GBIF Country Report HK

Total Page:16

File Type:pdf, Size:1020Kb

GBIF Country Report HK Activity report generated January 2021 Hong Kong This report provides a series of summary charts, statistics and other details about the mobilization and use of open-access species data through the GBIF network, relating to users and participating institutions in Hong Kong. These metrics show status at the time of report generation, unless otherwise noted. Taken together, the elements of this report can help guide and measure progress toward the information needs for biodiversity research, as well as for national commitments on biodiversity and sustainable development. ▶ Access and usage Researchers from Hong Kong contributed to 4 peer-reviewed articles citing GBIF use during 2020 and a total of 14 articles since 2008 ▶ Data availability in Hong Kong Animalia Plantae Fungi Unknown 551,531 56,507 1,305 5,315 occurrences occurrences occurrences occurrences Protozoa Bacteria Virus Chromista Archaea 66 43,525 43,525 699 1,125 occurrences occurrences occurrences occurrences occurrences ▶ Data mobilization Institutions from Hong Kong published 143,617 new occurrence records during 2020 out of a total of 268,835,604 occurrence records added globally to GBIF.org Number of records published by institutions in Hong Kong, categorized by kingdom 2 | 5 Access and usage Data downloads on GBIF.org from users in Hong Kong Users from Hong Kong made 1,325 download requests representing 0.6% of all downloads during 2020 Monthly downloads requested by users in Hong Kong Recent peer-reviewed articles using GBIF-mediated data by co-authors based in Hong Kong The GBIF Secretariat maintains and reports on an ongoing literature tracking programme, giving priority to substantive uses of GBIF- mediated data in peer-reviewed literature while identifying the countries or areas of the authors’ institutional affiliations. The citations below represent the five most recent journal articles with at least one co-author from Hong Kong. Those interested in assisting the Secretariat in identifying additional peer-reviewed uses of GBIF-mediated data may forward relevant citations to [email protected]. Cheuk, Fischer. (2020) The impact of climate change on the distribution of Castanopsis (Fagaceae) species in South China and Indo-China region. Global Ecology and Conservation. https://doi.org/10.1016/j.gecco.2020.e01388 Zhang, Xia, Ke et al. (2020) Population dynamics and interactions of Noctiluca scintillans and Mesodinium rubrum during their successive blooms in a subtropical coastal water. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2020.142349 Caviedes-Solis, Kim, Leaché. (2020) Species IUCN threat status level increases with elevation: a phylogenetic approach for Neotropical tree frog conservation. Biodiversity and Conservation. https://doi.org/10.1007/s10531-020-01986-8 Chao, Kubota, Zelený et al. (2020) Quantifying sample completeness and comparing diversities among assemblages. Ecological Research. https://doi.org/10.1111/1440-1703.12102 Au, Bonebrake. (2019) Increased Suitability of Poleward Climate for a See all research from this country or area Tropical Butterfly (Euripus nyctelius)(Lepidoptera: Nymphalidae) gbif.org/country/HK/publications Accompanies its Successful Range Expansion. Journal of Insect Science. https://doi.org/10.1093/jisesa/iez105 3 | 5 Data availability Total data available for selected taxonomic groups in Hong Kong Mammals Birds Bony fish Amphibians 1,149 455,042 4,286 3,007 occurrences occurrences occurrences occurrences Insects Reptiles Molluscs 70,522 4,128 5,347 occurrences occurrences occurrences Arachnids Flowering Gymnosper Ferns 4,217 plants ms 1,178 occurrences 54,698 151 occurrences occurrences occurrences Mosses Sac fungi Basidiomycota 97 1,115 171 occurrences occurrences occurrences Mammals = Class Mammalia Insects = Class Insecta Flowering plants = Phylum Ferns = Phylum Pteridophyta Birds = Class Aves Reptiles = Class Reptilia Magnoliophyta Mosses = Phylum Bryophyta Bony fish = Superclass Molluscs = Phylum Mollusca Gymnosperms = Superclass Sac fungi = Phylum Ascomycota Osteichthyes Arachnids = Class Arachnida Gymnospermae Basidiomycota = Phylum Amphibians = Class Amphibia Basidiomycota Change over time in records about biodiversity in Hong Kong Occurrence records available about species occurring Species for which at least one occurrence record is in Hong Kong available in Hong Kong WHY MIGHT THE AMOUNT OF MOBILIZED DATA SPECIES COUNTS represent the number of binomial scientific DECREASE? names for which GBIF has received data records, organized as far Datasets are sometimes removed by publishers, but more often as possible using synonyms recorded in key databases like the decreases in the number of records are due to the removal of Catalogue of Life duplicate records and datasets. 4 | 5 Most recent datasets from publishers in Hong Kong The University of Hong Kong Herbarium. Published by The Hong Kong University Herbarium https://doi.org/10.15468/njdmwl See all datasets from this country or area: gbif.org/dataset/search?publishing_country=HK Newest publishers from Hong Kong Occurrence records downloaded from GBIF.org, published by institutions in Hong Kong The Hong Kong University Herbarium Number of occurrence records downloaded via See all publishers from this country or area GBIF.org published by institutions in Hong Kong gbif.org/publisher/search?country=HK 5 | 5 Data mobilization Data sharing with country or area of origin by national institutions in Hong Kong Hong Kong publishes data from 16 countries, territories and islands including 438,752 occurrences in 2 occurrence datasets Data sharing with country or area of origin The chart above shows the number of records shared over time by publishers within Hong Kong, with separate colours for records about species occurring within undefined and those occurring elsewhere. Top data contributors about biodiversity Top datasets contributing data about Hong in Hong Kong Kong Rank Country or area No. of occurrences EOD - eBird Observation Dataset. 436,260 occurrences in Hong Kong. (Last updated 30 Jun 2020) 1 Hong Kong 436,588 iNaturalist Research-grade Observations. 119,112 2 United States of America 123,739 occurrences in Hong Kong. (Last updated 16 Jan 2021) 3 United Kingdom 88,395 Composition and Genetic Diversity of Microbial 4 France 2,326 Communities in Subtropical Coastal Wetland Sediments. 49,553 occurrences in Hong Kong. (Last 5 Netherlands 2,273 updated 19 Feb 2020) 6 Australia 1,994 Geographically tagged INSDC sequences. 33,510 7 Germany 1,187 occurrences in Hong Kong. (Last updated 5 Aug 2019) 8 Japan 823 Natural History Museum (London) Collection Specimens. 9 Belgium 767 2,978 occurrences in Hong Kong. (Last updated 23 Jan 2021) 10 Estonia 552 Table 1. Ranking of countries or areas contributing data about Hong Kong See all contributing countries and areas or datasets: gbif.org/country/HK/about.
Recommended publications
  • Level Biology. Basic and Simplified Revision Notes
    Systematic “A” level Biology. Basic and simplified Revision notes. SYSTEMATIC “A” LEVEL BIOLOGY. Basic and simplified revision notes. STANDARD TEACHING SYLABUS: 1. Cell biology or cytology………………………………………..………………………….2 Definition of cytology/cell biology, definition of the cell. Microscopy. light and electron microscopes their structure, mode of operation and comparison between them, microscope practical techniques. Cell theory, types of organism’s i.e prokaryotes and eukaryotes, comparison between Prokaryotes and eukaryotes, why cells are small? Structures of the cell, cell diversity.. Cell division. Types of cell division, events that occur during each type, comparison between them and the importance of each type. 2.Histology………………………………………………………………………………………..4 Definition, types of tissues, their structures and functions,adaptations of some tissues to suit their function. Levels of organization. ie unicellular level; tissue level; organ level; system level and organism level; advantages and disadvantages of being unicellular and multicelar organism; 3. Classification of living organisms…………………………………………………….65 Common terms used: classification, taxonomy, systematics, binomial nomenclature, dichotomous keys, taxonomic hierarchy, and five kingdom system: Animalia, Plantae, fungi, Protista and monera general characteristic of organismin each kingdom and the examples. 4. Transport of materials in living organisms………………………………………107 5. Chemicals of life………………………………………………………………………….150 DNA structure, RNA structure, DNA replication and protein
    [Show full text]
  • Environmental Impact Assessment
    Environmental Impact Assessment December 2013 IND: SASEC Road Connectivity Investment Program (formerly SASEC Road Connectivity Sector Project) Asian Highway 2 (India /Nepal Border to India/Bangladesh Border) Asian Highway 48 (India/Bhutan Border to India/Bangladesh Border) Prepared by Ministry of Roads Transport and Highways, Government of India and Public Works Department, Government of West Bengal for the Asian Development Bank. This is a revised version of the draft originally posted in July 2013 available on http://www.adb.org/projects/47341- 001/documents/. CURRENCY EQUIVALENTS (As of 30 April 2013) Currency unit – Indian rupee (INR) INR1.00 = $ 0.01818 $1.00 = INR 55.00 ABBREVIATION AADT Annual Average Daily Traffic AAQ Ambient air quality AAQM Ambient air quality monitoring ADB Asian Development Bank AH Asian Highway ASI Archaeological Survey of India BDL Below detectable limit BGL Below ground level BOD Biochemical oxygen demand BOQ Bill of quantity CCE Chief Controller of Explosives CGWA Central Ground Water Authority CITES Convention on International Trade in Endangered Species CO Carbon monoxide COD Chemical oxygen demand CPCB Central Pollution Control Board CSC Construction Supervision Consultant DFO Divisional Forest Officer DG Diesel generating set DO Dissolved oxygen DPR Detailed project report E&S Environment and social EA Executing agency EAC Expert Appraisal Committee EFP Environmental Focal Person EHS Environment Health and Safety EIA Environmental impact assessment EMOP Environmental monitoring plan EMP Environmental
    [Show full text]
  • Annual Report
    CONTENTS SL. NO. CHAPTERS PAGE NO. NORTH BENGAL WILD ANIMALS PARK: AT A GLANCE 1 CHAPTER I 1.1 INTRODUCTION 3 1.2 MISSION 4 1.3 OBJECTIVE 4 1.4 STRATEGY 4 CHAPTER II 2.1 ADMINISTRATIVE SECTION 5 2.2 ACCOUNTS 5 2.3 ANIMAL SECTION 6 2.4 VETERINARY SECTION 12 2.4.1 DIS-INFECTION PROGRAMME 12 2.4.2 CAMPS ORGANIZED 13 2.5 COMMISSARY SECTION 13 2.6 EDUCATION 13 2.7 RESEARCH 16 2.8 GARDEN SECTION 17 2.9 SANITATION SECTION 17 2.10 SECURITY SECTION 17 2.11 MAINTENANCE SECTION 17 CHAPTER III 3.1 VISITOR STATISTICS 17 3.2 PARKING REVENUE COLLECTED 18 3.3 WHAT THE DIGNITARIES HAD TO SAY 19 EVENTS WORTH SPECIAL MENTION DURING 3.4 THE YEAR 2016-17 20 INAUGURATION OF TIGER SAFARI AND 3.4.1 DIFFERENT OTHER PROJECTS 20 3.4.2 EVENT ORGANISED BY THE RED CROSS SOCIETY 20 3.4.3 YEARLY MEET OF STATE POLLUTION CONTROL BOARD 20 3.4.4 BENGAL TRAVEL MART 20 CHAPTER III 3.4.5 CELEBRATION OF WORLD FORESTRY DAY 20 3.4.6 HUMAN HEALTH CHECK UP CAMP AT TORIBARI 20 3.4.7 ANIMAL HEALTH CHECK UP CAMP AT TORIBARI 21 3.4.8 INDEPENDENCE DAY CELEBRATION 21 3.4.9 RAKSHA BANDHAN CELEBRATION 21 3.4.10 VISIT OF PCCF (HOFF), W.B. 21 VISIT OF MIC (FOREST), PRINCIPAL SECRETARY, PCCF 3.4.11 (HOFF), PCCF (GENERAL) AND OTHER FOREST OFFICIALS 21 3.4.12 FISH RELEASE INSIDE THE HERBIVORE SAFARI 21 3.4.13 VISIT OF MEMBER SECRETARY, CENTRAL ZOO AUTHORITY 21 3.4.14 ZOOLOGICAL INFORMATION MANAGEMENT SOFTWARE TRAINING 21 3.4.15 INAUGURATION OF GHARIAL QUARANTINE ENCLOSURE 21 3.4.16 CHILDREN'S DAY CELEBRATION 22 3.4.17 MORTER SHELL DISCOVERED INSIDE PARK PREMISES 22 PHOTO PLATE I 23 PHOTO PLATE II 24 CHAPTER IV 4.1 BIODIVERSITY OF NORTH BENGAL WILD ANIMALS PARK 25 4.1.1 PRELIMINARY CHECKLIST OF FLORA 25 4.1.2 PRELIMINARY CHECKLIST OF FAUNA 29 ANNEXURE 35 NORTH BENGAL WILD ANIMALS PARK, SILIGURI AT A GLANCE Year of Establishment 2015 Area 297 Hectares Category of Zoo Medium Altitude 80- 100 m Temperature Upto 35ºC highest and 2ºC lowe st Mailing Address North Bengal Wild Animals Park, 5 th Mile, Sevoke Road, Salugara, Siliguri-734008 E-Mail [email protected] Web www.northbengalwildanimalspark.in Zoo Timings 9:00 a.m.
    [Show full text]
  • Flora and Fauna of Phong Nha-Ke Bang and Hin Namno, a Compilation Page 2 of 151
    Flora and fauna of Phong Nha-Ke Bang and Hin Namno A compilation ii Marianne Meijboom and Ho Thi Ngoc Lanh November 2002 WWF LINC Project: Linking Hin Namno and Phong Nha-Ke Bang through parallel conservation Flora and fauna of Phong Nha-Ke Bang and Hin Namno, a compilation Page 2 of 151 Acknowledgements This report was prepared by the WWF ‘Linking Hin Namno and Phong Nha through parallel conservation’ (LINC) project with financial support from WWF UK and the Department for International Development UK (DfID). The report is a compilation of the available data on the flora and fauna of Phong Nha-Ke Bang and Hin Namno areas, both inside and outside the protected area boundaries. We would like to thank the Management Board of Phong Nha-Ke Bang National Park, especially Mr. Nguyen Tan Hiep, Mr. Luu Minh Thanh, Mr. Cao Xuan Chinh and Mr. Dinh Huy Tri, for sharing information about research carried out in the Phong Nha-Ke Bang area. This compilation also includes data from surveys carried out on the Lao side of the border, in the Hin Namno area. We would also like to thank Barney Long and Pham Nhat for their inputs on the mammal list, Ben Hayes for his comments on bats, Roland Eve for his comments on the bird list, and Brian Stuart and Doug Hendrie for their thorough review of the reptile list. We would like to thank Thomas Ziegler for sharing the latest scientific insights on Vietnamese reptiles. And we are grateful to Andrei Kouznetsov for reviewing the recorded plant species.
    [Show full text]
  • International Journal of Research Volume VIII, Issue VI, JUNE/2019
    International Journal of Research ISSN NO:2236-6124 A Study on the Congregation of Adult Butterflies on Non-floral Resources at Different Locations in Jalpaiguri district of West Bengal, India Panchali Sengupta1*, Narayan Ghorai2 1Department of Zoology, West Bengal State University, Berunanpukaria, Malikapur, Barasat, District-24 Parganas (North), Kolkata-700126.West Bengal, India Email id: [email protected] 2Department of Zoology, West Bengal State University, Berunanpukaria, Malikapur, Barasat, District-24 Parganas (North), Kolkata-700126.West Bengal, India email id: [email protected] Abstract Several instances of puddling, as reported among different herbivore arthropods, appears quite interesting. Significantly, congregation of adult butterflies at several non-floral resources (wet soil/mud, animal dung, bird droppings, carrion, rotten/fermenting fruits) were examined at different locations in Jalpaiguri district adjacent to the tea estates, villages and agricultural tracts. Different species of papilionids and pierids congregate on wet soil patch and puddle collectively. However other species of nymphalid, lycaenid and hesperid are found to puddle individually, without associating with others on resources like excrements and carrion. Irrespective of any species newly emerged males, and aged females are found to puddle. Interestingly, each species belonging to a particular family have a specific range of puddling duration. Such specificity in puddling among species of a family could probably be associated with their need for a common nutrient. Keywords:, congregation, hesperid, lycaenid, nymphalid, papilionid, pierid *corresponding author Volume VIII, Issue VI, JUNE/2019 Page No:5877 International Journal of Research ISSN NO:2236-6124 Introduction Puddling is a widely recognised fascinating event in the life history of any herbivore arthropods except beetles targeted towards accumulation of specific micronutrient (Mollemann, 2010).
    [Show full text]
  • Butterfly Extirpations
    RAFFLES BULLETIN OF ZOOLOGY 2018 Conservation & Ecology RAFFLES BULLETIN OF ZOOLOGY 66: 217–257 Date of publication: 19 April 2018 http://zoobank.org/urn:lsid:zoobank.org:pub:CFF83D96-5239-4C56-B7CE-8CA1E086EBFD Butterfy extirpations, discoveries and rediscoveries in Singapore over 28 years Anuj Jain1,2*#, Khew Sin Khoon3, Cheong Weei Gan2, and Edward L. Webb1* Abstract. Habitat loss and urbanisation in the tropics have been recognised as major drivers of species extinctions. Concurrently, novel habitats such as urban parks have been shown to be important as habitats and stepping stones in urban ecosystems around the world. However, few studies have assessed long-term patterns of species extinctions and discoveries in response to these drivers in the tropics. We know little about long-term persistence and utility of novel habitats in tropical urban ecosystems. In this study, we produced an updated and exhaustive butterfy checklist of species recorded from Singapore till December 2017 to investigate trends in butterfy extirpations (local extinctions), discoveries (new country records) and rediscoveries and how these relate to land use change in 28 years (1990–2017) in Singapore. Up to 144 butterfy species were identifed to be extirpated in Singapore by 1990. From 1990–2017, an additional nine butterfy extirpations have potentially occurred, which suggests a maximum of 153 butterfy extirpations to date. The rate of extirpations between 1990 to 2017 (< 0.33 extirpations per year) was much lower than the rate of extirpations between 1926 to 1989 (> 1.52 extirpations per year). The majority of potentially extirpated butterfies between 1990 to 2017 were species restricted to mature forests.
    [Show full text]
  • Threatened Butterflies of Central Nepal Kathmandu Valley
    Journal of Threatened Taxa | www.threatenedtaxa.org | 26 July 2013 | 5(11): 4612–4615 Note Threatened butterflies of central Nepal Kathmandu Valley. The southern part of the valley, extending from B. Khanal ¹, M.K. Chalise ² & G.S. Solanki ³ Godavari (1360m) to Phulchowki Mountain (2734m) is a species ¹ Natural History Museum, Manju Shree Bazaar, Swayambu, Kathamandu ISSN 44620, Nepal -rich area where more than 150 Online 0974-7907 Print 0974-7893 ² Central Department of Zoology, Tribhuvan University, Kirtipur, Kathmandu species of butterflies, mostly forest 44618, Nepal ³ Department of Zoology, Mizoram University, Tanhril Campus, Aizawl, Mizoram dwelling species, are found (Smith OPEN ACCESS 796004, India 1 [email protected], 2 [email protected], 3 [email protected] 1989). The recent loss of trees in (corresponding author) these forests has left the hills virtually bare except for a few areas between 2660–2715 m. These changes in In Nepal, the area above 3000m is occupied mostly the natural habitat have had a negative impact on the by palearctic butterflies while the temperate, subtropical butterflies of the region. Therefore, an attempt has been and tropical species are sequentially distributed below made here to identify the threats imposed on some rare this altitude. The temperate zone has many micro- butterfly species of this region. habitats to offer to different butterflies. Material and Methods: The present study was The central districts, namely, Kathmandu, Bhaktapur, carried out in the central part of Nepal which includes and Lalitpur are dominated by evergreen broad-leaved three districts—Kathmandu, Bhaktapur, and Lalitpur (Fig. mixed forests between 1800–2400 m.
    [Show full text]
  • Tympanal Ears in Nymphalidae Butterflies: Morphological Diversity and Tests on the Function of Hearing
    Tympanal Ears in Nymphalidae Butterflies: Morphological Diversity and Tests on the Function of Hearing by Laura E. Hall A thesis submitted to the Faculty of Graduate Studies and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science in Biology Carleton University Ottawa, Ontario, Canada © 2014 Laura E. Hall i Abstract Several Nymphalidae butterflies possess a sensory structure called the Vogel’s organ (VO) that is proposed to function in hearing. However, little is known about the VO’s structure, taxonomic distribution or function. My first research objective was to examine VO morphology and its accessory structures across taxa. Criteria were established to categorize development levels of butterfly VOs and tholi. I observed that enlarged forewing veins are associated with the VOs of several species within two subfamilies of Nymphalidae. Further, I discovered a putative light/temperature-sensitive organ associated with the VOs of several Biblidinae species. The second objective was to test the hypothesis that insect ears function to detect bird flight sounds for predator avoidance. Neurophysiological recordings collected from moth ears show a clear response to flight sounds and chirps from a live bird in the laboratory. Finally, a portable electrophysiology rig was developed to further test this hypothesis in future field studies. ii Acknowledgements First and foremost I would like to thank David Hall who spent endless hours listening to my musings and ramblings regarding butterfly ears, sharing in the joy of my discoveries, and comforting me in times of frustration. Without him, this thesis would not have been possible. I thank Dr.
    [Show full text]
  • History of Animals Translated by D’Arcy Wentworth Thompson
    Aristotle History of Animals translated by D’Arcy Wentworth Thompson Book I 1 Of the parts of animals some are simple: to wit, all such as divide into parts uniform with themselves, as flesh into flesh; others are composite, such as divide into parts not uniform with themselves, as, for instance, the hand does not divide into hands nor the face into faces. And of such as these, some are called not parts merely, but limbs or members. Such are those parts that, while entire in themselves, have within themselves other diverse parts: as for instance, the head, foot, hand, the arm as a whole, the chest; for these are all in themselves entire parts, and there are other diverse parts belonging to them. All those parts that do not subdivide into parts uniform with themselves are composed of parts that do so subdivide, for instance, hand is composed of flesh, sinews, and bones. Of animals, some resemble one another in all their parts, while others have parts wherein they differ. Sometimes the parts are identical in form or species, as, for instance, one man’s nose or eye resembles another man’s nose or eye, flesh flesh, and bone bone; and in like manner with a horse, and with all other animals which we reckon to be of one and the same species: for as the whole is to the whole, so each to each are the parts severally. In other cases the parts are identical, save only for a difference in the way of excess or defect, as is the case in such animals as are of one and the same genus.
    [Show full text]
  • Mitochondrial Genomes of Hestina Persimilis and Hestinalis Nama (Lepidoptera, Nymphalidae): Genome Description and Phylogenetic Implications
    insects Article Mitochondrial Genomes of Hestina persimilis and Hestinalis nama (Lepidoptera, Nymphalidae): Genome Description and Phylogenetic Implications Yupeng Wu 1,2,*, Hui Fang 1, Jiping Wen 2,3, Juping Wang 2, Tianwen Cao 2,* and Bo He 4 1 School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; [email protected] 2 College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China; [email protected] (J.W.); [email protected] (J.W.) 3 Department of Horticulture, Taiyuan University, Taiyuan 030012, China 4 College of Life Sciences, Anhui Normal University, Wuhu 241000, China; [email protected] * Correspondence: [email protected] (Y.W.); [email protected] (T.C.) Simple Summary: In this study, the mitogenomes of Hestina persimilis and Hestinalis nama were obtained via sanger sequencing. Compared with other mitogenomes of Apaturinae butterflies, conclusions can be made that the mitogenomes of Hestina persimilis and Hestinalis nama are highly conservative. The phylogenetic trees build upon mitogenomic data showing that the relationships among Nymphalidae are similar to previous studies. Hestinalis nama is apart from Hestina, and closely related to Apatura, forming a monophyletic clade. Citation: Wu, Y.; Fang, H.; Wen, J.; Wang, J.; Cao, T.; He, B. Abstract: In this study, the complete mitochondrial genomes (mitogenomes) of Hestina persimilis Mitochondrial Genomes of Hestina and Hestinalis nama (Nymphalidae: Apaturinae) were acquired. The mitogenomes of H. persimilis persimilis and Hestinalis nama and H. nama are 15,252 bp and 15,208 bp in length, respectively. These two mitogenomes have the (Lepidoptera, Nymphalidae): typical composition, including 37 genes and a control region.
    [Show full text]
  • The Undergraduate Psychology Practicum Program: Robert S
    ARTICLE AUTHOR 1 Silliman Journal A JOURNAL DEVOTED TO DISCUSSION AND INVESTIGATION IN THE HUMANITIES AND SCIENCES VOLUME 59 NUMBER 1 | JANUARY TO JUNE 2018 IN THIS ISSUE Margaret Helen U. Alvarez Jade Aster T. Badon Brenda R. Boladola Evelyn J. Galero Gina R. Lamzon Dennis P. McCann Stephan Rothlin Rodelio F. Subade Ana Liza A. Subade JANUARY TO JUNE 2018 - VOLUME 59 NO. 1 2 ARTICLE TITLE ARTICLE AUTHOR 3 The Silliman Journal is published twice a year under the auspices of Silliman University, Dumaguete City, Philippines. Entered as second class mail matter at Dumaguete City Post Office on 1 September 1954. Copyright © 2018 by the individual authors and Silliman Journal All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the authors or the publisher. ISSN 0037-5284 Opinions and facts contained in the articles published in this issue of Silliman Journal are the sole responsibility of the individual authors and not of the Editors, the Editorial Board, Silliman Journal, or Silliman University. Annual subscription rates are at PhP600 for local subscribers, and $35 for overseas subscribers. Subscription and orders for current and back issues should be addressed to The Business Manager Silliman Journal Silliman University Main Library 6200 Dumaguete City, Negros Oriental Philippines Silliman Issues are also available in microfilm format from ournal J University Microfilms International 300 N. Zeeb Road, Ann Arbor Michigan 48106 USA Other inquiries regarding editorial policies and contributions may be addressed to the Silliman Journal Business Manager or the Editor at the following email address: [email protected].
    [Show full text]
  • BEEKEEPING in the MEDITERRANEAN from ANTIQUITY to the PRESENT Front Cover Photographs
    Edited by: Fani Hatjina, Georgios Mavrofridis, Richard Jones BEEKEEPING IN THE MEDITERRANEAN FROM ANTIQUITY TO THE PRESENT Front cover photographs Part of a beehive lid. Early Byzantine period (Mesogeia plain, Attica. “Exhibition of Archaeological Findings”, Athens International Airport. Photo: G. Mavrofridis). Beehive from a country house of the 4th century B.C. (Mesogeia plain, Attica. “Exhibition of Archaeological Findings”, Athens International Airport. Photo: G. Mavrofridis). Traditional ceramic beehive “kambana” (bell) in its bee bole (Andros Island. Photo: F. Hatjina). Back cover photographs Stone built apiary of the 18th century from Neochori, Messinia, Peloponnese (Photo: G. Ratia). Ruins of a bee house from Andros Island. Inside view (Photos: G. Ratia). Walls of a mill house with bee balls from Andros Island. Inside view (Photo: G. Ratia). Traditional pottery beehives and their bee boles: the ‘bee garden’, Andros Island (Photo: G. Ratia). Ruins of a bee house (the ‘cupboards’) from Zaharias, Andros Island. Outside view (Photo: G. Ratia). Bee boles from Andros Island (Photo: G. Ratia). Edited by: Nea Moudania 2017 Fani Hatjina, Georgios Mavrofridis, Richard Jones Based on selected presentations of the INTERNATIONAL SYMPOSIUM of BEEKEEPING IN THE MEDITERRANEAN SYROS, OCTOBER 9-11 2014 © DIVISION of APICULTURE Hellenic Agricultural Organization “DEMETER”-GREECE CHAMBER of CYCLADES EVA CRANE TRUST - UK Dedicated to the memory of Thanassis Bikos hanassis Bikos was a pioneer of the valuable legacy for current and future research- systematic research on traditional bee- ers of the beekeeping tradition. keeping in Greece. From the early 1990s The creation of a museum of Greek beekeep- until the end of his life he studied the ing was a life dream for Thanassis, for which traditionalT beekeeping aspects in most regions he gathered material for more than thirty-five of Greece.
    [Show full text]