Resource Use by the Eastern Grey Kangaroo and the Black Wallaby in a Managed Remnant Woodland Community

Total Page:16

File Type:pdf, Size:1020Kb

Resource Use by the Eastern Grey Kangaroo and the Black Wallaby in a Managed Remnant Woodland Community Resource Use by the Eastern Grey Kangaroo and the Black Wallaby in a Managed Remnant Woodland Community Ferdinand (Fred). G. de Munk BSc. (Hons). MSc. Dip.Ed (Melb) G.Dip.Ed.Admin. (Deakin) A Thesis Presented for the Degree of Doctor of Philosophy School of Ecology and Environment Deakin University June 1999 CANDIDATES CERTIFICATION The work in this thesis is solely the work of the candidate except for the following: The histological preparation of plant specimens for the reference herbarium was done by Ms. Carole Hair of RMIT. Honours and third year students from RMIT Environmental Science assisted in the collection of faecal pellets and biomass material from the Coranderrk Reserve. Assistance with the identification of vascular plants was provided by the horticulture department staff of the Healesville Sanctuary. No material in this thesis has been accepted for a degree or a diploma by any other institution. This thesis may be made available for consultation, loan and limited copying in accordance with the Copyright Act 1968. The author verifies that the thesis does not contain more than 100,000 words. PLAIN LANGUAGE SUMMARY This work studies the interactions and relationships that exist between Eastern Grey Kangaroos and Black Wallabies in their utilisation of spatial and trophic resources in a managed remnant woodland community. The thesis provides a closer understanding of the way in which these species impact upon their habitats. The Coranderrk Reserve, near Healesville in eastern Victoria, Australia was the study site. A floristic analysis of the communities of the study site was conducted. This consisted of plant biomass measurements, estimates of plant abundance and cover determinations. Faecal pellets from Eastern Grey Kangaroos and Black Wallabies were collected from ten vegetation communities during three different plant productivity periods. The spatial and temporal distribution of the animals was identified by analysing the frequency of occurrence of faecal pellets in the various communities. The use of faecal pellet density as a measure of habitat utilisation was examined. Eastern Grey Kangaroos utilised communities which were characterised by the presence of a dense grassy stratum. Black Wallabies were able to utilise all of the communities of the study site regardless of their floristic composition. A reference herbarium of the leaf epidermis of 233 possible forage plant species was accumulated. These epidermal specimens were prepared for Confocal Scanning Laser Microscopy. The information gained was enhanced and stored digitally. Diagnostic information critical for the identification of plant epidermal fragments was assembled into a computer database. This was used to assist in the recognition of unknown epidermal fragments in macropodid faeces. These epidermal plant recognition techniques enabled a list of the contents of Eastern Grey Kangaroo and Black Wallaby faeces during the sampling periods in the individual communities, to be accumulated. Eastern Grey Kangaroos utilised forage which consisted largely of grass and their diets were similar regardless of their feeding sites or the time of the year. Black Wallaby diets were heterogenous with wide variations over space and time observed. The implications of these findings for current wildlife management practices were considered. Black Wallaby and Eastern Grey Kangaroo herbivory have significant impacts on ecosystem integrity. Management strategies should seek to establish ecologically sustainable populations of both species in remnant woodlands where conservation values are important. ACKNOWLEDGMENTS The author is very grateful to Dr. David Middleton, Mr. Geoff Underwood, Mr Paul Slinger and Dr. David Ramsay who provided invaluable advice and guidance. Professor Peter Temple-Smith from the Conservation Department of the Zoological Board of Victoria is thanked for allowing free access to the Coranderrk Reserve. Professor Robert Wallis and Dr. Graeme Coulson have been outstanding supervisors of the work in this thesis and of the candidate. Professor Robert Wallis has provided inspiration and encouragement as well as expert assistance in the preparation of this thesis and in the field work upon which it is based. His leadership and genuine desire for scholarship has been invaluable. Dr. Graeme Coulson from the University of Melbourne, Department of Zoology, has examined every aspect of this work with meticulous care and attention to detail. His advice, suggestions and sense of humour have been seminal in the supervision and completion of this project and have contributed significantly to its final state. I am very grateful to Graeme without whose assistance and encouragement the work would not have been completed. Dr. Robyn Adams provided expert assistance with the botanical aspects of this work and her advice was greatly appreciated. The work was financially supported by a staff development award from the State Government of Victoria, by a Royal Melbourne Institute of Technology Faculty of Science Research Grant and by a small grant from the Australian Research Council. I am very grateful to the obliging staff from the off-campus section of the Deakin University library. Their service is amazing. Mr Colin Findlay and Associate Professor Reg Poole are owed a debt of gratitude for their encouragement in a substantial fashion along the way. Without their prompting, support and friendship this would never have been possible. Honours and third year environmental science students from RMIT were willing assistants in the collection of field material. Their assistance is recognised and gratefully acknowledged. Excellent laboratory assistance was provided by Ms. Carole Hair from the Department of Medical Laboratory Technology at RMIT in the preparation of specimens for histological examination. To Dianne, Dean, Lisa, Ryan, Joel and Casey de Munk I wish to express my sincere thanks for the support and morale boosting encouragement which was always there at the right time. This thesis is dedicated to them. CONTENTS PAGE Abstract 1 Chapter 1: Introduction 4 1.1. The Background for the Work 4 1.2. The Problem 5 1.3. The Objectives of this Study 5 1.4. The Structure of the Thesis 7 Chapter 2: Resource Use And Management Of Eastern Grey Kangaroo And 9 Black Wallaby Populations 2.1. Introduction 9 2.2.1. Resource Use 10 2.2.2. Competition Between Eastern Grey Kangaroos and Black Wallabies 12 2.3. Utilisation of Habitat by Macropodid Populations 13 2.3.1. Hierarchy of Resource Utilisation 13 2.3.1.1. First Order Distribution of Eastern Grey Kangaroos and Black Wallabies 13 2.3.1.2. Second Order Distribution of Eastern Grey Kangaroos and Black 14 Wallabies 2.3.1.3. Third Order Distribution of Eastern Grey Kangaroos and Black Wallabies 19 2.3.2. Indirect Indicators of Habitat Utilisation 22 2.3.2.1. Faecal Pellet Density Measurements 22 2.3.2.2. Faecal Pellets as Indicators of Habitat Use 22 2.3.2.3. Assumptions, Uncertainties and Weaknesses of Faecal Pellet Density 23 Estimations 2.3.2.4. Improvements to the Methodology 24 2.4. Diet Selection by Eastern Grey Kangaroos and Black Wallabies 24 2.4.1. The Role of Diet 24 2.4.2. Direct Methods of Determining Diet 25 2.4.3. Ingesta Examinations 27 2.4.3.1. Mouth or Stomach Contents 27 2.4.3.2. Fistula Derived Diet Sampling 28 2.4.3.3. Faecal Pellet Analysis 28 2.4.3.4. A Comparison of Indirect Methods 29 2.4.4. The Limitations of Faecal Examinations 30 2.4.4.1. Identification 30 2.4.4.2. Differential Digestibility 31 2.4.5. Sample Preparation. 33 2.4.6. Sample Examination 34 2.4.7. The Problem of Diet Selection 36 2.5. Conclusions 39 Chapter 3: The Study Site: The Coranderrk Reserve 40 Abstract 40 3.1. Introduction 40 3.2. The Coranderrk Reserve 41 3.2.1. Location 41 3.2.2. History 43 3.2.3. Physiography 45 3.2.4. The Climate 47 3.2.5. The Soils 49 3.3. The Biota of the Coranderrk Reserve 49 3.3.1. The Flora of the Coranderrk Reserve 49 3.3.2. The Fauna of the Coranderrk Reserve 57 3.3.3. Macropodids in the Coranderrk Reserve 58 3.4. Ecology and Management 62 3.5. Conclusion 65 Chapter 4: The Vegetation Structure Of The Coranderrk Reserve 66 Abstract 66 4.1. Introduction 66 4.2. Methods 68 4.2.1. Sampling Strategy 68 4.2.2. Cover and Abundance 71 4.2.3. Biomass 72 4.3. Results and Discussion 76 4.3.1. Cover and Abundance 76 4.3.2. Biomass 91 4.3.2.1. July Biomass 91 4.3.2.2. December Biomass 94 4.3.2.3. February Biomass 99 4.4. Discussion 102 4.5. Conclusion 103 Chapter 5: Community Selection And Habitat Use By Macropodids In The 104 Coranderrk Reserve Abstract 104 5.1. Introduction 105 5.2. Methods 106 5.2.1. Pilot Studies 106 5.2.2. Sampling Strategy and Faecal Pellet Collection Techniques. 109 5.3. Results 111 5.3.1. Faecal Pellet Collections 111 5.3.2. Estimates of Community Selection 115 5.3.3. Macropodid Habitat Use 117 5.4. The Interaction Between Community, Macropodid Species and Season and 120 its Effect on Habitat Use 5.4.1. The Interaction Between Community and the Two Macropodid Species 120 (AB Interaction) 5.4.2. The Interaction Between Community and Season (BC Interaction) 122 5.4.3. The Interaction Between Species, Community and Season (ABC 124 Interaction) 5.5. Spatial Resource Use by Macropodids 127 5.5.1. The Selection of Space 127 5.5.2. The Location of Macropodids in the Coranderrk Reserve 130 5.6. Selected Community Characteristics Summary 133 5.7. Conclusions 134 Chapter 6: The Development Of A Confocal Scanning Laser Microscope 136 Herbarium Of Coranderrk Reserve Plant Epidermis Abstract 136 6.1. Introduction 136 6.1.1. Confocal Scanning Laser Microscopy 136 6.1.2.
Recommended publications
  • Ecology of the Koala, Phascolarctos Cinereus
    I give eonsent to this eopy of ny thesis, r,,rhen d.eposited. in the Universit.y Library, being avail-abl-e 1'or loan and. photocopying. Date . ?! ÛP,"+ .13:r.o.. S igned. CONTENTS SUM MA RY ACKNOWLEDGEMENTS lil INTRODUCTION I PA,RT I FIELD STUDIES INTRODUCTION O.l Kongoroo lslqnd B O.2 Floro ond Founo il 0.3 Philpott's Study l3 O.4 Methods t5 0.5 Results 25 I THE DISTRIBUTION AND ABUN DANCE OF KOALAS I. I The Distribution of Koalos 29 | .2 The Abundonce of Koo lqs 34 2 BREEDING, GROWTH AND DEVELOPA,\E¡.¡T 2.1 Breeding 39 2.2 Pouch Young 40 2.3 Growth, Ageing ond LongevitY 49 2.4 Sexucrl Moturity 54 I SUMMARY The distribution of koalas u'ithin Flinders Chase was fou-nd to be made up of areas centred on the occurrences of manna guilr , Euca.ly¡rtus viminalis. Some koalas br:owsed chiefly iri trees of other species but tlrere liÌere ferv animals, if any, that clid not feed on the foliage of E. r'iminalis rnore or less regularly. The composition of populations in sever¿rl sürcly areas changed from üirne to time but over aE long as three successir¡e years of observat:lorr the numhers remained ::emarkably constant. The koalas bred in the surnmer: arrd early auturnn, and a high proporüon of feinales successfully raised a single young to independence each year. Growth of the yourìg was :lapid over the first Lhree yearr!; it slowed. down thereafter and anirnals reached firll size in tlieir fourth and fiffh years.
    [Show full text]
  • New Operational Taxonomic Units of Enterocytozoon in Three Marsupial Species Yan Zhang1, Anson V
    Zhang et al. Parasites & Vectors (2018) 11:371 https://doi.org/10.1186/s13071-018-2954-x RESEARCH Open Access New operational taxonomic units of Enterocytozoon in three marsupial species Yan Zhang1, Anson V. Koehler1* , Tao Wang1, Shane R. Haydon2 and Robin B. Gasser1* Abstract Background: Enterocytozoon bieneusi is a microsporidian, commonly found in animals, including humans, in various countries. However, there is scant information about this microorganism in Australasia. In the present study, we conducted the first molecular epidemiological investigation of E. bieneusi in three species of marsupials (Macropus giganteus, Vombatus ursinus and Wallabia bicolor) living in the catchment regions which supply the city of Melbourne with drinking water. Methods: Genomic DNAs were extracted from 1365 individual faecal deposits from these marsupials, including common wombat (n = 315), eastern grey kangaroo (n = 647) and swamp wallaby (n = 403) from 11 catchment areas, and then individually tested using a nested PCR-based sequencing approach employing the internal transcribed spacer (ITS) and small subunit (SSU) of nuclear ribosomal DNA as genetic markers. Results: Enterocytozoon bieneusi was detected in 19 of the 1365 faecal samples (1.39%) from wombat (n =1), kangaroos (n = 13) and wallabies (n =5).TheanalysisofITS sequence data revealed a known (designated NCF2) and four new (MWC_m1 to MWC_m4) genotypes of E. bieneusi. Phylogenetic analysis of ITS sequence data sets showed that MWC_m1 (from wombat) clustered with NCF2, whereas genotypes MWC_m2 (kangaroo and wallaby), MWC_m3 (wallaby) and MWC_m4 (kangaroo) formed a new, divergent clade. Phylogenetic analysis of SSU sequence data revealed that genotypes MWC_m3 and MWC_m4 formed a clade that was distinct from E.
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • Post-Release Monitoring of Western Grey Kangaroos (Macropus Fuliginosus) Relocated from an Urban Development Site
    animals Article Post-Release Monitoring of Western Grey Kangaroos (Macropus fuliginosus) Relocated from an Urban Development Site Mark Cowan 1,* , Mark Blythman 1, John Angus 1 and Lesley Gibson 2 1 Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Wildlife Research Centre, Woodvale, WA 6026, Australia; [email protected] (M.B.); [email protected] (J.A.) 2 Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-8-9405-5141 Received: 31 August 2020; Accepted: 5 October 2020; Published: 19 October 2020 Simple Summary: As a result of urban development, 122 western grey kangaroos (Macropus fuliginosus) were relocated from the outskirts of Perth, Western Australia, to a nearby forest. Tracking collars were fitted to 67 of the kangaroos to monitor survival rates and movement patterns over 12 months. Spotlighting and camera traps were used as a secondary monitoring technique particularly for those kangaroos without collars. The survival rate of kangaroos was poor, with an estimated 80% dying within the first month following relocation and only six collared kangaroos surviving for up to 12 months. This result implicates stress associated with the capture, handling, and transport of animals as the likely cause. The unexpected rapid rate of mortality emphasises the importance of minimising stress when undertaking animal relocations. Abstract: The expansion of urban areas and associated clearing of habitat can have severe consequences for native wildlife. One option for managing wildlife in these situations is to relocate them.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • A Species-Level Phylogenetic Supertree of Marsupials
    J. Zool., Lond. (2004) 264, 11–31 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904005539 A species-level phylogenetic supertree of marsupials Marcel Cardillo1,2*, Olaf R. P. Bininda-Emonds3, Elizabeth Boakes1,2 and Andy Purvis1 1 Department of Biological Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, U.K. 2 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, U.K. 3 Lehrstuhl fur¨ Tierzucht, Technical University of Munich, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany (Accepted 26 January 2004) Abstract Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia: Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important differences in supertrees based on source phylogenies published before 1995 and those published more recently. The supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework for phylogenetically explicit comparative studies of marsupial evolution and ecology.
    [Show full text]
  • Reproductionreview
    REPRODUCTIONREVIEW Wombat reproduction (Marsupialia; Vombatidae): an update and future directions for the development of artificial breeding technology Lindsay A Hogan1, Tina Janssen2 and Stephen D Johnston1,2 1Wildlife Biology Unit, Faculty of Science, School of Agricultural and Food Sciences, The University of Queensland, Gatton 4343, Queensland, Australia and 2Australian Animals Care and Education, Mt Larcom 4695, Queensland, Australia Correspondence should be addressed to L A Hogan; Email: [email protected] Abstract This review provides an update on what is currently known about wombat reproductive biology and reports on attempts made to manipulate and/or enhance wombat reproduction as part of the development of artificial reproductive technology (ART) in this taxon. Over the last decade, the logistical difficulties associated with monitoring a nocturnal and semi-fossorial species have largely been overcome, enabling new features of wombat physiology and behaviour to be elucidated. Despite this progress, captive propagation rates are still poor and there are areas of wombat reproductive biology that still require attention, e.g. further characterisation of the oestrous cycle and oestrus. Numerous advances in the use of ART have also been recently developed in the Vombatidae but despite this research, practical methods of manipulating wombat reproduction for the purposes of obtaining research material or for artificial breeding are not yet available. Improvement of the propagation, genetic diversity and management of wombat populations requires a thorough understanding of Vombatidae reproduction. While semen collection and cryopreservation in wombats is fairly straightforward there is currently an inability to detect, induce or synchronise oestrus/ovulation and this is an impeding progress in the development of artificial insemination in this taxon.
    [Show full text]
  • Conservation Science Western Australia 5, 12–18
    Conservation Science W. Aust. 9 (3) : 239–248 (2015) The diet of foxes (Vulpes vulpes) in fragmented Wheatbelt reserves in Western Australia: implications for woylies (Bettongia penicillata) and other native fauna NICOLA J MARLOW ab *, ANDREW AE WILLIAMS ab, NEIL D THOMAS ab, BRIAN MACMAHON b AND JOHN LAWSON b a Department of Parks and Wildlife, PO Box 51 Wanneroo, WA 6946, Australia b Invasive Animals Co-operative Research Centre 48 Oxford Street, Adelaide, SA 5061, Australia * Corresponding author: [email protected] ABSTRACT The diet of foxes in two fragmented Wheatbelt reserves in south-west Western Australia, Dryandra Woodland (DW) and Tutanning Nature Reserve (TNR), was investigated. Fox baiting commenced in these reserves in the early 1980s and the trap success of woylies (Bettongia penicillata), a threatened species, increased significantly. Woylie capture rates were sustained in TNR until 1992 and in DW until 2000 but then decreased suddenly despite ongoing fox control. The diet of foxes was investigated as part of a larger study examining the reasons for the woylie decline. The contents of 283 fox scats from DW and TNR, and 167 scats from two unbaited sites, Quinns block (QB) and Highbury block (HB), were analysed volumetrically to determine the relative importance of each dietary item. The actual consumption of each item was calculated using digestibility estimates. In baited sites the foxes’ main dietary components were house mice (Mus domesticus, 28%), carrion (sheep, Ovis aries and western grey kangaroo, Macropus fuliginosus; 26%) and rabbits (Oryctolagus cuniculus, 17%). In unbaited sites the main components were carrion (predominately sheep, 60%) and some invertebrates (13%).
    [Show full text]
  • Exotic to Australia
    Fact sheet Introductory statement Foot and mouth disease (FMD) is a highly contagious viral vesicular disease of cloven hoofed animals. It is a major issue in international trade in livestock and livestock products. Australia is free of the disease and it is vital that it remains so. The 2001 outbreak in the United Kingdom resulted in over 10 million cattle and sheep being slaughtered at a cost of over GBP 8 billion in order to eradicate the disease. This fact sheet summarises what is known about FMD and Australian native wildlife. WHA also manages an fact sheet that briefly summarises information on FMD and feral animals “Foot and Mouth Disease (General Information)”. Aetiology and natural hosts FMD is caused by an aphthovirus belonging to the family Picornaviridae. It is a single stranded non enveloped 25 nm RNA virus. There are seven serotypes: A, O, C, SAT 1, SAT 2, SAT 3, and Asia 1. All cloven hoofed animals are considered susceptible. Cases have also been reported in elephants, hedgehogs and some rodents. World distribution and occurrences in Australia FMD is endemic in Africa, the Middle East, Asia and parts of South America. The disease has almost been eradicated from Europe with the most recent cases occurring in the United Kingdom and Cyprus in 2007. FMD has not occurred in Australia for over 130 years, and then only in livestock. Minor outbreaks occurred in 1801, 1804, 1871 and 1872 (Geering et al 1995). However, a case was reported in an eastern grey kangaroo (Macropus giganteus) held in a zoo in India (Bhattacharya et al 2003).
    [Show full text]
  • Effects of Eucalypt Plant Monoterpenes on Koala
    www.nature.com/scientificreports OPEN Efects of Eucalypt Plant Monoterpenes on Koala (Phascolarctos Cinereus) Cytokine Expression In Vitro Caroline Marschner*, Mark B. Krockenberger & Damien P. Higgins Protective immunity is crucial for survival of any species, though the koala as a specialist feeder adapted to an exclusive diet of eucalypts that contain plant secondary metabolites of varying toxicity and of immunomodulatory property. Being constantly exposed to such dietary chemicals it raises the question of their immune efects in a specialist eucalypt feeder. This study demonstrates that natural levels of circulating eucalypt plant secondary metabolites have dose dependent in vitro efects on cytokine expression of koala peripheral blood mononuclear cells, suggesting a potential trade-of of reduced function in multiple arms of the immune system associated with koala’s use of its specialized dietary niche. Widespread in the Australian landscape, eucalypts comprise an easily accessible food resource for some foli- vores, such as the koala (Phascolarctos cinereus), the ringtail possum (Pseudocheirus peregrinus) and greater glider (Petauroides volans) that are able to exploit this dietary niche. Te koala is able to utilise this resource exclusively for nutrition and shelter1 even though chemical defences render eucalypt leaves unpalatable, of low nutritional value, and even toxic. Tannin and lignin (up to 30% DM) bind valuable leaf proteins2,3 and cell wall carbohy- drates4 in the gastrointestinal tract of herbivores. Most leaf fats are either indigestible waxes2 or toxic terpenoids. Monoterpenes, an abundant group of terpenoids in eucalypts, are of small molecular weight and highly lipo- philic, hence are readily absorbable from the gut wall of eucalypt folivores5, and enter the circulation5–10.
    [Show full text]
  • Muelleria Vol 32, 2014
    Muelleria 36: 22–50 Published online in advance of the print edition, 16 March 2018. A passion for plants: The botanical contribution of collector P.J. Murphy Susan Kruss Collaborative Research Centre in Australian History, Federation University, Ballarat, Victoria. email: [email protected] Abstract Introduction ‘Collector: Murphy, P.J.’ listed on the The contribution of women to Australian botany has not yet been fully online Australasian Virtual Herbarium, explored. Pat Murphy’s contribution was significant both in her local area collected plant specimens from and through the 1138 specimens she collected that are now held at the the early 1980s to 2006. Fifteen specimens were sent to the National National Herbarium, Royal Botanic Gardens Victoria (MEL). Pat’s story Herbarium of Victoria during her extends the history of collectors and collecting beyond the colonial era lifetime, and the remaining collection into the twentieth and twenty-first centuries, a period as yet only lightly of 1123 specimens was donated to touched on in the history of botany. One advantage of examining a more the Herbarium in 2007. Who was P.J. recent collector is the availability of people who knew Pat and whose Murphy, why did she collect, and what can be discovered by examining memories of her can be accessed through oral history interviews. The Field her collection of specimens? Much Naturalists’ Club of Ballarat (FNCB) provided the context for Pat’s learning of the information in this article is about botany and her involvement in collecting (Fig. 1a,b). I was able to derived from the minutes of the Field Naturalists’ Club of Ballarat (FNCB) and from interviews with her husband, Bill Murphy, and members of FNCB.
    [Show full text]
  • Eastern Grey Kangaroo Macropus Giganteus Shaw 1790 As a Vulnerable Species in Part 1 of Schedule 2 of the Act
    NSW SCIENTIFIC COMMITTEE Preliminary Determination The Scientific Committee, established by the Threatened Species Conservation Act, has made a Preliminary Determination NOT to support a proposal to list the Eastern Grey Kangaroo Macropus giganteus Shaw 1790 as a Vulnerable species in Part 1 of Schedule 2 of the Act. Rejection of nominations is provided for by Part 2 of the Act. The Scientific Committee has found that: 1. Macropus giganteus Shaw 1790 (family Macropodidae), known as the Eastern Grey Kangaroo, is a large, highly sexually dimorphic macropod. Head-body to 2302 mm (males), 1857 mm (females); tail to 1090 mm (males), 842 mm (females); weight to 85 kg (males), 42 kg (females). Grey-brown dorsally, paler ventrally and on legs. Ears long, dark brown outside, pale grey inside with whitish fringe. Distal third of tail blackish. Muzzle finely haired (Menkhorst and Knight 2001; Johnson 2006; Coulson 2008). 2. Macropus giganteus is endemic to Australia. It is widely distributed in eastern Australia from Cape York Peninsula, Queensland, to far southeast South Australia and northeastern Tasmania. It is found throughout New South Wales (NSW). In western NSW, northwestern Victoria and southwestern Queensland M. giganteus is sympatric with its sister species the Western Grey Kangaroo (Macropus fuliginosus) (Johnson 2006; Coulson 2008). Eastern and Western Grey Kangaroos were recognised as separate species only in the 1970s (Kirsch and Poole 1972). Macropus giganteus mostly occurs where annual rainfall is >250 mm (Caughley et al. 1987b) in sclerophyll forest, woodland (including mallee), shrubland and heathland. It can also occur in modified habitats including farmland with remnant native vegetation, pine plantations and golf courses (Menkhorst and Knight 2001; Johnson 2006; Coulson 2008; Dawson 2012).
    [Show full text]