Greenhouse Or Windowsill Growing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two New Genera in the Omphalodes Group (Cynoglosseae, Boraginaceae)
Nova Acta Científica Compostelana (Bioloxía),23 : 1-14 (2016) - ISSN 1130-9717 ARTÍCULO DE INVESTIGACIÓN Two new genera in the Omphalodes group (Cynoglosseae, Boraginaceae) Dous novos xéneros no grupo Omphalodes (Cynoglosseae, Boraginaceae) M. SERRANO1, R. CARBAJAL1, A. PEREIRA COUTINHO2, S. ORTIZ1 1 Department of Botany, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela , Spain 2 CFE, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal *[email protected]; [email protected]; [email protected]; [email protected] *: Corresponding author (Recibido: 08/06/2015; Aceptado: 01/02/2016; Publicado on-line: 04/02/2016) Abstract Omphalodes (Boraginaceae, Cynoglosseae) molecular phylogenetic relationships are surveyed in the context of the tribe Cynoglosseae, being confirmed that genusOmphalodes is paraphyletic. Our work is focused both in the internal relationships among representatives of Omphalodes main subgroups (and including Omphalodes verna, the type species), and their relationships with other Cynoglosseae genera that have been related to the Omphalodes group. Our phylogenetic analysis of ITS and trnL-trnF molecular markers establish close relationships of the American Omphalodes with the genus Mimophytum, and also with Cynoglossum paniculatum and Myosotidium hortensia. The southwestern European annual Omphalodes species form a discrete group deserving taxonomic recognition. We describe two new genera to reduce the paraphyly in the genus Omphalodes, accommodating the European annual species in Iberodes and Cynoglossum paniculatum in Mapuchea. The pollen of the former taxon is described in detail for the first time. Keywords: Madrean-Tethyan, phylogeny, pollen, systematics, taxonomy Resumo Neste estudo analisamos as relacións filoxenéticas deOmphalodes (Boraginaceae, Cynoglosseae) no contexto da tribo Cynoglosseae, confirmándose como parafilético o xéneroOmphalodes . -
Yellow Archangel Lamium – a Devil to Control!
ALIEN PLANT INVADERS: Yellow Archangel Lamium – A Devil To Control! A series of articles on how to identify and manage some common invasive species on Salt Spring Island, by Jean Wilkinson, Stewardship Committee, Salt Spring Island Conservancy (former articles available on SSIC Web-site) The spread of invasive species is a very serious threat to our native flora and ecosystems, but we can help reduce the impacts of invasive plants by not planting them and by preventing and controlling infestations in our yards and neighbourhoods. In our region one of the most common and challenging invasive plants is Yellow Archangel, aka Dead-nettle. A type of Lamium native to Europe, Asia, and North Africa, it is often used in hanging baskets or sold as a low maintenance, fast- growing perennial ground-cover, easily adaptable to sun or shade. This description should trigger alarm bells! Such plants can quickly take over garden beds and invade nearby natural areas, and they’re difficult to control and remove. Avoiding this problem by planting non-invasive alternatives (see below) is the best policy, but established patches of Lamium and other invasive species can be removed with a bit of effort. Yellow Archangel is particularly problematic as it often spreads into undisturbed wooded areas, forming thick mats and smothering the native plants that provide habitat for wildlife. Large areas can be severely impacted by the dumping of a single hanging basket. Other Lamium varieties (eg L. purpureum) also escape gardens, so if you’re set on growing any of these, please keep them in a contained area, away from the edges of woods or meadows, and be sure to deadhead the flowers. -
Plants to Watch
Plants to Watch for – and Report* – in 2021 Photograph and Report: - all Prohibited plants - Restricted or Round 3 plants in new county - Any unknown or new plant appearing invasive to: [email protected] or GLEDN app or EDDMaps Voucher all new species in a county and any Early detection species Remember – IPAW cash bounty for new county records of prohibited plants! European spindletree (Euonymus europaeus) Native Look-alike Being assessed for possible regulation Eastern Wahoo (Euonymus atropurpureus) Collect voucher specimens when in flower or seed Japanese honeysuckle Bugwood.org Society, Science Weed Southern Bodner, Ted (Lonicera japonica) NR40 PROHIBITED Lowell Urbatsch Hall’s honeysuckle cultivar included Michael Clayton Chuck Bargeron, University of Georgia, Bugwood.org Red Hailstone/Golden Creeper/Manchu Tubergourd Thladiantha dubia Being assessed for possible regulation Stream corridors, floodplains and uplands Known infestations in Polk, Grant, Dane and Waukesha Counties Yellow Bedstraw - Galium verum Being assessed for possible regulation Grasslands Blackberry lily/Leopard Lily Iris domestica/Belamcanda chinensis Being assessed for possible regulation Dry prairies Yellow Archangel – Lamium galeobdolon Being assessed for possible regulation Forests, wooded yards Indian Pokeweed Native Pokeweed (Phytolacca acinosa) (Phytolacca americana) Collect voucher specimens or photos when flowering or in seed Incised Fumewort (Corydalis incisa) Being assessed for NR 40 - Streambanks and floodplains - Biennial with explosive seed pods -
Radiation, Protection of the Public and the Environment (Poster Session 1) Origin and Migration of Cs-137 in Jordanian Soils
Major scientific thematic areas: TA6 – Radiation, Protection of the Public and the Environment (Poster session 1) Origin and Migration of Cs-137 in Jordanian Soils Ahmed Qwasmeh, Helmut W. Fischer IUP- Institute for Environmental Physics, Bremen University, Germany Abstract Whilst some research and publication has been done and published about natural radioactivity in Jordan, only one paper has been published about artificial radioactivity in Jordanian soils (Al Hamarneh 2003). It reveals high concentrations of 137Cs and 90Sr in some regions in the northwest section of Jordan. The origin of this contamination was not determined. Two sets of soil samples were collected and brought from northwest section of Jordan for two reasons, namely; the comparable high concentration of 137Cs in this region according to the above-mentioned paper and because most of the population concentrates in this region. The first set of samples was collected in April 2004 from eleven different sites of this region of Jordan. The second set of samples has been brought in July 2005 from six of the previous sites where we had found higher 137Cs contamination. The second set was collected as thinner sliced soil samples for further studying and to apply a suitable model for 137Cs migration in soil. Activity of 137Cs was measured using a HpGe detector of 50% relative efficiency and having resolution of 2keV at 1.33MeV. Activity of 90Sr was measured for the samples of four sites of the first set of samples, using a gas-filled proportional detector with efficiency of 21.3% cps/Bq. The total inventory of 137Cs in Bq/m2 has been calculated and the correlation between 137Cs inventory and annual rainfall and site Altitude has been studied. -
1St IRF Asia Regional Congress & Exhibition
1st IRF Asia Regional Congress & Exhibition Bali, Indonesia November 17–19 , 2014 For Professionals. By Professionals. "Building the Trans-Asia Highway" Bali’s Mandara toll road Executive Summary International Road Federation Better Roads. Better World. 1 International Road Federation | Washington, D.C. ogether with the Ministry of Public Works Indonesia, we chose the theme “Building the Trans-Asia Highway” to bring new emphasis to a visionary project Tthat traces its roots back to 1959. This Congress brought the region’s stakeholders together to identify new and innovative resources to bridge the current financing gap, while also sharing case studies, best practices and new technologies that can all contribute to making the Trans-Asia Highway a reality. This Congress was a direct result of the IRF’s strategic vision to become the world’s leading industry knowledge platform to help countries everywhere progress towards safer, cleaner, more resilient and better connected transportation systems. The Congress was also a reflection of Indonesia’s rising global stature. Already the largest economy in Southeast Asia, Indonesia aims to be one of world’s leading economies, an achievement that will require the continued development of not just its own transportation network, but also that of its neighbors. Thank you for joining us in Bali for this landmark regional event. H.E. Eng. Abdullah A. Al-Mogbel IRF Chairman Minister of Transport, Kingdom of Saudi Arabia Indonesia Hosts the Region’s Premier Transportation Meeting Indonesia was the proud host to the 1st IRF Asia Regional Congress & Exhibition, a regional gathering of more than 700 transportation professionals from 52 countries — including Ministers, senior national and local government officials, academics, civil society organizations and industry leaders. -
Lamiastrum Galeobdolon, Yellow Archangel Yellow Archangel Is the Common Name of Lamiastrum Galeobolon, an Herbaceous Perennial Plant Used As a Low-Growing Ornamental
A Horticulture Information article from the Wisconsin Master Gardener website, posted 22 June 2012 Lamiastrum galeobdolon, Yellow Archangel Yellow archangel is the common name of Lamiastrum galeobolon, an herbaceous perennial plant used as a low-growing ornamental. Lamiastrum means “resembling Lamium”, referring to the similar-looking deadnettles that are also grown as ornamental ground covers. This species was once classifi ed as Lamium galeobdolon; that name and the synonym Galeobdolon luteum are still occasionally misused in the nursery trade. This Eurasian native in the mint family (Lamiaceae) is hardy in zones 4 (3?) -9. Variegated forms of this plant are popular garden plants, but the species is considered a noxious weed in western Washington State and other areas of the Pacifi c Northwest where it has escaped cultivation and invaded forested areas. It has the potential to spread into natural areas in Wisconsin, although is not considered invasive here and is not proposed for regulation at this time. The elliptical to Lamiastrum galeobdolon ‘Variegatum’ triangular leaves blooming. have coarsely toothed edges, and acute tip and are covered with fi ne hairs. They are medium to dark green, but cultivated forms are variegated with silver markings. The opposite leaves are borne on square stems (typical of the mint family). Plants are semi-evergreen, retaining their leaves through mild winters but dying back to the ground in cold climates in the winter and re-emerging in early spring. Plants grow up to a foot tall as a procumbent mat. This creeping plant spreads by rooting at nodes, from stem and root fragments, and by seed. -
Pin Information for the Intel® Agilex™ AGFA022 Device
Pin Information for the Intel® Agilex™ AGFA022 Device Version: 2021-07-07 Status: Final TYPE BANK R24C Package R25A Package R31C Package Transceiver I/O 10A - 68 - Transceiver I/O 10C - 68 - Transceiver I/O 12A - - 84 Transceiver I/O 12C 84 - 84 Transceiver I/O 13A 84 - 84 Transceiver I/O 13C - - 84 GPIO 2C 96 96 96 GPIO 2D 96 - 96 GPIO 2E 72 96 72 GPIO 2F 96 96 96 GPIO 3A 96 48 96 GPIO 3B 96 - 84 GPIO 3C 96 96 84 GPIO 3D 96 96 96 GPIO 3F - 96 - Transceiver I/O 9A - 114 - SDM I/O SDM 29 29 29 i. Total LVDS channels per bank supporting SERDES Non-DPA and DPA mode is equivalent to (LVDS I/O per bank)/2, inclusive of clock pair. Please refer to Dedicated Tx/Rx Channel column in the pin-out table for the channel availability. ii. Total LVDS channels supporting SERDES Soft-CDR mode is 12 pairs per bank. Please refer to Soft CDR column in the pin out table for the channel availability. PT- AGFA022 Copyright © 2021 Intel Corp IO Resource Count Page 1 of 117 Pin Information for the Intel® Agilex™ AGFA022 Device Version: 2021-07-07 Status: Final Bank Number Index within I/O Bank VREF Pin Name/Function Optional Function(s) Configuration Function Dedicated Tx/Rx Channel SERDES Soft CDR Support R24C DQS for X4 DQS for X8/X9 DQS for X16/X18 DQS for X32/X36 SDM TDO CC49 SDM TMS CE43 SDM TCK CF44 SDM TDI CC43 SDM OSC_CLK_1 CB42 SDM SDM_IO0 PWRMGT_SCL,PWRMGT_ALERT CG47 SDM SDM_IO1 AVSTx8_DATA2,AS_DATA1 CA45 SDM SDM_IO5 AS_nCSO0,MSEL0 CC45 SDM SDM_IO3 AVSTx8_DATA3,AS_DATA2 CF46 SDM nCONFIG CC47 SDM SDM_IO4 AVSTx8_DATA1,AS_DATA0 CG45 SDM SDM_IO2 AVSTx8_DATA0,AS_CLK -
Biotic and Abiotic Stress Responses in Crop Plants
agronomy Biotic and Abiotic Stress Responses in Crop Plants Edited by Thomas Dresselhaus and Ralph Hückelhoven Printed Edition of the Special Issue Published in Agronomy www.mdpi.com/journal/agronomy Biotic and Abiotic Stress Responses in Crop Plants Biotic and Abiotic Stress Responses in Crop Plants Special Issue Editors Thomas Dresselhaus Ralph H ¨uckelhoven MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Thomas Dresselhaus Ralph Huckelhoven¨ University of Regensburg Technical University of Munich Germany Germany Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Agronomy (ISSN 2073-4395) in 2018 (available at: https://www.mdpi.com/journal/agronomy/special issues/ biotic abiotic stress responses crop plants#) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-463-5 (Pbk) ISBN 978-3-03897-464-2 (PDF) Cover image courtesy of Kevin Begcy. The image shows a semi-sterile maize cob fertilized with heat-stressed pollen. c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. -
Non-Native Invasive Plants of Delaware
NON-NATIVE INVASIVE PLANTS OF DELAWARE William A. McAvoy Species Conservation and Research Program Delaware Division of Fish and Wildlife Delaware Dept. of Natural Resources and Environmental Control 4876 Hay Point Landing Rd., Smyrna, DE 19977 [email protected] March 2018 This list consists of 198 species, subspecies and varieties of non-native, vascular plants that are thought to be invasive (79) or potentially invasive (119) in the state of Delaware. This list is updated annually as new data are collected and the ranks of species are assessed. The purpose of this list is not regulatory; it is to serve only as a reference, advising those who have an interest in and concerns about non-native plants in Delaware. Non-native: A species that is not native to North America (north of Mexico). Non-native species are thought to have been introduced by humans, primarily through agricultural or horticultural practices. These species have become established in Delaware and are reproducing as if native (i.e., naturalized). Adventive (identified with an asterisk*): A species native to North America, but not to Delaware that is now found growing in Delaware outside of its natural range. Adventive species are not considered to be part of Delaware's native flora. These species usually arrive due to the human-caused breakdown of natural barriers to dispersal. Adventive species also include plants that have been introduced, or intentionally planted in Delaware and are now escaping and surviving without cultivation. Invasive: A species that causes environmental harm. Invasive species are very aggressive and out- compete and displace native flora and fauna. -
The Effect of Road Upgrading to Overland Trade in Asian Highway Network Ziyodullo PARPIEV ∗ Jamshid SODIKOV **
Eurasian Journal of Business and Economics 2008, 1 (2), 85-101. The Effect of Road Upgrading to Overland Trade in Asian Highway Network Ziyodullo PARPIEV ∗ Jamshid SODIKOV ** Abstract This paper investigates an impact of road upgrading and improvement on overland trade in 18 out of 32 Asian Highway Network member countries. A regression based cost model was developed. The results indicate that approximately 6.5 billion US dollars is required to upgrade and improve surface condition of the selected roads with total length of 15,842 km. The gravity model approach was adopted to quantitatively evaluate overland trade expansion assuming pessimistic and optimistic scenarios: improvements in road quality indices up to 50 and up to 75, respectively. The results suggests that in the first scenario total intra-regional trade will increase by about 20 percent or 48.7 billion US dollars annually, while second scenario predicts that trade will increase by about 35 percent or 89.5 billion US dollars annually. Keywords: Asian Highway Network, road transport, gravity model. Jel Classification: F12, F15, F17. ∗ Advisor-Economist, UNDP Uzbekistan Country Office, Email: [email protected] ** Chief Engineer, Road Research Institute, Tashkent, Uzbekistan The views expressed in this paper are those of the author(s) and do not necessarily represent those of organizations the authors are associated with. Ziyodullo PARPIEV & Jamshid SODIKOV 1. Introduction In 1992, the United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) endorsed the Asian Land Transport Infrastructure Development (ALTID) project comprising of the Asian Highway and the Trans-Asian Railway network. The formalization of the Asian Highway, through the Intergovernmental Agreement on Asian Highway Network (AHN), was adopted in November 2003. -
Growing Together Articulates a Number of Proposals That Can Help the Region Exploit Its Huge Untapped Potential for Regional Economic Integration
i Photo by Warren Field ii FOREWORD For the global economy, these are difficult times. The world is emerging from a crisis whose aftershocks continue to resonate – trapping some of the richest economies in recession and shaking the foundations of one of the world’s major currencies. Here at ESCAP, there are historical echoes. What is now the Economic and Social Commission for Asia and the Pacific was founded more than 60 years ago – also in the aftermath of a global crisis. The countries of Asia and the Pacific established their new Commission partly to assist them in rebuilding their economies as they came out of the yoke of colonialism and the Second World War. The newly established ECAFE, as ESCAP was called then, held a ministerial conference on regional economic cooperation in 1963 that resolved to set up the Asian Development Bank with the aim of assisting the countries in the region in rebuilding their economies. Fifty years later, the Asia-Pacific region is again at a crossroads, on this occasion seeking ways and means to sustain its dynamism in a dramatically changed global context in the aftermath of a global financial and economic crisis. An important change is the fact that, burdened by huge debts and global imbalances, the advanced economies of the West are no longer able to play the role of engines of growth for the Asia-Pacific region that they played in the past. Hence, the Asia-Pacific region has to look for new engines of growth. The secretariat of ESCAP has argued over the past few years that regional developmental challenges, such as poverty and wide disparities in social and physical infrastructure, can be turned into opportunities for sustaining growth in the future. -
Landscaping with Native Plants in Snoqualmie
LANDSCAPING WITH NATIVE PLANTS LANDSCAPING WITH NATIVE PLANTS Washington state is home to thousands of plants, many of which can beautify your yard while providing numerous benefits to wildlife, humans, and ecosystems. Sword fern — Polystichum munitum Nootka rose — Rosa nutkana Western trillium — Trillium ovatum Native plants are great for a home gardener because they are adapted to our region’s wet winters and dry summers. This means that, once established, they are easier to manage and require less water. They are also more pest and disease resistant. Gardens with native plants are great for local forests. They provide habitat and foraging opportunities for birds, pollinators, and other wildlife, increasing and improving habitat corridors. Native plants control erosion and reduce pollution and runoff, benefiting both people and wildlife. Some nursery plants, though beautiful, can escape backyard gardens and become invasive weeds in forests. Invasive plants diminish habitats and ecosystems and are a constant battle for land managers. When you garden with native plants, you eliminate this risk of nonnative plants naturalizing in our local forests. Gardening with native plants protects Snoqualmie’s forests and increases our connection to our Ivy — Hedera helix, a popular landscaping plant can beautiful region. escape and become a big problem in forested areas. [email protected] | www.greensnoqualmie.org GENERAL TIPS FOR PLANTING WITH NATIVE PLANTS • Snoqualmie has shallow soils so it is important to use lots of arborist mulch or chips (ground-up tree material) to fortify the soil. Chipdrop.com provides free wood chips. • Give conifers room to grow. Plant away from structures and power lines and anticipate how large your tree will grow.