics Strong axioms Material World Structural World forcing $ sheaves ultrapowers $ filterquotients realizability models $ realizability toposes ?? $ free toposes ?? $ glued toposes ?? $ exact completion V = L $ ?? Unbounded quantifiers & strong axioms Outline Michael Shulman The Question Two kinds of set theory Strong axioms 1 The Question Internalization The Answer Two kinds of set theory Stack semantics Logic in stack Strong axioms semantics Strong axioms Internalization 2 The Answer Stack semantics Logic in stack semantics Strong axioms • Replacement/Collection: 8a: (8x 2 a: 9y:'(x; y)) ) 9b: (8x 2 a: 9y 2 b:'(x; y)) ^ (8y 2 b: 9x 2 a:'(x; y)) What that really means: If for every x 2 a there exists a yx such that some property '(x; yx ) holds, then we can collect these y’s into a family of sets b = fyx gx2a. Unbounded quantifiers & strong axioms The strong axioms Michael Shulman The Question What’s missing from BZC? Two kinds of set theory • Strong axioms Unbounded Separation: For any set a and formula Internalization '(x), the set fx 2 a j '(x)g exists. The Answer Stack semantics Logic in stack NB: “Unbounded” means “not bounded by a set.” That semantics Strong axioms is, we allow quantifiers such as “for all sets” rather than “for all elements of the set a.” 8a: (8x 2 a: 9y:'(x; y)) ) 9b: (8x 2 a: 9y 2 b:'(x; y)) ^ (8y 2 b: 9x 2 a:'(x; y)) What that really means: If for every x 2 a there exists a yx such that some property '(x; yx ) holds, then we can collect these y’s into a family of sets b = fyx gx2a. Unbounded quantifiers & strong axioms The strong axioms Michael Shulman The Question What’s missing from BZC? Two kinds of set theory • Strong axioms Unbounded Separation: For any set a and formula Internalization '(x), the set fx 2 a j '(x)g exists. The Answer Stack semantics Logic in stack NB: “Unbounded” means “not bounded by a set.” That semantics Strong axioms is, we allow quantifiers such as “for all sets” rather than “for all elements of the set a.” • Replacement/Collection: What that really means: If for every x 2 a there exists a yx such that some property '(x; yx ) holds, then we can collect these y’s into a family of sets b = fyx gx2a. Unbounded quantifiers & strong axioms The strong axioms Michael Shulman The Question What’s missing from BZC? Two kinds of set theory • Strong axioms Unbounded Separation: For any set a and formula Internalization '(x), the set fx 2 a j '(x)g exists. The Answer Stack semantics Logic in stack NB: “Unbounded” means “not bounded by a set.” That semantics Strong axioms is, we allow quantifiers such as “for all sets” rather than “for all elements of the set a.” • Replacement/Collection: 8a: (8x 2 a: 9y:'(x; y)) ) 9b: (8x 2 a: 9y 2 b:'(x; y)) ^ (8y 2 b: 9x 2 a:'(x; y)) Unbounded quantifiers & strong axioms The strong axioms Michael Shulman The Question What’s missing from BZC? Two kinds of set theory • Strong axioms Unbounded Separation: For any set a and formula Internalization '(x), the set fx 2 a j '(x)g exists. The Answer Stack semantics Logic in stack NB: “Unbounded” means “not bounded by a set.” That semantics Strong axioms is, we allow quantifiers such as “for all sets” rather than “for all elements of the set a.” • Replacement/Collection: 8a: (8x 2 a: 9y:'(x; y)) ) 9b: (8x 2 a: 9y 2 b:'(x; y)) ^ (8y 2 b: 9x 2 a:'(x; y)) What that really means: If for every x 2 a there exists a yx such that some property '(x; yx ) holds, then we can collect these y’s into a family of sets b = fyx gx2a. Unbounded quantifiers & strong axioms Why unbounded separation? Michael Shulman The Question Two kinds of set theory Strong axioms • Any universal mapping property in a large category Internalization The Answer involves unbounded quantifiers. E.g. if fFx gx2a is a Stack semantics family of diagrams F : D ! C, then forming Logic in stack x semantics Strong axioms fx 2 a j Fx has a limitg uses unbounded separation. • To justify mathematical induction for some property ', we form the set fn j '(n)g and show that it is all of N. This only works if we have separation for '. Unbounded quantifiers & strong axioms Why replacement/collection? Michael Shulman • To construct objects recursively, such as free algebras: The Question for an operation T and a starting point X, we consider Two kinds of set theory the sequence Strong axioms Internalization 2 3 The Answer X; TX; T X; T X;::: Stack semantics Logic in stack semantics n Strong axioms BZC can construct each T X, but not the entire sequence or its limit. • In particular, cardinal numbers above @! are unreachable without replacement/collection. • In BZC we have to be careful when saying “Set is n (co)complete.” E.g. the family fP (N)gn2N may not have a coproduct (so we have to exclude it from the notion of “family”). • Even some “concrete” facts depend on replacement/collection, e.g. Borel Determinacy. Unbounded quantifiers & strong axioms Structural quantifiers Michael Shulman The Question Two kinds of set theory • In material set theory, unbounded quantifiers are very Strong axioms Internalization natural, while bounded ones feel like an ad hoc The Answer restriction.
Recommended publications
  • Categories of Sets with a Group Action
    Categories of sets with a group action Bachelor Thesis of Joris Weimar under supervision of Professor S.J. Edixhoven Mathematisch Instituut, Universiteit Leiden Leiden, 13 June 2008 Contents 1 Introduction 1 1.1 Abstract . .1 1.2 Working method . .1 1.2.1 Notation . .1 2 Categories 3 2.1 Basics . .3 2.1.1 Functors . .4 2.1.2 Natural transformations . .5 2.2 Categorical constructions . .6 2.2.1 Products and coproducts . .6 2.2.2 Fibered products and fibered coproducts . .9 3 An equivalence of categories 13 3.1 G-sets . 13 3.2 Covering spaces . 15 3.2.1 The fundamental group . 15 3.2.2 Covering spaces and the homotopy lifting property . 16 3.2.3 Induced homomorphisms . 18 3.2.4 Classifying covering spaces through the fundamental group . 19 3.3 The equivalence . 24 3.3.1 The functors . 25 4 Applications and examples 31 4.1 Automorphisms and recovering the fundamental group . 31 4.2 The Seifert-van Kampen theorem . 32 4.2.1 The categories C1, C2, and πP -Set ................... 33 4.2.2 The functors . 34 4.2.3 Example . 36 Bibliography 38 Index 40 iii 1 Introduction 1.1 Abstract In the 40s, Mac Lane and Eilenberg introduced categories. Although by some referred to as abstract nonsense, the idea of categories allows one to talk about mathematical objects and their relationions in a general setting. Its origins lie in the field of algebraic topology, one of the topics that will be explored in this thesis. First, a concise introduction to categories will be given.
    [Show full text]
  • Stack Completions and Morita Equivalence for Categories in a Topos Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 20, No 4 (1979), P
    CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES MARTA BUNGE Stack completions and Morita equivalence for categories in a topos Cahiers de topologie et géométrie différentielle catégoriques, tome 20, no 4 (1979), p. 401-436 <http://www.numdam.org/item?id=CTGDC_1979__20_4_401_0> © Andrée C. Ehresmann et les auteurs, 1979, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE Vol. XX-4 (1979) ET GEOMETRIE DIFFERENTIELLE STACK COMPLETIONS AND MORITA EQUIVALENCE FOR CATEGORIES IN A TOPOS by Marta BUNGE 1) 0. INTRODUCTION. The origin of this paper can be traced back to one of a series of lectures given by F.W. Lawvere [10, Lecture V]. In it, Lawvere dealt for the case of an arbitrary topos S , with the notion of stack, a notion which, for Grothendieck toposes, had been considered by J. Giraud [6], and which is given relative to a site. A topos S may always be regarded as a site with the regular epi- morphism topology, and the notion of stack over S is then defined with respect to this particular topology. Special as it may be, this notion of stack over a topos S plays an important role in the development of Category Theory over a base to- pos S .
    [Show full text]
  • Vector Bundles As Generators on Schemes and Stacks
    Vector Bundles as Generators on Schemes and Stacks Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Philipp Gross aus D¨usseldorf D¨usseldorf,Mai 2010 Aus dem Mathematischen Institut der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Stefan Schr¨oer Koreferent: Prof. Dr. Holger Reich Acknowledgments The work on this dissertation has been one of the most significant academic challenges I have ever had to face. This study would not have been completed without the support, patience and guidance of the following people. It is to them that I owe my deepest gratitude. I am indebted to my advisor Stefan Schr¨oerfor his encouragement to pursue this project. He taught me algebraic geometry and how to write academic papers, made me a better mathematician, brought out the good ideas in me, and gave me the opportunity to attend many conferences and schools in Europe. I also thank Holger Reich, not only for agreeing to review the dissertation and to sit on my committee, but also for showing an interest in my research. Next, I thank the members of the local algebraic geometry research group for their time, energy and for the many inspiring discussions: Christian Liedtke, Sasa Novakovic, Holger Partsch and Felix Sch¨uller.I have had the pleasure of learning from them in many other ways as well. A special thanks goes to Holger for being a friend, helping me complete the writing of this dissertation as well as the challenging research that lies behind it.
    [Show full text]
  • Categorical Semantics of Constructive Set Theory
    Categorical semantics of constructive set theory Beim Fachbereich Mathematik der Technischen Universit¨atDarmstadt eingereichte Habilitationsschrift von Benno van den Berg, PhD aus Emmen, die Niederlande 2 Contents 1 Introduction to the thesis 7 1.1 Logic and metamathematics . 7 1.2 Historical intermezzo . 8 1.3 Constructivity . 9 1.4 Constructive set theory . 11 1.5 Algebraic set theory . 15 1.6 Contents . 17 1.7 Warning concerning terminology . 18 1.8 Acknowledgements . 19 2 A unified approach to algebraic set theory 21 2.1 Introduction . 21 2.2 Constructive set theories . 24 2.3 Categories with small maps . 25 2.3.1 Axioms . 25 2.3.2 Consequences . 29 2.3.3 Strengthenings . 31 2.3.4 Relation to other settings . 32 2.4 Models of set theory . 33 2.5 Examples . 35 2.6 Predicative sheaf theory . 36 2.7 Predicative realizability . 37 3 Exact completion 41 3.1 Introduction . 41 3 4 CONTENTS 3.2 Categories with small maps . 45 3.2.1 Classes of small maps . 46 3.2.2 Classes of display maps . 51 3.3 Axioms for classes of small maps . 55 3.3.1 Representability . 55 3.3.2 Separation . 55 3.3.3 Power types . 55 3.3.4 Function types . 57 3.3.5 Inductive types . 58 3.3.6 Infinity . 60 3.3.7 Fullness . 61 3.4 Exactness and its applications . 63 3.5 Exact completion . 66 3.6 Stability properties of axioms for small maps . 73 3.6.1 Representability . 74 3.6.2 Separation . 74 3.6.3 Power types .
    [Show full text]
  • X → S Be a Proper Morphism of Locally Noetherian Schemes and Let F Be a Coherent Sheaf on X That Is flat Over S (E.G., F Is Smooth and F Is a Vector Bundle)
    COHOMOLOGY AND BASE CHANGE FOR ALGEBRAIC STACKS JACK HALL Abstract. We prove that cohomology and base change holds for algebraic stacks, generalizing work of Brochard in the tame case. We also show that Hom-spaces on algebraic stacks are represented by abelian cones, generaliz- ing results of Grothendieck, Brochard, Olsson, Lieblich, and Roth{Starr. To accomplish all of this, we prove that a wide class of relative Ext-functors in algebraic geometry are coherent (in the sense of M. Auslander). Introduction Let f : X ! S be a proper morphism of locally noetherian schemes and let F be a coherent sheaf on X that is flat over S (e.g., f is smooth and F is a vector bundle). If s 2 S is a point, then define Xs to be the fiber of f over s. If s has residue field κ(s), then for each integer q there is a natural base change morphism of κ(s)-vector spaces q q q b (s):(R f∗F) ⊗OS κ(s) ! H (Xs; FXs ): Cohomology and Base Change originally appeared in [EGA, III.7.7.5] in a quite sophisticated form. Mumford [Mum70, xII.5] and Hartshorne [Har77, xIII.12], how- ever, were responsible for popularizing a version similar to the following. Let s 2 S and let q be an integer. (1) The following are equivalent. (a) The morphism bq(s) is surjective. (b) There exists an open neighbourhood U of s such that bq(u) is an iso- morphism for all u 2 U. (c) There exists an open neighbourhood U of s, a coherent OU -module Q, and an isomorphism of functors: Rq+1(f ) (F ⊗ f ∗ I) =∼ Hom (Q; I); U ∗ XU OXU U OU where fU : XU ! U is the pullback of f along U ⊆ S.
    [Show full text]
  • On the Constructive Elementary Theory of the Category of Sets
    On the Constructive Elementary Theory of the Category of Sets Aruchchunan Surendran Ludwig-Maximilians-University Supervision: Dr. I. Petrakis August 14, 2019 1 Contents 1 Introduction 2 2 Elements of basic Category Theory 3 2.1 The category Set ................................3 2.2 Basic definitions . .4 2.3 Basic properties of Set .............................6 2.3.1 Epis and monos . .6 2.3.2 Elements as arrows . .8 2.3.3 Binary relations as monic arrows . .9 2.3.4 Coequalizers as quotient sets . 10 2.4 Membership of elements . 12 2.5 Partial and total arrows . 14 2.6 Cartesian closed categories (CCC) . 16 2.6.1 Products of objects . 16 2.6.2 Application: λ-Calculus . 18 2.6.3 Exponentials . 21 3 Constructive Elementary Theory of the Category of Sets (CETCS) 26 3.1 Constructivism . 26 3.2 Axioms of ETCS . 27 3.3 Axioms of CETCS . 28 3.4 Π-Axiom . 29 3.5 Set-theoretic consequences . 32 3.5.1 Quotient Sets . 32 3.5.2 Induction . 34 3.5.3 Constructing new relations with logical operations . 35 3.6 Correspondence to standard categorical formulations . 42 1 1 Introduction The Elementary Theory of the Category of Sets (ETCS) was first introduced by William Lawvere in [4] in 1964 to give an axiomatization of sets. The goal of this thesis is to describe the Constructive Elementary Theory of the Category of Sets (CETCS), following its presentation by Erik Palmgren in [2]. In chapter 2. we discuss basic elements of Category Theory. Category Theory was first formulated in the year 1945 by Eilenberg and Mac Lane in their paper \General theory of natural equivalences" and is the study of generalized functions, called arrows, in an abstract algebra.
    [Show full text]
  • The Orbifold Chow Ring of Toric Deligne-Mumford Stacks
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 18, Number 1, Pages 193–215 S 0894-0347(04)00471-0 Article electronically published on November 3, 2004 THE ORBIFOLD CHOW RING OF TORIC DELIGNE-MUMFORD STACKS LEVA.BORISOV,LINDACHEN,ANDGREGORYG.SMITH 1. Introduction The orbifold Chow ring of a Deligne-Mumford stack, defined by Abramovich, Graber and Vistoli [2], is the algebraic version of the orbifold cohomology ring in- troduced by W. Chen and Ruan [7], [8]. By design, this ring incorporates numerical invariants, such as the orbifold Euler characteristic and the orbifold Hodge num- bers, of the underlying variety. The product structure is induced by the degree zero part of the quantum product; in particular, it involves Gromov-Witten invariants. Inspired by string theory and results in Batyrev [3] and Yasuda [28], one expects that, in nice situations, the orbifold Chow ring coincides with the Chow ring of a resolution of singularities. Fantechi and G¨ottsche [14] and Uribe [25] verify this conjecture when the orbifold is Symn(S)whereS is a smooth projective surface n with KS = 0 and the resolution is Hilb (S). The initial motivation for this project was to compare the orbifold Chow ring of a simplicial toric variety with the Chow ring of a crepant resolution. To achieve this goal, we first develop the theory of toric Deligne-Mumford stacks. Modeled on simplicial toric varieties, a toric Deligne-Mumford stack corresponds to a combinatorial object called a stacky fan. As a first approximation, this object is a simplicial fan with a distinguished lattice point on each ray in the fan.
    [Show full text]
  • An Outline of Algebraic Set Theory
    An Outline of Algebraic Set Theory Steve Awodey Dedicated to Saunders Mac Lane, 1909–2005 Abstract This survey article is intended to introduce the reader to the field of Algebraic Set Theory, in which models of set theory of a new and fascinating kind are determined algebraically. The method is quite robust, admitting adjustment in several respects to model different theories including classical, intuitionistic, bounded, and predicative ones. Under this scheme some familiar set theoretic properties are related to algebraic ones, like freeness, while others result from logical constraints, like definability. The overall theory is complete in two important respects: conventional elementary set theory axiomatizes the class of algebraic models, and the axioms provided for the abstract algebraic framework itself are also complete with respect to a range of natural models consisting of “ideals” of sets, suitably defined. Some previous results involving realizability, forcing, and sheaf models are subsumed, and the prospects for further such unification seem bright. 1 Contents 1 Introduction 3 2 The category of classes 10 2.1 Smallmaps ............................ 12 2.2 Powerclasses............................ 14 2.3 UniversesandInfinity . 15 2.4 Classcategories .......................... 16 2.5 Thetoposofsets ......................... 17 3 Algebraic models of set theory 18 3.1 ThesettheoryBIST ....................... 18 3.2 Algebraic soundness of BIST . 20 3.3 Algebraic completeness of BIST . 21 4 Classes as ideals of sets 23 4.1 Smallmapsandideals . .. .. 24 4.2 Powerclasses and universes . 26 4.3 Conservativity........................... 29 5 Ideal models 29 5.1 Freealgebras ........................... 29 5.2 Collection ............................. 30 5.3 Idealcompleteness . .. .. 32 6 Variations 33 References 36 2 1 Introduction Algebraic set theory (AST) is a new approach to the construction of models of set theory, invented by Andr´eJoyal and Ieke Moerdijk and first presented in [16].
    [Show full text]
  • On Categorical Theory-Building: Beyond the Formal
    Andrei Rodin (Ecole Normale Superieure) On Categorical Theory-Building: Beyond the Formal 1. Introduction: Languages, Foundations and Reification of Concepts The term "language" is colloquially used in mathematics to refer to a theory, which grasps common features of a large range (or even all) of other mathematical theories and so can serve as a unifying conceptual framework for these theories. "Set- theoretic language" is a case in point. The systematic work of translation of the whole of mathematics into the set-theoretic language has been endeavoured in 20-th century by a group of mathematicians under the collective name of Nicolas Bourbaki. Bourbakist mathematics proved successful both in research and higher education (albeit not in the school math education) and is practiced until today at mathematical departments worldwide. The project of Bourbaki as well as other attempts to do mathematics "set- theoretically" should be definitely distinguished from the project of reduction of mathematics to set theory defended by Quine and some other philosophers. This latter project is based on the claim that all true mathematical propositions are deducible from axioms of Zermelo-Frenkael set theory with Choice (ZFC) or another appropriate system of axioms for sets, so basically all the mathematics is set theory. A working mathematician usually sees this claim as an example of philosophical absurdity on a par with Zeno's claim that there is no motion, and Bourbaki never tried to put it forward. Actually Bourbaki used set theory (more precisely their own version of axiomatic theory of sets) for doing mathematics in very much the same way in which classical first-order logic is used for doing axiomatic theories like ZFC.
    [Show full text]
  • Math 395: Category Theory Northwestern University, Lecture Notes
    Math 395: Category Theory Northwestern University, Lecture Notes Written by Santiago Can˜ez These are lecture notes for an undergraduate seminar covering Category Theory, taught by the author at Northwestern University. The book we roughly follow is “Category Theory in Context” by Emily Riehl. These notes outline the specific approach we’re taking in terms the order in which topics are presented and what from the book we actually emphasize. We also include things we look at in class which aren’t in the book, but otherwise various standard definitions and examples are left to the book. Watch out for typos! Comments and suggestions are welcome. Contents Introduction to Categories 1 Special Morphisms, Products 3 Coproducts, Opposite Categories 7 Functors, Fullness and Faithfulness 9 Coproduct Examples, Concreteness 12 Natural Isomorphisms, Representability 14 More Representable Examples 17 Equivalences between Categories 19 Yoneda Lemma, Functors as Objects 21 Equalizers and Coequalizers 25 Some Functor Properties, An Equivalence Example 28 Segal’s Category, Coequalizer Examples 29 Limits and Colimits 29 More on Limits/Colimits 29 More Limit/Colimit Examples 30 Continuous Functors, Adjoints 30 Limits as Equalizers, Sheaves 30 Fun with Squares, Pullback Examples 30 More Adjoint Examples 30 Stone-Cech 30 Group and Monoid Objects 30 Monads 30 Algebras 30 Ultrafilters 30 Introduction to Categories Category theory provides a framework through which we can relate a construction/fact in one area of mathematics to a construction/fact in another. The goal is an ultimate form of abstraction, where we can truly single out what about a given problem is specific to that problem, and what is a reflection of a more general phenomenom which appears elsewhere.
    [Show full text]
  • 1.7 Categories: Products, Coproducts, and Free Objects
    22 CHAPTER 1. GROUPS 1.7 Categories: Products, Coproducts, and Free Objects Categories deal with objects and morphisms between objects. For examples: objects sets groups rings module morphisms functions homomorphisms homomorphisms homomorphisms Category theory studies some common properties for them. Def. A category is a class C of objects (denoted A, B, C,. ) together with the following things: 1. A set Hom (A; B) for every pair (A; B) 2 C × C. An element of Hom (A; B) is called a morphism from A to B and is denoted f : A ! B. 2. A function Hom (B; C) × Hom (A; B) ! Hom (A; C) for every triple (A; B; C) 2 C × C × C. For morphisms f : A ! B and g : B ! C, this function is written (g; f) 7! g ◦ f and g ◦ f : A ! C is called the composite of f and g. All subject to the two axioms: (I) Associativity: If f : A ! B, g : B ! C and h : C ! D are morphisms of C, then h ◦ (g ◦ f) = (h ◦ g) ◦ f. (II) Identity: For each object B of C there exists a morphism 1B : B ! B such that 1B ◦ f = f for any f : A ! B, and g ◦ 1B = g for any g : B ! C. In a category C a morphism f : A ! B is called an equivalence, and A and B are said to be equivalent, if there is a morphism g : B ! A in C such that g ◦ f = 1A and f ◦ g = 1B. Ex. Objects Morphisms f : A ! B is an equivalence A is equivalent to B sets functions f is a bijection jAj = jBj groups group homomorphisms f is an isomorphism A is isomorphic to B partial order sets f : A ! B such that f is an isomorphism between A is isomorphic to B \x ≤ y in (A; ≤) ) partial order sets A and B f(x) ≤ f(y) in (B; ≤)" Ex.
    [Show full text]
  • Set-Theoretic Foundations
    Contemporary Mathematics Volume 690, 2017 http://dx.doi.org/10.1090/conm/690/13872 Set-theoretic foundations Penelope Maddy Contents 1. Foundational uses of set theory 2. Foundational uses of category theory 3. The multiverse 4. Inconclusive conclusion References It’s more or less standard orthodoxy these days that set theory – ZFC, extended by large cardinals – provides a foundation for classical mathematics. Oddly enough, it’s less clear what ‘providing a foundation’ comes to. Still, there are those who argue strenuously that category theory would do this job better than set theory does, or even that set theory can’t do it at all, and that category theory can. There are also those who insist that set theory should be understood, not as the study of a single universe, V, purportedly described by ZFC + LCs, but as the study of a so-called ‘multiverse’ of set-theoretic universes – while retaining its foundational role. I won’t pretend to sort out all these complex and contentious matters, but I do hope to compile a few relevant observations that might help bring illumination somewhat closer to hand. 1. Foundational uses of set theory The most common characterization of set theory’s foundational role, the char- acterization found in textbooks, is illustrated in the opening sentences of Kunen’s classic book on forcing: Set theory is the foundation of mathematics. All mathematical concepts are defined in terms of the primitive notions of set and membership. In axiomatic set theory we formulate . axioms 2010 Mathematics Subject Classification. Primary 03A05; Secondary 00A30, 03Exx, 03B30, 18A15.
    [Show full text]