CRYSTAL CHEMICAL CLASSIFICATION of MINERALS Volume 1 Monographs in Geoscience General Editor: Rhodes W

Total Page:16

File Type:pdf, Size:1020Kb

CRYSTAL CHEMICAL CLASSIFICATION of MINERALS Volume 1 Monographs in Geoscience General Editor: Rhodes W CRYSTAL CHEMICAL CLASSIFICATION OF MINERALS Volume 1 Monographs in Geoscience General Editor: Rhodes W. Fairbridge Department of Geology, Columbia University, New York City B. B. Zvyagin Electron-Diffraction Analysis of Clay Mineral Structures-1967 E. I. Parkhomenko Electrical Properties of Rocks-1967 L. M. Lebedev Metacolloids in Endogenic Deposits-I 967 A. I. Perel'man The Geochemistry of Epigenesis- 1967 S. J. Lefond Handbook of World Salt Resources-1969 A. D. Danilov Chemistry of the lonosphere-1970 G. S. Gorshkov Volcanism and the Upper Mantle: Investigations in the Kurile Island Arc-1970 E. L. Krinitzsky Radiography in the Earth Sciences and Soil Mechanics-1970 B. Persons Laterite-Genesis, Location, Use- 1970 D. Carroll Rock Weathering-1970 E. I. Parkhomenko Electrification Phenomena in Rocks -1971 R. E. Wainerdi and E. A. Uken Modern Methods of Geochemical Analysis -1971 A. S. Povarennykh Crystal Chemical Classification of Minerals -1972 CRYSTAL CHEMICAL CLASSIFICATION OF MINERALS Volume 1 A. s. Povarennykh Institllte of Geological Sciences Academy of Sciences of the Ukrainian SSR Kiev, USSR Translated from Russian by J. E. S. Bradley <±?SPRINGER SCIENCE+BUSINESS MEDIA, LLC 1972 Aleksandr Sergeevich Povarennykh was born in 1915 in Leningrad. In 1940 he was gradu­ ated from the geological faculty of the Central Asian Poly technical Institute. He presented his Candidate's dissertation in the Department of Mineralogy at Leningrad Mining Institute in 1949 and in the same year he went as lecturer to Krivoy Rog Mining Institute where he headed the Department of Mineralogy and Crystallography. In 1957 he presented his D. Sc. thesis on "Crystallochemical Principles of the Current Teaching of Mineralogy." He was appointed professor in the Department of Mineralogy and Crystallography in 1959 and in 1960 he was invited to direct the mineralogy division at the Institute of Geological Sciences, Academy of Sciences of the Ukrainian SSR, in Kiev, where he now works. In 1961 he was elected president of the Ukrainian section of the All-Union Mineralogical Society. The original one-volume Russian text, published for Naukova Dumka in Kiev in 1966, has been extensively revised and updated by the author for the present edition. The English translation is published under an agreement with Mezhdunarodnaya Kniga, the Soviet book export agency. KRISTALLOKHIMICHESKAYA KLASSIFIKATSIYA MINERAL'NYKH VIDOV KP\;1CT AJlJlOX\;1M\;14ECKA51 KJlACC\;1<p\;1KAU\;151 M\;1HEPAJlbHbIX B\;1fl.OB A. C. nOBAPEHHbIX Library of Congress Catalog Card Number 68-26769 ISBN 978-1-4684-1745-6 ISBN 978-1-4684-1743-2 (eBook) DOI 10.1007/978-1-4684-1743-2 © 1972 Springer Science+Business Media New York Originally published by Plenum Press, New York in 1972 Softcover reprint of the hardcover 1st edition 1972 All rights reserved No part of this publication may be reproduced in any form without written permission from the publisher FOREWORD TO THE AMEillCAN EDITION I welcome the proposal of Plenum Press to publish an English trans­ lation of my book, firstly because it will familiarize mineralogists in the west with the theoretical principles it contains, and secondly because it al­ lows me to take into account various criticisms, to incorporate new data, to revise various features, and even to transfer minerals from one class to another. In the six years that have elapsed since the completion of the Russian edition, over 240 new mineral species have been discovered, of which 224 have been included in the classification, while 16 have not yet been adequately characterized. Of the 224 species, nine belong to the class of simple substances and carbides, 46 to the arsenides, tellurides, and sulfides, 19 to the oxides, 11 to the hydroxides, 62 to the silicates, 13 to the borates, 28 to the vanadates, arsenates, and phosphates, and the remaining 36 to the sulfates, carbonates, and hal ides. After elimination of certain species, and transfer of others from one category to another, the species included in the classification number 1916, while there are 148 inadequately characterized. In addition to the descriptions of the 224 new species, additions or cor­ rections have been made to the descriptions of at least 100 others. Some transfers within classes have been made on the basis of revised data; for instance, in the sulfides lautite has been transferred from the insular sub­ class to the chain one, while ottemannite has been transferred from the layer subclass to the chain one. In the oxides, the brannerite group has been transferred from the framework subclass to the layer one. In the sili­ cate class, fresnoite has been transferred from the baotite group (frame­ work titanosilicate division) to the layer titanosilicate division; the ekanite v vi FOREWORD TO THE AMERICAN EDITION group has been transferred from the layer subclass to the division with two-level [Sis0201 four-sided rings, the copper silicate shattuckite .has been transferred from the ring subclass to the chain subclass and stillwellite has been transferred from the insular-silicate subclass to the chain boro­ silicate division. The rearrangements have also been made for innelite, nordite, krauskopfite, naujakasite, tundrite groups etc. In the borate class, kaliborite and kernite have been transferred from the insular subclass to the chain one, while fabianite and veatchite have been transferred from frame­ work and chain classes to the layer one. In the oxyhalide class, creedite has been transferred from the coordination subclass to the layer one, while tikhonenkovite has been transferred from the chain subclass to the layer one. In the fluorides, the thomsenolite group has been transferred from the insular subclass to the framework one. The number of figures has been increased, and fresh illustrations have been added for the following 11 minerals: lautite, cancrinite, laumon­ tite, kanaekanite, stillwellite, meliphanite and leucophanite, fresnoite, kali­ borite, palmierite, dawsonite, and tikhonenkovite. I have borne in mind the important comments by Professor M. Fleischer, President of the Commission on New Minerals and Mineral Names of the International Mineralogical Association, and also the strength of the attachment of mineralogists to established names, so I have restored the old names for most species which had been changed in the Russian edition. The rational names proposed in this book are given in parentheses after the accepted names and do not appear in the alphabetic index; but I re­ tain the rational names in those cases where two former species have been joined as one new (isomorphous) species, which is of major importance to the concept of a species proposed in this book. Changes have also been made for some recently discovered polymorphic species for which there are either differ­ ent names with their implications or the greek prefixes (Y and {3 0 The following changes and additions have also been made to increase the utility of the book: the index of abandoned names and synonyms has been combined with the index of current species, an alphabetic formula index has been added, and references have been given to the relevant sources. These references are selective, and in Part Two (classification section) they are given mainly in cases where the structure has been stud­ ied or the species is too new to be familiar to most mineralogists. I should also like to record my thanks for advice and criticism to Professor M. Fleischer of the Geological Survey, Washington, and to Pro­ fessor D. Jerome Fisher of Chicago University. FOREWORD The advances in mineralogy that have occurred in this century show that mineralogy entered a new crystallochemical stage, in about 1930, which has been accompanied by further differentiation. Discovery of the internal structures of minerals has brought about a complete revolution in our views on mineral chemistry and has led to the rejection of naive molecular representations; instead we think of classes of atoms inter­ acting via chemical bonds differing in type and strength. Structural data have provided insight into the chemical composition and isomorphism; in addition, all the properties allow of a regular explanation. This means that basic concepts such as mineral, mineral species, and variety have ceased to conform to the new data, as have the classification principles for species; having become obstacles to progress, they must undergo major revision. In 1935 Fersman stated that the old descriptive mineralogy had dis­ integrated, and from its vast accumulation of material on the laws of nat­ ural crystals, much of which until recently appeared to be lusus naturae, were growing new scientific trends, involvingchemistry (development of cry­ stal chemistry), physics (via the new laws of atomic physics), and geology (the last revealing entire new areas of chemical phenomena in geology). In times of slow evolution of mineralogy the changes in content were slight and did not involve essential revision of fundamental concepts; but with the passage to an essentially new stage of development there is an ob­ vious need to revise previous definitions, since only in this way can we ob­ tain reasonable agreement between the form and the content of the science. For some years I have worked on this problem and have published papers on mineral nomenclature, mineral classification, and the definition of basic concepts in mineralogy. However, these deductions and proposals have not been applied to the vast accumulated material and so have re- vii viii FOREWORD mained without outcome, the more so since they require very substantial changes. All the same, only extension of the new theoretical conclusions to the whole of mineralogy can confirm or refute them. The most effective means of attaining this end lies in a detailed de­ velopment of the crystallochemical classification, which is extended to all mineral species. This classification demands fresh solutions to the prob­ lems of species and nomenclature in application to all minerals; these are presented here. The book consists of two parts.
Recommended publications
  • (M = Ca, Mg, Fe2+), a Structural Base of Ca3mg3(PO4)4 Phosphors
    crystals Article Crystal Chemistry of Stanfieldite, Ca7M2Mg9(PO4)12 (M = Ca, Mg, Fe2+), a Structural Base of Ca3Mg3(PO4)4 Phosphors Sergey N. Britvin 1,2,* , Maria G. Krzhizhanovskaya 1, Vladimir N. Bocharov 3 and Edita V. Obolonskaya 4 1 Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia; [email protected] 2 Nanomaterials Research Center, Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Russia 3 Centre for Geo-Environmental Research and Modelling, Saint-Petersburg State University, Ulyanovskaya ul. 1, 198504 St. Petersburg, Russia; [email protected] 4 The Mining Museum, Saint Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia; [email protected] * Correspondence: [email protected] Received: 1 May 2020; Accepted: 25 May 2020; Published: 1 June 2020 Abstract: Stanfieldite, natural Ca-Mg-phosphate, is a typical constituent of phosphate-phosphide assemblages in pallasite and mesosiderite meteorites. The synthetic analogue of stanfieldite is used as a crystal matrix of luminophores and frequently encountered in phosphate bioceramics. However, the crystal structure of natural stanfieldite has never been reported in detail, and the data available so far relate to its synthetic counterpart. We herein provide the results of a study of stanfieldite from the Brahin meteorite (main group pallasite). The empirical formula of the mineral is Ca8.04Mg9.25Fe0.72Mn0.07P11.97O48. Its crystal structure has been solved and refined to R1 = 0.034. Stanfieldite from Brahin is monoclinic, C2/c, a 22.7973(4), b 9.9833(2), c 17.0522(3) Å, β 99.954(2)◦, 3 V 3822.5(1)Å .
    [Show full text]
  • Research on Crystal Growth and Characterization at the National Bureau of Standards January to June 1964
    NATL INST. OF STAND & TECH R.I.C AlllDS bnSflb *^,; National Bureau of Standards Library^ 1*H^W. Bldg Reference book not to be '^sn^ t-i/or, from the library. ^ecknlccil v2ote 251 RESEARCH ON CRYSTAL GROWTH AND CHARACTERIZATION AT THE NATIONAL BUREAU OF STANDARDS JANUARY TO JUNE 1964 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS tiona! Bureau of Standards NOV 1 4 1968 151G71 THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national stand- ards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particu- larly for government agencies; cooperation in the establishment of standard practices for incorpora- tion in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, tech- nical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units.
    [Show full text]
  • Crystal Chemistry of Cancrinite-Group Minerals with an Ab-Type Framework: a Review and New Data
    1151 The Canadian Mineralogist Vol. 49, pp. 1151-1164 (2011) DOI : 10.3749/canmin.49.5.1151 CRYSTAL CHEMISTRY OF CANCRINITE-GROUP MINERALS WITH AN AB-TYPE FRAMEWORK: A REVIEW AND NEW DATA. II. IR SPECTROSCOPY AND ITS CRYSTAL-CHEMICAL IMPLICATIONS NIKITA V. CHUKANOV§ Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow Oblast, Russia IGOR V. PEKOV, LYUDMILA V. OLYSYCH, NATALIA V. ZUBKOVA AND MARINA F. VIGASINA Faculty of Geology, Moscow State University, Leninskie Gory, 119992 Moscow, Russia ABSTRACT We present a comparative analysis of powder infrared spectra of cancrinite-group minerals with the simplest framework, of AB type, from the viewpoint of crystal-chemical characteristics of extra-framework components. We provide IR spectra for typical samples of cancrinite, cancrisilite, kyanoxalite, hydroxycancrinite, depmeierite, vishnevite, pitiglianoite, balliranoite, davyne and quadridavyne, as well as the most unusual varieties of cancrinite-subgroup minerals (Ca-deficient cancrinite, H2O-free cancrinite, intermediate members of the series cancrinite – hydroxycancrinite, cancrinite–cancrisilite, cancrinite– kyanoxalite, K-rich vishnevite, S2-bearing balliranoite). Samples with solved crystal structures are used as reference patterns. Empirical trends and relationships between some parameters of IR spectra, compositional characteristics and unit-cell dimensions 2– are obtained. The effect of Ca content on stretching vibrations of CO3 is explained in the context of the cluster approach. The existence of a hydrous variety of quadridavyne is demonstrated. Keywords: cancrinite, cancrisilite, kyanoxalite, hydroxycancrinite, depmeierite, vishnevite, pitiglianoite, balliranoite, davyne, quadridavyne, cancrinite group, infrared spectrum, crystal chemistry. SOMMAIRE Nous présentons une analyse comparative des spectres infrarouges obtenus à partir de poudres de minéraux du groupe de la cancrinite ayant la charpente la plus simple, de type AB, du point de vue des caractéristiques cristallochimiques des composantes externes à la charpente.
    [Show full text]
  • Novel and Optimized Materials Phases for High Energy Density
    Novel and Optimized Materials for High Energy Density Batteries Jordi Cabana Lawrence Berkeley National Laboratory 05/16/2013 ES070 This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview Timeline Barriers • Project start Jan 2012 • Barriers addressed • Project end Sep 2015 – Gravimetric and volumetric • 25% complete Energy Density – Cycle life – Safety Budget • Funding FY12: $450 Partners • Funding FY13: $450 • BATT NiMn Spinel Focus Group. • Battaglia, Srinivasan, Kostecki, Persson, Chan (LBNL), Beamline scientists at SSRL and ALS, Grey (CU), Casas- Cabanas (CIC) 2 Relevance - Objectives • To achieve cycle life and energy density targets using high capacity, high voltage electrode materials. – Establish chemistry-structure-properties correlations and assess origins of inefficiencies to aid in the design of better materials. – Discover new materials with improved chemical and electrochemical stability. – barriers: energy density, cycle life, safety • To understand the correlation between chemistry, phase transformations and electrode performance. – Develop methods to couple parameters at multiple length scales. – Provide inputs for electrode design and modeling teams to enable battery engineering improvements and life predictions. – barriers: energy density, cycle life 3 Milestones Mar. 12 Complete the crystal-chemical characterization of annealed LiNi1/2Mn3/2O4 and identify its role on electrochemical performance. Completed Sep. 12 Synthesize and physico-chemically characterize at least two different new phases showing an oxyfluoride network, containing lithium and a light transition metal. Delayed to FY13 Sep. 12 Identify the influence of oxide additives on the extent of electrolyte-electrode side reactions in spinel electrodes. Completed Mar. 13 Complete in operando X-ray diffraction study of at least 4 samples of LiNi1/2Mn3/2O4 with different degrees of order/disorder.
    [Show full text]
  • Compilation of Crystal Growers and Crystal Growth Projects Research Materials Information Center
    ' iW it( 1 ' ; cfrv-'V-'T-'X;^ » I V' 1l1 II V/ f ,! T-'* «( V'^/ l "3 ' lyJ I »t ; I« H1 V't fl"j I» I r^fS' ^SllMS^W'/r V '^Wl/ '/-D I'ril £! ^ - ' lU.S„AT(yMIC-ENERGY COMMISSION , : * W ! . 1 I i ! / " n \ V •i" "4! ) U vl'i < > •^ni,' 4 Uo I 1 \ , J* > ' . , ' ^ * >- ' y. V * / 1 \ ' ' i S •>« \ % 3"*V A, 'M . •. X * ^ «W \ 4 N / . I < - Vl * b >, 4 f » ' ->" ' , \ .. _../.. ~... / -" ' - • «.'_ " . Ife .. -' < p / Jd <2- ORNL-RMIC-12 THIS DOCUMENT CONFIRMED AS UNCLASSIFIED DIVISION OF CLASSIFICATION COMPILATION OF CRYSTAL GROWERS AND CRYSTAL GROWTH PROJECTS RESEARCH MATERIALS INFORMATION CENTER \i J>*\,skJ if Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22t51 Price: Printed Copy $3.00; Microfiche $0.95 This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. ORNL-RMIC-12 UC-25 - Metals, Ceramics, and Materials Contract No. W-7405-eng-26 COMPILATION OF CRYSTAL GROWERS AND CRYSTAL GROWTH PROJECTS T. F. Connolly Research Materials Information Center Solid State Division NOTICE This report was prepared as an account of work sponsored by the Unitsd States Government.
    [Show full text]
  • Transition Metal Oxides
    . _ ^ ^ „ OCT 14 1975 175118 '-cy NSRDS-NBS 49 Transition Metal Oxides U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards NSRDS Ice dat* Crystal Chemistry, Phase Transition and Related Aspects NATIONAL BUREAU OF STANDARDS The National Bureau of Standards 1 was established by an act of Congress March 3, 1901. The Bureau’s overall goal is to strengthen and advance the Nation’s science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation’s physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas- urement Services and the following divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences 2 — Applied Radiation 2 — Quantum Electronics 3 — Electromagnetics 3 — Time 3 3 3 and Frequency — Laboratory Astrophysics — Cryogenics . THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials.
    [Show full text]
  • Research on Crystal Growth and Characterization at the National Bureau of Standards July to December 1963
    NAT'L INST. OF STAND & TECH NIST AlllDfc, MflMbEb PUBLICATIONS tmwmUNI ^H mm r 30 lV.! * M » 4 I - * t t ffixra ,: W' :: --. :! bu HIHi18 I i I H n Hall I ran BBBBBfilflanHi BBI1 111 Hi HNS HHHslI!Hi Mm SShHu nHMraHaa - Bldg Kererence dook nui iu ue Library, N.W. from the library. APR 2 1 1964 taken ^ecltnlcaL riot& 236 RESEARCH ON CRYSTAL GROWTH AND CHARACTERIZATION AT THE NATIONAL BUREAU OF STANDARDS JULY TO DECEMBER 1963 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS idards I 4 1968 1S1GT0 NATIONAL BUREAU OF STANDARDS tecknical ^ote 236 ISSUED APRIL 6, 1964 RESEARCH ON CRYSTAL GROWTH AND CHARACTERIZATION AT THE NATIONAL BUREAU OF STANDARDS JULY TO DECEMBER 1963 Edited by H. Steffen Peiser National Bureau of Standards NBS Technical Notes are designed to supplement the Bu- reau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature. For sale by the Superintendent of Documents. U.S. Government. Printing Office Washington, D.C., 20402 - Price 40 cents. Contents 1. Introduction 1 2. Crystal Growth 2 2.1 Growth of Dislocation-Free Metal Crystals from the Melt 2 2.2 Kinetics of Growth of Crystals from the Melt 4 2.3 Thermodynamics of Segregation of Solute Atoms to Stacking Faults in FCC Binary Alloys 6 2.4 Theory of Dendritic Crystallization 6 2.5 High-Temperature Crystal Growth 7 2.6 Study of Temperature Distribution in the Verneuil Process 7 2.7 Crystal Growth and Structure Studies
    [Show full text]
  • Crystal Chemistry:Past, Present, and Futurer
    American Mineralogist, Volume 70, pages 443454, 1985 Crystal chemistry:past, present, and futurer CrHRrns T. Pnrwrrr Departmentof Earth and SpaceSciences StateUniuersity of New York StonyBrook, New York 11794 Abstract Crystal chemistry is an important part of the scienceof mineralogy and describesthe relationships of mineral crystal structures with the correspondingphysical and chemical properties.Crystal chemistryhas evolved over a period of fifty years or more from a purely qualitative endeavorto one that is quantitative and that can provide essentialinsight to the behavior of minerals under varying conditions of pressure,temperature, and chemicalenvi- ronment.Increased interest in the chemicaland physicalproperties of mineralsand how these are related to important problemsin the geologicaland materialssciences makes the future look verypromising. Introduction and technologyas well. The subject of this paper, crystal chemistry,embodies aspects of all three areasin Figure 1 Role of crystal chemistry and, therefore,should be consideredto lie in the overlap The study of crystal chemistry is of fundamental impor- regionamong the differentcircles. tance to the science ofmineralogy, as well as to other fields Evans (1952)defined crystal chemistry as "the study of such as materials science and solid-state chemistry. How- the relationship of the internal structure of a body to its ever, it is my perception that mineralogy itself means differ- physical and chemical properties.It aims at interpreting ent things to different people, as do crystallography and the propertiesof any substancein terms of its crystal struc- petrology, disciplines that are also considered to be oflicial ture, and, conversely,at associatingwith any structural interests of the Mineralogical Society of America and the characteristica correspondingset of physicaland chemical Society often regulates its activities according to these cate- properties.Ideally crystal chemistry should enable us to gories.
    [Show full text]
  • The Crystal Structure of Minerals - H
    GEOLOGY – The Crystal Structure of Minerals - H. Effenberger THE CRYSTAL STRUCTURE OF MINERALS H. Effenberger Institut für Mineralogie und Kristallographie, Universität Wien, Wien, Austria Keywords: mineral, crystal, crystal structure, symmetry, symmetry elements, point group, crystal system, crystal class, space group, lattice, translation group, incommensurate structures, crystal chemistry, chemical bond, Pauling=s rules Contents 1. Introduction 2. Symmetry elements 3. Periodicity 4. Crystal systems and point groups 5. Translation lattices 6. Translation groups (line-, plane- and space groups) 7. Defects, quasi-periodic and aperiodic structures 8. Crystal chemistry 9. The crystal structures Glossary Bibliography Biographical Sketch Summary This chapter deals with the characterization of minerals from a crystallographic and crystal chemical point of view. Besides knowledge of the chemical composition, the crystal structure or at least some essential features must be known to define a mineral correctly. The chapter starts with an explanation of the symmetry elements. Crystallized matter is based on a periodic arrangement of the atoms which is defined by the translation lattice. As a consequence there are only strictly limited possibilities for the arrangement of symmetry elements in the (three-dimensional) space. The crystal systems (geometrical requirements of the crystal lattice), crystal classes (symmetry of the shape of a crystal) and space groups (symmetry ofUNESCO the atomic arrangement of –a crystal) EOLSS are discussed. An approach to modulated- and composite- (incommensurate-) structures as well as to quasi- and nano- crystals is given. The second part of the chapter accounts for crystal chemistry. The properties of a mineral are determined by the kind and geometrical arrangement of atoms or molecules withinSAMPLE the crystal structure.
    [Show full text]
  • Crystal Chemistry
    Crystal Chemistry A mineral is a solid with a highly ordered atomic arrangement and a definite, but not fixed, chemical composition. 1. What is an atom? 2. What are the common atoms/elements in common geological minerals? 3. How are the atoms arranged? 4. How do the atoms interact with one another? 5. How does the nature and arrangement of elements in a mineral vary, both the chemical and physical properties, of minerals? What is an atom? The smallest subdivision of matter that retains the characteristics of the element. Models for the atom have evolved with greater understanding of particle physics. Early models, such as that of Rutherford, predicted that an atom was just like the solar system. Bohr refined the model quantifying the orbits. The work of Schrödinger and Heisenberg refined the model further, rejecting precise orbits, and promoting regions of electron occurrence – orbitals. Structure of an atom The fundamental difference between atoms of different elements is the electrical charge of the nucleus. The nucleus of an atom consists of two sub-atomic particles: protons and neutrons (of essentially equal mass = 1amu), with the former defining the atomic number (Z). All atoms are electrically neutral. The number of protons is balanced by the same numbers of electrons. In the case of 16O, there are 8 of each, plus 8 neutrons. This gives an atomic weight of 16. Isotopes The properties of an atom are defined by the number of protons and electrons, so in the case of oxygen (Z = 8), the atomic weight is almost 16 (15.9994). Many elements have alternative mass configurations, but retain the same Z; these are called isotopes.
    [Show full text]
  • Crystal Chemistry and Geochemistry in Oslo: 1922-1929
    6 / Crystal Chemistry and Geochemistry in Oslo: 1922-1929 OLDSCHMIDT DESCRIBED HIS plans for the Raw Materials Labora- Gtory in the post-World War I period as follows;' "After the end of the first world war, when a new economic situ- ation had developed, I recommended the continuance of research work along more general lines <,mraw minerals materials and the study of general scientificproblems closely connected with the uti- lization of mineral raw materials. Among the problems proposed here there was one of outstanding importance, i.e. to find the general laws and principles which underlie the frequency and distribution of the various chemical elements in nature-the basic problem of geochemistry. I proposed to attack the problem from the view point of atomic physics and atomic chemistry, and to find out the rela- tionships between the geochemical distribution of the various ele- ments and the measurable properties of their atoms and ions"(original English). Concurrently with their search for element 72, Goldschmidt and Thomassen began an extensive research on the abundance and dis- tribution of the rare earth elements: yttrium (AN 39) and the sequence from lanthanum (AN 57) to lutetium (AN 71); Goldschmidt introduced the term lanthanides for the latter sequence. Information in this field was almost totally lacking, because of the extreme difficulty in sep- arating the individual elements by the classical methods of chemical analysis. Their X-ray spectra, however, showed the relatively simple pattern of lines in a regular progression from one element to the next. An enormous advantage was that it was unnecessary to separate out the individual elements-a single spectrum showed the lines for each of the elements present, and the intensities of the lines were approx- imately proportional to the amount present.
    [Show full text]
  • Research on Crystal Growth and Characterization at the National Bureau of Standards July to December 1964
    i-k i national Bureau of Standards Reference bOOR HOt tn h^ • library, N.W. t^' i , - • MAY 13 1965 . , ^ecknlccil vZote 260 RESEARCH ON CRYSTAL GROWTH AND CHARACTERIZATION AT THE NATIONAL BUREAU OF STANDARDS JULY TO DECEMBER 1964 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS lb THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national stand- ards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particu- larly for government agencies; cooperation in the establishment of standard practices for incorpora- tion in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, tech- nical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units. Institute for Basic Standards.
    [Show full text]