Pdf Available

Total Page:16

File Type:pdf, Size:1020Kb

Pdf Available Behav Ecol Sociobiol (2016) 70:1755–1763 DOI 10.1007/s00265-016-2181-4 ORIGINAL ARTICLE Deep evolutionary experience explains mammalian responses to predators Rosemary Atkins1 & Daniel T. Blumstein2 & Katherine E. Moseby1,3 & Rebecca West1,3 & Matthew Hyatt1 & Mike Letnic1 Received: 3 March 2016 /Revised: 29 June 2016 /Accepted: 1 July 2016 /Published online: 14 July 2016 # Springer-Verlag Berlin Heidelberg 2016 Abstract to dingoes/dogs but no evolutionary or ontogenetic exposure Prey may have ontogenetic experience, evolutionary experi- to foxes. Bettongs showed a modest response to the dingo/dog ence, or both types of experiences with their predators and model and no response to the fox model. These results are how such experiences influences their ability to identify their consistent with the hypothesis that deep evolutionary history predators is of great theoretical and applied interest. We cap- plays an essential role in predator discrimination and provides italized on predator-free exclosures containing populations of support for the multipredator hypothesis that predicts the pres- native burrowing bettongs (Bettongia lesueur)andintroduced ence of any predators can maintain antipredator behavior for rabbits (Oryctolagus cuniculus) that ensured we had knowl- other absent predators. edge of our subjects’ ontogenetic experiences with predators and asked whether evolutionary experience influenced their Significance statement visual predator discrimination abilities. Rabbits evolved with Prey may have ontogenetic experience and or evolutionary ex- red foxes (Vulpes vulpes) and wolves (Canis lupus) but had perience with their predators. How such experiences influence less than 200 years of prior exposure to dingoes. The rabbit prey species’ ability to identify their predators is of significance population we studied had been exposed to dingoes (Canis to theory on the evolution of antipredator response and to im- dingo) and foxes 8 months prior to our study and had height- prove the success of translocations and reintroductions for con- ened responses to red fox models, but not dingo/dog (Canis servation purposes which often fail because of predation on dingo/Canis familiaris) models. The insular burrowing predator naïve prey. Here, we show that prey recognition for bettong population had no ontogenetic exposure to mammali- two prey species with limited or no ontogenetic exposure to an predators, brief evolutionary exposure to domestic dogs predators, rabbits, and burrowing bettongs was greatest toward and possibly dingoes, and a deeper evolutionary history of the predator to which they had the longest period of coevolu- exposure to thylacines (Thylacinus cynocephalus)—another tion. The results are consistent with the hypothesis that evolu- large mammalian predator with convergent body morphology tionary history plays an essential role in predator discrimination and provides support for the multipredator hypothesis that pre- dicts the presence of any predators can maintain antipredator Communicated by A. I. Schulte-Hostedde behavior for other absent predators. * Mike Letnic Keywords Antipredator behavior . Visual predator [email protected] discrimination . Multipredator hypothesis 1 Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2035, Australia Introduction 2 Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, Prey may have ontogenetic experience, evolutionary experi- USA ence, or both types of experiences with their predators. How 3 Arid Recovery Ltd., P.O. Box 147, Roxby Downs 5725, Australia such experiences influence prey species ability to identify 1756 Behav Ecol Sociobiol (2016) 70:1755–1763 predators is of considerable theoretical and applied interest when exposed to cues associated with the presence of a (Cox and Lima 2006; Carthey and Banks 2012). coevolved predator for the first time (Blumstein 2006). Theoretically, we need to better understand the conditions that However, because it is difficult to control for the lifetime ex- lead to the maintenance or loss of predator discrimination perience of predators in populations of wild prey, isolating the abilities and antipredator behavior under relaxed selection that evolved response can be problematic. occurs when a historically important predator is no longer We capitalized on populations of endangered burrowing present (Lahti et al. 2009). This loss can happen through ex- bettongs (Bettongia lesueur) and introduced European rabbits tinctions of historically important predators, range shifts, and (Oryctolagus cuniculus) living within predator-free exclosures isolation on islands (e.g., Blumstein 2002). with known ontogenetic experiences with predators to ask the From a practical perspective, we need to understand how question if evolutionary experience with predators (for the predator naïveté works to better understand the consequences bettongs, limited experience of dogs/dingoes and no exposure of predator introductions and reintroductions as well as to to red foxes; for the rabbits, a long period of coevolution with understand how to improve the success of translocations and red foxes and more recently, dingoes) predict visual predator reintroductions for conservation which often fail because of discrimination abilities. To answer this question, we filmed the predation on predator-naïve prey (Moseby et al. 2015). behavior of bettongs and rabbits at experimental feeding sta- Indeed, predation by introduced predators, especially mam- tions at which we had placed models (Fig. 1) of dingoes/dogs, malian predators, is a major factor responsible for the extinc- red foxes, kangaroos (a harmless herbivore to which both spe- tion of wild vertebrate populations and the failure to success- cies have ontogenetic exposure) and a procedural control. fully reintroduce endangered vertebrates in many parts of the world (King 1984;Savidge1987; Biggins et al. 1999; Johnson 2006;Mosebyetal.2011). Methods The Australian mammal fauna has had a long exposure to mammalian predators including thylacines (Thylacinus Study site cynocephalus), Tasmanian devils (Sarcophilus harrissii) quolls (genus Dasyurus), and more recently (from about We studied bettongs and rabbits within the Arid Recovery 3000 yBP), dingoes (Canis dingo) (Letnic et al. 2012a, b). reserve, a 123-km2 complex of predator-free exclosures in However, native mammals, especially ground-dwelling mam- central South Australia (Moseby et al. 2009) in the Austral mals in the arid zone within a critical weight range (35– spring of 2014 (30° 22′ S, 136° 54′ E). At the time of our 5500 g) have experienced massive population reductions or study, the reserve comprised six paddocks. Four of these pad- extinction in the last 200 years following the introduction of docks contained a total population of more than 2000 novel mammalian predators: feral cats (Felis catus) and red foxes (Vulpes vulpes) (Burbidge and McKenzie 1989; Johnson and Isaac 2009). Endangerment of Australian mammals has been attributed in part to prey naïveté, the failure of an animal to mount an effective antipredator defense. Prey naïveté has multiple levels, which are dependent on the level of experience with a predator (Banks and Dickman 2007). The highest level of naïveté is firstly a failure to recognize a predator. Secondly, a naïve animal may recognize a predator but respond incorrectly to evade attack. Finally, a naïve animal may respond correctly but still fail to evade capture. Strong selection imposed by predators may quickly drive prey population through the levels of prey naïveté and thus enhance prey species abilities to recognize and evade predators (Anson and Dickman 2013). Antipredator responses exist on a continuum between Bhardwired^ responses that are effective on first contact with a predator and entirely learned behaviors that require experi- ence (Kats and Dill 1998;Bergeretal.2001). The longevity and strength of evolutionary experience with a specific preda- tor may influence the degree to which the response is hard- Fig. 1 Three-dimensional models used to represent a dingoes/dogs, b kangaroos, c foxes, and d the control. Dingoes/dogs and foxes are pred- wired (Griffin et al. 2000; Tortosa et al. 2015). Thus, ontoge- ators and the kangaroo is a non-threatening species with which bettongs netically naïve animals may still display antipredator behaviors and rabbits have coexisted at Arid Recovery. Note pictures are not to scale Behav Ecol Sociobiol (2016) 70:1755–1763 1757 burrowing bettongs but no rabbits or mammalian predators. European rabbits Two of the paddocks contained rabbits but no burrowing bettongs. Dingoes and foxes were eliminated from the pad- European rabbits were introduced to Australia in the nine- docks containing rabbits in early 2014, and cat populations teenth century. Rabbits are primarily nocturnal, although were present in these two paddocks at low numbers at the time sometimes active during the day (Lombardi et al. 2003). of the experiment. Rabbits invaded arid South Australia in the late nineteenth century and now occupy most of the former range of burrowing bettongs (Robley et al. 2001). Rabbits evolved Study species with red foxes within their native range as well as wolves— a dingo congener. The rabbit population we studied at Arid Burrowing bettongs Recovery was contained within exclosures that were free of red foxes and dingoes at the time of the study but had Burrowing
Recommended publications
  • A Species-Level Phylogenetic Supertree of Marsupials
    J. Zool., Lond. (2004) 264, 11–31 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904005539 A species-level phylogenetic supertree of marsupials Marcel Cardillo1,2*, Olaf R. P. Bininda-Emonds3, Elizabeth Boakes1,2 and Andy Purvis1 1 Department of Biological Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, U.K. 2 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, U.K. 3 Lehrstuhl fur¨ Tierzucht, Technical University of Munich, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany (Accepted 26 January 2004) Abstract Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia: Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important differences in supertrees based on source phylogenies published before 1995 and those published more recently. The supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework for phylogenetically explicit comparative studies of marsupial evolution and ecology.
    [Show full text]
  • Conservation Science Western Australia 5, 12–18
    Conservation Science W. Aust. 9 (3) : 239–248 (2015) The diet of foxes (Vulpes vulpes) in fragmented Wheatbelt reserves in Western Australia: implications for woylies (Bettongia penicillata) and other native fauna NICOLA J MARLOW ab *, ANDREW AE WILLIAMS ab, NEIL D THOMAS ab, BRIAN MACMAHON b AND JOHN LAWSON b a Department of Parks and Wildlife, PO Box 51 Wanneroo, WA 6946, Australia b Invasive Animals Co-operative Research Centre 48 Oxford Street, Adelaide, SA 5061, Australia * Corresponding author: [email protected] ABSTRACT The diet of foxes in two fragmented Wheatbelt reserves in south-west Western Australia, Dryandra Woodland (DW) and Tutanning Nature Reserve (TNR), was investigated. Fox baiting commenced in these reserves in the early 1980s and the trap success of woylies (Bettongia penicillata), a threatened species, increased significantly. Woylie capture rates were sustained in TNR until 1992 and in DW until 2000 but then decreased suddenly despite ongoing fox control. The diet of foxes was investigated as part of a larger study examining the reasons for the woylie decline. The contents of 283 fox scats from DW and TNR, and 167 scats from two unbaited sites, Quinns block (QB) and Highbury block (HB), were analysed volumetrically to determine the relative importance of each dietary item. The actual consumption of each item was calculated using digestibility estimates. In baited sites the foxes’ main dietary components were house mice (Mus domesticus, 28%), carrion (sheep, Ovis aries and western grey kangaroo, Macropus fuliginosus; 26%) and rabbits (Oryctolagus cuniculus, 17%). In unbaited sites the main components were carrion (predominately sheep, 60%) and some invertebrates (13%).
    [Show full text]
  • The Relationships of the Potoroidae to the Macropodidae (Marsupialia) M
    PAP. & Paoc. RoY. Soc. TA~MANIA, 1949 ( 15Tff SEPTEMBER, 1950) The Relationships of the Potoroidae to the Macropodidae (Marsupialia) m By JOSEPH PEARSON Tawman'ian fi!Insenm (Read lst November, 1H4!J) IVITH 21 TEXT FwUJu;s INTRODUCTION There is perhaps no gToup of mammals to which so much attention has been directed as the Marsupialia and the interests of investigators have been particularly concerned with the relationships and phylogeny of the Order. But in spite of a very considerable literature dealing with speculations on these problems we are still in doubt as to which classification would give the best picture of the phylo­ genetic relationships of the gnmp. Owen's division of the ma1·supials into Poly­ protodontia and Diprotodontia(2), though having much to commend it, is hardly mon satisfactory than the division into Diadactyla and Syndactyla which was first suggested by de Blainville in 18;)4. Both break down hopelessly before the paradox of the Pm·ameloidea and the enigma of the Caenolestoidea. Owing to the imper­ fections of the geologiqd record the palaeontology of Australian marsupials has littlt> to offer as a contl·ilmtion to the main pl'Oblems. Thus we are thrown back upon the study of the comparative anatmny and embryology of recent forms. In the present paper we are not concerned with one of these major phylogenetic JH·oblems. The question to be discussed is whether the true kangaroos and rat­ kangaroos possess sufficient fundamental characters in common to justify their being placed in the same family, as is almost universally held by systematists at the present day.
    [Show full text]
  • Mammals of the Avon Region
    Mammals of the Avon Region By Mandy Bamford, Rowan Inglis and Katie Watson Foreword by Dr. Tony Friend R N V E M E O N G T E O H F T W A E I S L T A E R R N A U S T 1 2 Contents Foreword 6 Introduction 8 Fauna conservation rankings 25 Species name Common name Family Status Page Tachyglossus aculeatus Short-beaked echidna Tachyglossidae not listed 28 Dasyurus geoffroii Chuditch Dasyuridae vulnerable 30 Phascogale calura Red-tailed phascogale Dasyuridae endangered 32 phascogale tapoatafa Brush-tailed phascogale Dasyuridae vulnerable 34 Ningaui yvonnae Southern ningaui Dasyuridae not listed 36 Antechinomys laniger Kultarr Dasyuridae not listed 38 Sminthopsis crassicaudata Fat-tailed dunnart Dasyuridae not listed 40 Sminthopsis dolichura Little long-tailed dunnart Dasyuridae not listed 42 Sminthopsis gilberti Gilbert’s dunnart Dasyuridae not listed 44 Sminthopsis granulipes White-tailed dunnart Dasyuridae not listed 46 Myrmecobius fasciatus Numbat Myrmecobiidae vulnerable 48 Chaeropus ecaudatus Pig-footed bandicoot Peramelinae presumed extinct 50 Isoodon obesulus Quenda Peramelinae priority 5 52 Species name Common name Family Status Page Perameles bougainville Western-barred bandicoot Peramelinae endangered 54 Macrotis lagotis Bilby Peramelinae vulnerable 56 Cercartetus concinnus Western pygmy possum Burramyidae not listed 58 Tarsipes rostratus Honey possum Tarsipedoidea not listed 60 Trichosurus vulpecula Common brushtail possum Phalangeridae not listed 62 Bettongia lesueur Burrowing bettong Potoroidae vulnerable 64 Potorous platyops Broad-faced
    [Show full text]
  • Behaviour, Group Dynamics, and Health of Free-Ranging Eastern Grey Kangaroos
    Behaviour, group dynamics, and health of free-ranging eastern grey kangaroos (Macropus giganteus) Jai Mikaela Green-Barber Submitted for the completion of a Doctor of Philosophy (Science) degree at Western Sydney University November 2017 Dedication The following thesis is dedicated to my hero. You instilled in me an appreciation of nature and of knowledge, you showed me the joys of solving puzzles and debating ideas, and you always encouraged me to be daring when the reward was worth the risk. Most importantly you always taught me to laugh along the way, to laugh at myself, and not take life too seriously. These gifts you have given me have led me down this path, and gave me the strength to complete the journey. Your influence will continue to shape the rest of my life. This one’s for you Dad xoxo Acknowledgements I would like to thank Associate Professor Julie Old for the encouragement and support needed to complete this thesis. I really appreciate you putting up with my essay length emails full of questions and all the feedback on the countless draft manuscripts and presentations produced throughout my candidature. To Dr Hayley Stannard, thank you for teaching me to collect blood samples and run blood chemistry analysis, and for the helpful feedback on draft manuscripts. Thank you to Dr Oselyne Ong for teaching me how to run antimicrobial assays, Megan Callander for teaching me how to use various microsatellite analysis software, and Professor John Hunt for providing feedback on draft manuscripts and advice on analysis. To all the volunteers that assisted me in the field your help was greatly appreciated.
    [Show full text]
  • Decline and Extinction of Australian Mammals Since European Settlement
    Ongoing unraveling of a continental fauna: Decline FEATURE ARTICLE and extinction of Australian mammals since European settlement John C. Z. Woinarskia,b,1, Andrew A. Burbidgec, and Peter L. Harrisond aNorthern Australian Hub of National Environmental Research Program and bThreatened Species Recovery Hub of National Environmental Science Program, SEE COMMENTARY Charles Darwin University, Darwin, NT 0909, Australia; cResearch Fellow, Department of Parks and Wildlife, Wanneroo, WA 6069, Australia; and dMarine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia This Feature Article is part of a series identified by the Editorial Board as reporting findings of exceptional significance. Edited by William J. Bond, University of Cape Town, Cape Town, South Africa, and approved January 13, 2015 (received for review September 10, 2014) The highly distinctive and mostly endemic Australian land mam- than previously recognized and that many surviving Australian mal fauna has suffered an extraordinary rate of extinction (>10% native mammal species are in rapid decline, notwithstanding the of the 273 endemic terrestrial species) over the last ∼200 y: in generally low level in Australia of most of the threats that are comparison, only one native land mammal from continental North typically driving biodiversity decline elsewhere in the world. America became extinct since European settlement. A further 21% of Australian endemic land mammal species are now assessed to Earlier Losses be threatened, indicating that the rate of loss (of one to two European settlement at 1788 marks a particularly profound extinctions per decade) is likely to continue. Australia’s marine historical landmark for the Australian environment, the opening mammals have fared better overall, but status assessment for up of the continent to a diverse array of new factors, and an ap- them is seriously impeded by lack of information.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 10/02/2021 04:52:12PM Via Free Access 60 S
    Journal of Reproduction and Fertility (2000) 120, 59–64 Natural and artificial methods for inducing the luteal phase in the koala (Phascolarctos cinereus) S. D. Johnston1, M. R. McGowan1, P. O’Callaghan2, R. Cox3 and V. Nicolson2 1School of Veterinary Science and Animal Production, The University of Queensland, 4072, Australia; 2Lone Pine Koala Sanctuary, Jesmond Road, Fig Tree Pocket, 4069, Australia; and 3Bioquest Ltd, North Ryde, 2113, Australia An experiment was conducted in which female koalas were mated for different durations of intromission and ejaculation to confirm that the luteal phase of the oestrous cycle in koalas is induced by the physical act of mating. Results showed that induction of a luteal phase in the koala usually required a complete duration of penile thrusting behaviour from the male. It is proposed that induction of a luteal phase in koalas may involve a copuloceptive reflex, triggered by the thrusting of the male’s penis into the female’s urogenital sinus. Although interrupted mating in koalas may be used to induce a luteal phase in preparation for an artificial insemination programme, this study showed that there is a 12.5% probability that pregnancy will result from semen prematurely emitted by the teaser male. A dose of 250 iu hCG was administered intramuscularly to eight oestrous females to determine whether it was possible to induce a luteal phase artificially. In contrast to control females, which received sterile saline injections, all females injected with hCG showed a significant increase in progestogen concentration above that of basal values, indicating that a luteal phase had been induced successfully.
    [Show full text]
  • Control and Conservation of Abundant Kangaroo Species
    animals Review The Perils of Being Populous: Control and Conservation of Abundant Kangaroo Species David Benjamin Croft 1,* and Ingrid Witte 2 1 School of Biological Earth & Environmental Sciences, UNSW Sydney, Sydney, NSW 2052, Australia 2 Rooseach@RootourismTM, Adelaide River, NT 0846, Australia; [email protected] * Correspondence: [email protected] Simple Summary: Kangaroos likely prospered for most of the last 65,000 years under the landscape management of Australia’s first people. From the arrival of British colonists in 1788, European agricultural practices, crops and livestock transformed the landscape to one less favourable to indigenous flora and fauna. However, the six species of large kangaroos persisted and came into conflict with cropping and pastoral enterprises, leading to controls on their abundance. After mass killing for bounties, a commercial industry emerged in the 1970s to sell meat and hides into domestic and international markets. The further intention was to constrain kangaroo abundance while sustaining kangaroos in the landscape. Human–human conflict has emerged about the necessity and means of this lethal control. Further control of the abundance of four of the six species is promoted. Their abundance is considered by some as a threat to biodiversity in conservation reserves, removing these as a haven. We therefore propose returning the kangaroos’ stewardship to the current and future generations of Aboriginal Australians. We envisage that a marriage of localised consumptive (bush tucker) and non-consumptive (wildlife tourism) uses in the indigenous-protected-area estate can better sustain abundant kangaroo populations into the future. Citation: Croft, D.B.; Witte, I. The Abstract: Australia’s first people managed landscapes for kangaroo species as important elements Perils of Being Populous: Control and of their diet, accoutrements and ceremony.
    [Show full text]
  • 17. Morphology and Physiology of the Metatheria
    FAUNA of AUSTRALIA 17. MORPHOLOGY AND PHYSIOLOGY OF THE METATHERIA T.J. DAWSON, E. FINCH, L. FREEDMAN, I.D. HUME, MARILYN B. RENFREE & P.D. TEMPLE-SMITH 1 17. MORPHOLOGY AND PHYSIOLOGY OF THE METATHERIA 2 17. MORPHOLOGY AND PHYSIOLOGY OF THE METATHERIA EXTERNAL CHARACTERISTICS The Metatheria, comprising a single order, Marsupialia, is a large and diverse group of animals and exhibits a considerable range of variation in external features. The variation found is intimately related to the animals' habits and, in most instances, parallels that are found in the Eutheria. Useful general references to external characteristics include Pocock (1921), Jones (1923a, 1924), Grassé (1955), Frith & Calaby (1969), Ride (1970) and Strahan (1983). Body form In size, the marsupials range upwards from the Long-tailed Planigale, Planigale ingrami, a small, mouse-like animal weighing only around 4.2 g, with a head- body length of 59 mm and a tail 55 mm long. At the other extreme, there are large kangaroos, such as the Red Kangaroo, Macropus rufus, in which the males may weigh as much as 85 kg and attain a head-body length of 1400 mm and a tail of 1000 mm. Body shape also varies greatly. The primarily carnivorous marsupials, the dasyurids (for example, antechinuses, dunnarts, quolls, planigales and others), are small to medium sized quadrupeds with subequal limbs. The tail is relatively slender and generally about half the length of the body. The omnivorous peramelids show increased development of the hind limbs in keeping with their rapid bounding locomotion. Saltatory or hopping forms (for example kangaroos and wallabies), carry the hind limb specialisation to an extreme, with a concomitant reduction of the forelimbs (Fig.
    [Show full text]
  • Phylogenetic Analysis of Diprotodontian Marsupials Based on Complete Mitochondrial Genomes
    Genes Genet. Syst. (2006) 81, p. 181–191 Phylogenetic Analysis of Diprotodontian Marsupials Based on Complete Mitochondrial Genomes Maruo Munemasa1, Masato Nikaido1, Stephen Donnellan2, Christopher C. Austin3, 1,4 5,6 Norihiro Okada * and Masami Hasegawa 1Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan 2Evolutionary Biology Unit, South Australian Museum, North Terrace, SA 5000, Australia 3Museum of Natural Science, Louisiana State University, LA 70803, USA 4Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki 444-8585, Japan 5Institute of Statistical Mathematics, Tokyo 106-8569, Japan 6Department of Biosystems Science, Graduate University for Advanced Studies, Kanagawa 240-0193, Japan (Received 22 October 2005, accepted 25 April 2006) Australidelphia is the cohort, originally named by Szalay, of all Australian mar- supials and the South American Dromiciops.A lot of mitochondria and nuclear genome studies support the hypothesis of a monophyly of Australidelphia, but some familial relationships in Australidelphia are still unclear. In particular, the famil- ial relationships among the order Diprotodontia (koala, wombat, kangaroos and possums) are ambiguous. These Diprotodontian families are largely grouped into two suborders, Vombatiformes, which contains Phascolarctidae (koala) and Vom- batidae (wombat), and Phalangerida, which contains Macropodidae, Potoroidae, Phalangeridae, Petauridae, Pseudocheiridae, Acrobatidae, Tarsipedidae and
    [Show full text]
  • Natural History of the Metatheria
    FAUNA of AUSTRALIA 18. NATURAL HISTORY OF THE METATHERIA ELEANOR M. RUSSELL, A.K. LEE & GEORGE R. WILSON 1 18. NATURAL HISTORY OF THE METATHERIA 2 18. NATURAL HISTORY OF THE METATHERIA NATURAL HISTORY Ecology Diet. Traditionally, Australian marsupials have been viewed in two dietary categories: the predominantly carnivorous marsupials, with polyprotodont dentition, and the predominantly herbivorous large diprotodonts. Recent observations on feeding (Smith 1982a; Henry & Craig 1984) and analysis of diet (Hall 1980a; Statham 1982) have not altered this view in the broadest sense. They have shown, however, that some polyprotodonts such as the peramelids (bandicoots) (Heinsohn 1966; Lee & Cockburn 1985) and the Bilby, Macrotis lagotis (Johnson 1980a), include significant proportions of plant items in their diets. Further, some small and medium-sized diprotodonts are now known to be dependent upon plant products such as nectar, pollen, plant exudates, fruit and seed (Smith 1982a; Mansergh 1984b; Turner 1984a, 1984b; Lee & Cockburn 1985). Arthropods appear to be the principal food items of most dasyurids (for example, Antechinus species, quolls, phascogales and planigales) (Morton 1978d; Blackall 1980; Hall 1980a; Statham 1982; Lee & Cockburn 1985), peramelids (Heinsohn 1966; Lee & Cockburn 1985), the Bilby (Johnson 1980a), the Marsupial Mole, Notoryctes typhlops (Corbett 1975), the Numbat, Myrmecobius fasciatus (Calaby 1960) and the Striped Possum, Dactylopsila trivirgata (Smith 1982b). Arthropods also are consistent, but not predominant, food items of burramyids (pygmy-possums) (Turner 1984a, 1984b), petaurids (ring-tail possums and gliders) (Smith 1982a, 1984a; Smith & Russell 1982) and occasionally occur in the diet of the Common Brushtail Possum, Trichosurus vulpecula (Kerle 1984c). Vertebrates appear to be important in the diet of some large dasyurids, although many feed predominantly upon insects (Blackall 1980; Godsell 1982).
    [Show full text]
  • Ecological Archives E082-042-A1
    1 - 29 Ecological Archives E082-042-A1 http://www.esapubs.org/archive/ecol/E082/042/appendix-A.htm Diana O. Fisher, Ian P. F. Owens, and Christopher N. Johnson. 2001. The ecological basis of life history variation in marsupials. Ecology 82:3531-3540. Abensperg Traun, M., and D. Steven. 1997. Ant- and termite-eating in Australian mammals and lizards: A comparison.. Australian Journal of Ecology 22: 9-17. Algar, D. 1986. An ecological study of macropodid marsupial species on a reserve. Unpublished PhD thesis. University of Western Australia. Anderson, T. J. C., A. J. Berry, J. N. Amos, and J. M. Cook. 1988. Spool and line tracking of the New Guinea spiny bandicoot, Echymiperakalubu (Marsupialia: Peramelidae). Journal of Mammalogy 69:114-120. Aplin, K. P., and P. A. Woolley. 1993. Notes on the distribution and reproduction of the Papuan bandicoot Microperoryctes papuensis (Peroryctidae, Permelemorphia). Science in New Guinea 19:109-112. Arnold, G. W., A. Grassia, D. E. Steven, and J. R. Weeldenburg. 1991. Population ecology of western grey kangaroos in a remnant of wandoo woodland at Baker's Hill, southern Western Australia. Wildlife Research 18:561-575. Arnold, G. W., D. E. Steven, and A. Grassia. 1990. Associations between individuals and classes in groups of different size in a population of Western Grey Kangaroos, Macropus fuliginosus. Australian Wildlife Research 17:551-562. Ashworth, D. 1995. Female reproductive success and maternal investment in the Euro, Macropus robustus. Unpublished PhD thesis. University of New South Wales. Aslin, H. J. 1975. Reproduction in Antechinus maculatus Gould (Dasyuridae). Australian Wildlife Research 2:77-80.
    [Show full text]