Supplementary Table 1. List of Genes Up-Regulated in Abiraterone-Resistant Vcap Xenograft Samples PIK3IP1 Phosphoinositide-3-Kin

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Table 1. List of Genes Up-Regulated in Abiraterone-Resistant Vcap Xenograft Samples PIK3IP1 Phosphoinositide-3-Kin Supplementary Table 1. List of genes up-regulated in abiraterone-resistant VCaP xenograft samples PIK3IP1 phosphoinositide-3-kinase interacting protein 1 TMEM45A transmembrane protein 45A THBS1 thrombospondin 1 C7orf63 chromosome 7 open reading frame 63 OPTN optineurin FAM49A family with sequence similarity 49, member A APOL4 apolipoprotein L, 4 C17orf108|LOC201229 chromosome 17 open reading frame 108 | hypothetical protein LOC201229 SNORD94 small nucleolar RNA, C/D box 94 PCDHB11 protocadherin beta 11 RBM11 RNA binding motif protein 11 C6orf225 chromosome 6 open reading frame 225 KIAA1984|C9orf86|TMEM14 1 KIAA1984 | chromosome 9 open reading frame 86 | transmembrane protein 141 KIAA1107 TLR3 toll-like receptor 3 LPAR6 lysophosphatidic acid receptor 6 KIAA1683 GRB10 growth factor receptor-bound protein 10 TIMP2 TIMP metallopeptidase inhibitor 2 CCDC28A coiled-coil domain containing 28A FBXL2 F-box and leucine-rich repeat protein 2 NOV nephroblastoma overexpressed gene TSPAN31 tetraspanin 31 NR3C2 nuclear receptor subfamily 3, group C, member 2 DYNC2LI1 dynein, cytoplasmic 2, light intermediate chain 1 C15orf51 dynamin 1 pseudogene SAMD13 sterile alpha motif domain containing 13 RASSF6 Ras association (RalGDS/AF-6) domain family member 6 ZNF167 zinc finger protein 167 GATA2 GATA binding protein 2 NUDT7 nudix (nucleoside diphosphate linked moiety X)-type motif 7 DNAJC18 DnaJ (Hsp40) homolog, subfamily C, member 18 SNORA57 small nucleolar RNA, H/ACA box 57 CALCOCO1 calcium binding and coiled-coil domain 1 RLN2 relaxin 2 ING4 inhibitor of growth family, member 4 NMT2 N-myristoyltransferase 2 ZNF512 zinc finger protein 512 YPEL5 yippee-like 5 (Drosophila) ANKRD31 ankyrin repeat domain 31 CSTT cystatin pseudogene EFCAB7 EF-hand calcium binding domain 7 FAM160A1 family with sequence similarity 160, member A1 PPM1N|FLJ40125 protein phosphatase, Mg2+/Mn2+ dependent, 1N (putative) | protein phosphatase 1B-like DENND5A DENN/MADD domain containing 5A RG9MTD3 RNA (guanine-9-) methyltransferase domain containing 3 SNORD104 small nucleolar RNA, C/D box 104 C20orf194 chromosome 20 open reading frame 194 PNRC1 proline-rich nuclear receptor coactivator 1 THSD1P1 thrombospondin, type I, domain containing 1 pseudogene 1 SGCB sarcoglycan, beta (43kDa dystrophin-associated glycoprotein) TMC5 transmembrane channel-like 5 ZNF10|ZNF268 zinc finger protein 10 | zinc finger protein 268 ARHGEF37|FLJ41603 Rho guanine nucleotide exchange factor (GEF) 37 | FLJ41603 protein KIDINS220 kinase D-interacting substrate, 220kDa BTG2 BTG family, member 2 LPIN1 lipin 1 PDZD4 PDZ domain containing 4 FCHSD1|RELL2 FCH and double SH3 domains 1 | RELT-like 2 DENND5B DENN/MADD domain containing 5B AMN1|C12orf72 antagonist of mitotic exit network 1 homolog (S. cerevisiae) | chromosome 12 open reading frame 72 ANKZF1 ankyrin repeat and zinc finger domain containing 1 RMND1 required for meiotic nuclear division 1 homolog (S. cerevisiae) FAM154B family with sequence similarity 154, member B C1orf61 chromosome 1 open reading frame 61 ATXN1 ataxin 1 SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 TBC1D19 TBC1 domain family, member 19 KLHL5 kelch-like 5 (Drosophila) thyroid hormone receptor, alpha (erythroblastic leukemia viral (v-erb-a) oncogene homolog, avian) | THRA|NR1D1 nuclear receptor subfamily 1, group D, member 1 H3F3B H3 histone, family 3B (H3.3B) NAALADL2 N-acetylated alpha-linked acidic dipeptidase-like 2 BTN2A2 butyrophilin, subfamily 2, member A2 CA13 carbonic anhydrase XIII FAM124A family with sequence similarity 124A C7orf41 chromosome 7 open reading frame 41 ATP6V1H ATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H CCL28 chemokine (C-C motif) ligand 28 C21orf57 chromosome 21 open reading frame 57 ZNF550 zinc finger protein 550 RASA4|RASA4P|RASA4B|P RAS p21 protein activator 4 | RAS p21 protein activator 4 pseudogene | RAS p21 protein activator OLR2J4|LOC100132214|LO 4B | polymerase (RNA) II (DNA directed) polypeptide J4, pseudogene | similar to calcium-promoted C100286937 Ras inactivator | similar to HSPC047 protein SPATA7 spermatogenesis associated 7 BCAS3 breast carcinoma amplified sequence 3 CASP8 caspase 8, apoptosis-related cysteine peptidase LCP1 lymphocyte cytosolic protein 1 (L-plastin) MMP26 matrix metallopeptidase 26 PAN2 PARP16 poly (ADP-ribose) polymerase family, member 16 GNB5 guanine nucleotide binding protein (G protein), beta 5 MYT1 myelin transcription factor 1 SLC12A6 solute carrier family 12 (potassium/chloride transporters), member 6 MEAF6 MYST/Esa1-associated factor 6 GPRC5B G protein-coupled receptor, family C, group 5, member B radial spoke head 10 homolog B (Chlamydomonas) | radial spoke head 10 homolog B2 RSPH10B|RSPH10B2 (Chlamydomonas) MCTS1 malignant T cell amplified sequence 1 RAS p21 protein activator 4 | RAS p21 protein activator 4 pseudogene | RAS p21 protein activator RASA4|RASA4P|RASA4B|P 4B | polymerase (RNA) II (DNA directed) polypeptide J4, pseudogene | similar to calcium-promoted OLR2J4|LOC100132214 Ras inactivator CD207 (MARCH8) membrane-associated ring finger (C3HC4) 8 RGL3 ral guanine nucleotide dissociation stimulator-like 3 radial spoke head 10 homolog B (Chlamydomonas) | radial spoke head 10 homolog B2 RSPH10B|RSPH10B2 (Chlamydomonas) SLC38A3 solute carrier family 38, member 3 SCN4B sodium channel, voltage-gated, type IV, beta C3orf17 chromosome 3 open reading frame 17 ABCA9 ATP-binding cassette, sub-family A (ABC1), member 9 SMYD2 SET and MYND domain containing 2 pleckstrin homology domain containing, family M (with RUN domain) member 1 pseudogene | similar PLEKHM1P|LOC100291232 to hCG2002091 C5orf32 chromosome 5 open reading frame 32 GPM6B glycoprotein M6B B9D1 B9 protein domain 1 PHKA2 phosphorylase kinase, alpha 2 (liver) OR1J2 olfactory receptor, family 1, subfamily J, member 2 NFATC1 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 SYNGR1 synaptogyrin 1 METTL6 methyltransferase like 6 OR56A4 olfactory receptor, family 56, subfamily A, member 4 ROPN1L ropporin 1-like APPL2 adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 2 HSF2 heat shock transcription factor 2 RNF145 ring finger protein 145 NPHP1 nephronophthisis 1 (juvenile) complement component 4A (Rodgers blood group) | complement component 4B (Chido blood group) C4A|C4B|LOC100292046|L | similar to Complement component 4A (Rodgers blood group) | similar to complement component OC100294156 4A (Rodgers blood group) complement component 4A (Rodgers blood group) | complement component 4B (Chido blood group) C4A|C4B|LOC100292046|L | similar to Complement component 4A (Rodgers blood group) | similar to complement component OC100294156 4A (Rodgers blood group) CYP4F22 cytochrome P450, family 4, subfamily F, polypeptide 22 KIAA1704 PJA2 praja ring finger 2 C20orf90 chromosome 20 open reading frame 90 TMF1 TATA element modulatory factor 1 NEUROD4 neurogenic differentiation 4 SNX13 sorting nexin 13 DNAH12 dynein, axonemal, heavy chain 12 SEPSECS Sep (O-phosphoserine) tRNA:Sec (selenocysteine) tRNA synthase C12orf76 chromosome 12 open reading frame 76 C3orf19|TMEM135 chromosome 3 open reading frame 19 | transmembrane protein 135 GJA5 gap junction protein, alpha 5, 40kDa SKP1 S-phase kinase-associated protein 1 RAB3GAP2 RAB3 GTPase activating protein subunit 2 (non-catalytic) HEMK1|C3orf18 HemK methyltransferase family member 1 | chromosome 3 open reading frame 18 RPS4Y1 ribosomal protein S4, Y-linked 1 ASB3|LOC100302652|GPR7 5 ankyrin repeat and SOCS box-containing 3 | GPR75-ASB3 | G protein-coupled receptor 75 CTBS chitobiase, di-N-acetyl- MLLT3 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 3 KCNIP2 Kv channel interacting protein 2 golgi-associated PDZ and coiled-coil motif containing | golgi associated PDZ and coiled-coil motif containing | discoidin, CUB and LCCL domain containing 1 | c-ros oncogene 1 , receptor tyrosine GOPC|DCBLD1|ROS1 kinase CCDC65 coiled-coil domain containing 65 VPS8 vacuolar protein sorting 8 homolog (S. cerevisiae) PHF21A PHD finger protein 21A OR5B2 olfactory receptor, family 5, subfamily B, member 2 FBXO24 F-box protein 24 NBR1 neighbor of BRCA1 gene 1 IL1F8 interleukin 1 family, member 8 (eta) NBAS neuroblastoma amplified sequence ZNF148 zinc finger protein 148 MIR206 microRNA 206 ARG1 arginase, liver TM4SF4 transmembrane 4 L six family member 4 RELB v-rel reticuloendotheliosis viral oncogene homolog B SH2D1B SH2 domain containing 1B DCP1B DCP1 decapping enzyme homolog B (S. cerevisiae) WDR33 WD repeat domain 33 MAPKAPK2 mitogen-activated protein kinase-activated protein kinase 2 SLC5A12 solute carrier family 5 (sodium/glucose cotransporter), member 12 Supplementary Table 2. List of genes down-regulated in abiraterone-resistant VCaP xenograft samples DPP4 dipeptidyl-peptidase 4 FAM189A2 family with sequence similarity 189, member A2 CENPE centromere protein E, 312kDa SGK3|C8orf44 serum/glucocorticoid regulated kinase family, member 3 | chromosome 8 open reading frame 44 OAS3 2'-5'-oligoadenylate synthetase 3, 100kDa MKI67 antigen identified by monoclonal antibody Ki-67 C15orf42 chromosome 15 open reading frame 42 ASPM asp (abnormal spindle) homolog, microcephaly associated (Drosophila) CDK1|CDC2 cyclin-dependent kinase 1 | cell division cycle 2, G1 to S and G2 to M NCAPG|LCORL non-SMC condensin I complex, subunit G | ligand dependent nuclear receptor corepressor-like LOC1720 dihydrofolate reductase pseudogene ARHGAP11A Rho GTPase activating protein 11A SHCBP1 SHC SH2-domain
Recommended publications
  • Table 2. Functional Classification of Genes Differentially Regulated After HOXB4 Inactivation in HSC/Hpcs
    Table 2. Functional classification of genes differentially regulated after HOXB4 inactivation in HSC/HPCs Symbol Gene description Fold-change (mean ± SD) Signal transduction Adam8 A disintegrin and metalloprotease domain 8 1.91 ± 0.51 Arl4 ADP-ribosylation factor-like 4 - 1.80 ± 0.40 Dusp6 Dual specificity phosphatase 6 (Mkp3) - 2.30 ± 0.46 Ksr1 Kinase suppressor of ras 1 1.92 ± 0.42 Lyst Lysosomal trafficking regulator 1.89 ± 0.34 Mapk1ip1 Mitogen activated protein kinase 1 interacting protein 1 1.84 ± 0.22 Narf* Nuclear prelamin A recognition factor 2.12 ± 0.04 Plekha2 Pleckstrin homology domain-containing. family A. (phosphoinosite 2.15 ± 0.22 binding specific) member 2 Ptp4a2 Protein tyrosine phosphatase 4a2 - 2.04 ± 0.94 Rasa2* RAS p21 activator protein 2 - 2.80 ± 0.13 Rassf4 RAS association (RalGDS/AF-6) domain family 4 3.44 ± 2.56 Rgs18 Regulator of G-protein signaling - 1.93 ± 0.57 Rrad Ras-related associated with diabetes 1.81 ± 0.73 Sh3kbp1 SH3 domain kinase bindings protein 1 - 2.19 ± 0.53 Senp2 SUMO/sentrin specific protease 2 - 1.97 ± 0.49 Socs2 Suppressor of cytokine signaling 2 - 2.82 ± 0.85 Socs5 Suppressor of cytokine signaling 5 2.13 ± 0.08 Socs6 Suppressor of cytokine signaling 6 - 2.18 ± 0.38 Spry1 Sprouty 1 - 2.69 ± 0.19 Sos1 Son of sevenless homolog 1 (Drosophila) 2.16 ± 0.71 Ywhag 3-monooxygenase/tryptophan 5- monooxygenase activation protein. - 2.37 ± 1.42 gamma polypeptide Zfyve21 Zinc finger. FYVE domain containing 21 1.93 ± 0.57 Ligands and receptors Bambi BMP and activin membrane-bound inhibitor - 2.94 ± 0.62
    [Show full text]
  • Functional Roles of Bromodomain Proteins in Cancer
    cancers Review Functional Roles of Bromodomain Proteins in Cancer Samuel P. Boyson 1,2, Cong Gao 3, Kathleen Quinn 2,3, Joseph Boyd 3, Hana Paculova 3 , Seth Frietze 3,4,* and Karen C. Glass 1,2,4,* 1 Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; [email protected] 2 Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; [email protected] 3 Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; [email protected] (C.G.); [email protected] (J.B.); [email protected] (H.P.) 4 University of Vermont Cancer Center, Burlington, VT 05405, USA * Correspondence: [email protected] (S.F.); [email protected] (K.C.G.) Simple Summary: This review provides an in depth analysis of the role of bromodomain-containing proteins in cancer development. As readers of acetylated lysine on nucleosomal histones, bromod- omain proteins are poised to activate gene expression, and often promote cancer progression. We examined changes in gene expression patterns that are observed in bromodomain-containing proteins and associated with specific cancer types. We also mapped the protein–protein interaction network for the human bromodomain-containing proteins, discuss the cellular roles of these epigenetic regu- lators as part of nine different functional groups, and identify bromodomain-specific mechanisms in cancer development. Lastly, we summarize emerging strategies to target bromodomain proteins in cancer therapy, including those that may be essential for overcoming resistance. Overall, this review provides a timely discussion of the different mechanisms of bromodomain-containing pro- Citation: Boyson, S.P.; Gao, C.; teins in cancer, and an updated assessment of their utility as a therapeutic target for a variety of Quinn, K.; Boyd, J.; Paculova, H.; cancer subtypes.
    [Show full text]
  • Dissecting the Genetic Relationship Between Cardiovascular Risk Factors and Alzheimer's Disease
    UC San Diego UC San Diego Previously Published Works Title Dissecting the genetic relationship between cardiovascular risk factors and Alzheimer's disease. Permalink https://escholarship.org/uc/item/7137q6g1 Journal Acta neuropathologica, 137(2) ISSN 0001-6322 Authors Broce, Iris J Tan, Chin Hong Fan, Chun Chieh et al. Publication Date 2019-02-01 DOI 10.1007/s00401-018-1928-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Acta Neuropathologica https://doi.org/10.1007/s00401-018-1928-6 ORIGINAL PAPER Dissecting the genetic relationship between cardiovascular risk factors and Alzheimer’s disease Iris J. Broce1 · Chin Hong Tan1,2 · Chun Chieh Fan3 · Iris Jansen4 · Jeanne E. Savage4 · Aree Witoelar5 · Natalie Wen6 · Christopher P. Hess1 · William P. Dillon1 · Christine M. Glastonbury1 · Maria Glymour7 · Jennifer S. Yokoyama8 · Fanny M. Elahi8 · Gil D. Rabinovici8 · Bruce L. Miller8 · Elizabeth C. Mormino9 · Reisa A. Sperling10,11 · David A. Bennett12 · Linda K. McEvoy13 · James B. Brewer13,14,15 · Howard H. Feldman14 · Bradley T. Hyman10 · Margaret Pericak‑Vance16 · Jonathan L. Haines17,18 · Lindsay A. Farrer19,20,21,22,23 · Richard Mayeux24,25,26 · Gerard D. Schellenberg27 · Kristine Yafe7,8,28 · Leo P. Sugrue1 · Anders M. Dale3,13,14 · Danielle Posthuma4 · Ole A. Andreassen5 · Celeste M. Karch6 · Rahul S. Desikan1 Received: 22 September 2018 / Revised: 28 October 2018 / Accepted: 28 October 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Cardiovascular (CV)- and lifestyle-associated risk factors (RFs) are increasingly recognized as important for Alzheimer’s disease (AD) pathogenesis. Beyond the ε4 allele of apolipoprotein E (APOE), comparatively little is known about whether CV-associated genes also increase risk for AD.
    [Show full text]
  • Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
    Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected].
    [Show full text]
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Clinicopathological and Molecular Genetic Analysis of Low-Grade Glioma in Adults
    A CLINICOPATHOLOGICAL AND MOLECULAR GENETIC ANALYSIS OF LOW-GRADE GLIOMA IN ADULTS Presented by ANUSHREE SINGH MSc A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy Brain Tumour Research Centre Research Institute in Healthcare Sciences Faculty of Science and Engineering University of Wolverhampton November 2014 i DECLARATION This work or any part thereof has not previously been presented in any form to the University or to any other body whether for the purposes of assessment, publication or for any other purpose (unless otherwise indicated). Save for any express acknowledgments, references and/or bibliographies cited in the work, I confirm that the intellectual content of the work is the result of my own efforts and of no other person. The right of Anushree Singh to be identified as author of this work is asserted in accordance with ss.77 and 78 of the Copyright, Designs and Patents Act 1988. At this date copyright is owned by the author. Signature: Anushree Date: 30th November 2014 ii ABSTRACT The aim of the study was to identify molecular markers that can determine progression of low grade glioma. This was done using various approaches such as IDH1 and IDH2 mutation analysis, MGMT methylation analysis, copy number analysis using array comparative genomic hybridisation and identification of differentially expressed miRNAs using miRNA microarray analysis. IDH1 mutation was present at a frequency of 71% in low grade glioma and was identified as an independent marker for improved OS in a multivariate analysis, which confirms the previous findings in low grade glioma studies.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
    Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human.
    [Show full text]
  • A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules Natasha L
    www.nature.com/scientificreports OPEN A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules Natasha L. Patel-Murray1, Miriam Adam2, Nhan Huynh2, Brook T. Wassie2, Pamela Milani2 & Ernest Fraenkel 2,3* High-throughput screening and gene signature analyses frequently identify lead therapeutic compounds with unknown modes of action (MoAs), and the resulting uncertainties can lead to the failure of clinical trials. We developed an approach for uncovering MoAs through an interpretable machine learning model of transcriptomics, epigenomics, metabolomics, and proteomics. Examining compounds with benefcial efects in models of Huntington’s Disease, we found common MoAs for compounds with unrelated structures, connectivity scores, and binding targets. The approach also predicted highly divergent MoAs for two FDA-approved antihistamines. We experimentally validated these efects, demonstrating that one antihistamine activates autophagy, while the other targets bioenergetics. The use of multiple omics was essential, as some MoAs were virtually undetectable in specifc assays. Our approach does not require reference compounds or large databases of experimental data in related systems and thus can be applied to the study of agents with uncharacterized MoAs and to rare or understudied diseases. Unknown modes of action of drug candidates can lead to unpredicted consequences on efectiveness and safety. Computational methods, such as the analysis of gene signatures, and high-throughput experimental methods have accelerated the discovery of lead compounds that afect a specifc target or phenotype1–3. However, these advances have not dramatically changed the rate of drug approvals. Between 2000 and 2015, 86% of drug can- didates failed to earn FDA approval, with toxicity or a lack of efcacy being common reasons for their clinical trial termination4,5.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]