The Problem of the Tensleep Sandstone

Total Page:16

File Type:pdf, Size:1020Kb

The Problem of the Tensleep Sandstone Montana Tech Library Digital Commons @ Montana Tech Bachelors Theses and Reports, 1928 - 1970 Student Scholarship 5-15-1947 The rP oblem of the Tensleep Sandstone George D. McCarthy Follow this and additional works at: http://digitalcommons.mtech.edu/bach_theses Part of the Ceramic Materials Commons, Environmental Engineering Commons, Geology Commons, Geophysics and Seismology Commons, Metallurgy Commons, Other Engineering Commons, and the Other Materials Science and Engineering Commons Recommended Citation McCarthy, George D., "The rP oblem of the Tensleep Sandstone" (1947). Bachelors Theses and Reports, 1928 - 1970. Paper 226. This Bachelors Thesis is brought to you for free and open access by the Student Scholarship at Digital Commons @ Montana Tech. It has been accepted for inclusion in Bachelors Theses and Reports, 1928 - 1970 by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact [email protected]. THE PP..OBIJ~MOF 'fHE 'l'BHSlEEP SMJDSTOl.J1,J; By George D. McCarthy Butte, Mont. , \ f. Thesis Subnittod to the D9~~rtnent of Geology in Parti:ll Fuli'i1lment of the Requirements for the Degree of Bachelor of Science jn Geo1oeica1 Engineerirg l:ONTAl'JfI._SCHOOL OF l.rm:sS BUT1'E, HONTAHA Hay 15, 19/;.,7 THE PROBLEM OF THE TENSLEBP SA,'iJDSTOf-..TE By George D. McCarthy Butte, Mont. A Thesis Submitted to the Department of Geology in Partial Fulfillment of the Requirements for the Degree of Bac~elor of Science in Geological Engineerino 19 754r I 7" MONTANA SCHOOL OF MINES BUTTE, MONTANA May 15, 1947 TABLE OF CONTENTS Page Introduction. .. 1 Previous work ....•.•...•... 2 ,. i Acknowledgment s •...••..................... 3 Stratigraphy .•• .. 3 History. • . .• 3 Occurrence and distribution ••••••••••...••••••••• 4 Origin of the Sandstone 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 5 Textural and Mineralogic Composition ••••.••••••.•••••• 6 Preliminary Work0 •••••••••••••••••••••••• 6 Statistical Measures of the Sedimento •. • ••••• ,9 Median diamete r ............•... ............. 9 First and Third Quartile Diameter .••• 10 Coefficient of Sorting •••••• 11 Coefficient of Geometrical Quartile Skewness.......................... 13 Quartile Kurtos·s •.•... ......... 14 Porosity of the Tensleep Sandstone ••••••.••••••. 16 Chemical Composition ••• ......................... 17 Hicroscopic Study ••••• .......................... 18 Economic Considerations ••• ............................ 21 Conclusions ••. • • • • • • • • .. • • • • • • .. • • • • • • • • II •••••••••••••• 23 Bibliography. .. 24 ii TABLES Page 1. Wentworth's Size Classification •••..••••••.•...•.••• 7 2. Size Scale of Screens ••••••.•.•••.••••.••..•.•..•••• 8 3. Results of screen tests of a sand showing the size distribution in per cent by weight and cumulative per cent by weight ••••••••••.•••..•.••••. 8 4. Median diameter in milimeters of the grains in the Tensleep Sandstone of Daly Spur and Warren Quarry, based upon samples taken from these areas, as compared with the average di- ameter of the St. Peter Sandstone of Wisconsin •••••• 10 5. Quartile Dia~eters in milimeter of the grains in the Tensleep Sandstone of Daly Spur and \iarren Quarry... .. 11 6. Coefficient of Sorting of the Tensleep Sand- stone, based on samples from Daly Spur and Warren Quarry as compared with an average SO of the St. Peter Sandstone................ ..•.•••.•• 12 7. Coefficient of Geometrical uartjle Skewness of the Tensleep Sandstone of Daly Spur and vlarren Quarry as compared with the St. Peter Sandstone of the upper Hississip i Valley ••••..•.••. 14 8. The Quartile Kurtosis of the Tensleep Sand- stone of Daly Spur and Warren Quarry •••..•.••••..... 4 9. The S~mmary of the Textural Characteristics of the Tensleep Sandstone of Warren Quarry •.••.•••.• 14 10. The Summary of the Textllral Characteristic':) of the Tensleep Sandstone of Daly Spur ••••.••..•.••• 15 119 Porosity of the Tens1eep Sandstone at Daly Spur as compared with the average porosity of the St. Peter Sandst0n~ of·Minnesota •••••••..•••. 16 12. ChemicRl An81ys"ls of the Tens]eep Sandstone rom Daly Spur as' compared ..rith chemi cal analysis of the St. Peter Sandstone ••••......•...... 17 13. Ii.ner-aLs in -250 mesh material from the Tp'1- sIee Sandst.one at Daly Spur ••••..••..•••.....••••. ii i ILLUSTP..A.TONS PaO'e Plate 1. Lndex nt'll' of ont ana showi.ng location of areps samples and aistribution of the Ten- sleep Sandstone............................. 5 2. Cumulative curve of Daly Spur ••....•••••.•.• 8 3• Cumulative curve of Warr~n Qu rr~T........... 8 4. Textural analysi f: in er cent by l'fPight of Te!1s1eep Sandstone from Daly S ur ......•. 14 5. Textural analysis in er cent by vre';.t,_H o Tensleep sand~tone from W rren Quarry •••• 14 \ 6. D'i.saggr-egat.ed grains of the 'I'ens l.ee Sandstone. .. 16 7. Textural analys s in er cent by weight ••••• '7 ....iv THE PROBLE~ OF· THE TENSLEEP SANDSTONE by INTRODUCTION Sandstone is probably one of the most important group of rocks in existence today, because no matter where you ) turn, a product of sandstone or a product resulting from I sandstone, may be pointed out. It is used in making glass for our windows, as an aggrega.te in concrete and laster, in che~ical and. metallurgica.l industries, as a building stone and interestingly enough, it may be a eservoir rock for petroleUJ11. Thus, the economic importance of so insignifi- cant a thing as a mass of sand grains grows with the true reality of the situation. By increa.sing our knowl.edge of grains of sand, or particles of sa.ndstone in all their ram- ifications, it would undoubtedly reflect upon our everyday life by increasing cOffit'1.ercialpossibilities of an undevel- oped natural resource of Montana. The Tensleep sandstone wa.s studied with such a view in mind, not to try and Sh01'Ti'\6properties of value to anyone product, but rather, to obtain a broad knowlp.dge such that all people who have some interest in this pot en- tial commercial material may profit. ~any problems ~re presented by the formation itself for it is unique in its possibilities and limitations. The :"lanyproblems that arise in the geology are heyond the sco e of this thesis, such as "The Line of Lithologic Change from Sandstone to uartzite", "Reason for Change from Sandstone to Quartzite", and "Is the Quartzite Epigenetic or Syngenetic?" The major portion of this work was done on samples ob~ tained from the Warren Quarry near the Hontana-Wyoming border, about 50 miles south of Billings, and at Daly Spur, about 10 miles south of Dillon, Hontana .. The work done by the author was by necessity that of lab- ratory research. A mechanical analysis and microscopic exam- ination of the sandstone was made so that some inference as to mode of origin, medium of transportation, etc., could be determined. This was accomplished by seeking information re- garding aggregation of grains, their size, sorting, sha e, heavy minerals, porosity, and other qualities. The primary purpose of this re ort is to fulfill the re- ~ quirements of~thesis in the curriculum of Geological Engineer- ing at Hontana School of Hines. The work, which serves as a basis for this report was done during the first half of the academic year 1944 and the second half f the academic year 1947 in the Geological and Mineral Dressing La~ries of the Montana School of Mines. Previous Work - The author was unable to find similar work of this nature that had been conducted on this sandstone. In faot, not too much had been written about the Tensleep or uad- rant formation, as it was only during the war years that it came of prominence in Montana with the discovery of oil within it in the Elk Basin oil field at a depth of about 5000feet. -2- ACKNOWLEDGEM}!..'NTS The writer is grateful to Dr. E. S. Perry, Head, Geology Department, Montana School of Mines for his complete willing- ness to extend help and direction on the many problems that did arise, and which were solved because of this aid. The work of sampling both the Warren Quarry and Daly Spur was done by Dr. Perry, to whom the author is further indebted for this aid. To Dr. L. L. Sloss, formerly of the Geology Department of Montana School of Mines, but at present with the Geology De- partment of Northwestern University, the author is indebted for much of the preliminary information and guidance of this report. The author owes a word of thanks to Dr. E. Wm. Hein- rich for help in the mineralogic examination and microscopic study 0 the sandstone. Last, but not least, the writer ex- presses appreciation to Professor Don~ld Mc,lashen for his kindness in allowing the use of his equipment in much of the labratory work. STRATIGRAPFY History In order to approach the problem on ~and, the usin~ of two names to describe the same formation seemed to encourage ambiguity; but from a technical standpoint this is correct and convenient. Tensleep is the Rarne given to that part of -3- the formation south of Billings that is a sandstone, w,ile tIe we st.war'dextension of the sandstone in the mountains of Mont- ana ~rades into quartzite, and is called the Quadrant forma- tion. The name Quadrant was first used to describe the forma- tion as it appears on Quadrant Mountain in Yellowstone Nat- ional Park. At about the same time it'was also used as the fornational name for Amsden and Big Snowy group in central Montana, and becausw of this incorrect application of names, it has been one of the most misunderstood stratigra hic inter- pretations of Montana. Tensleep is merely the northern extension of the same name from Wyoming where the sandstone was originally des- cribed from exposures in Tensleep Canyon in the Big Horn Moun- tains. Occurence and Distribution The Montana Tensleep underlies the Chugwater formation of Triassic age, and the Ellis formation of Jurassic age in south- arn ontana, and in most areas rests conformably on the A.rns- den formation. It is equivalent to the Tensleep of Wyoming, the jvf.innelus8of the Black Hills, the Quadrant of rest.ern Hontana, and the Rocky Mounta.in quartzite of Canada.
Recommended publications
  • This Is a Digital Document from the Collections of the Wyoming Water Resources Data System (WRDS) Library
    This is a digital document from the collections of the Wyoming Water Resources Data System (WRDS) Library. For additional information about this document and the document conversion process, please contact WRDS at [email protected] and include the phrase “Digital Documents” in your subject heading. To view other documents please visit the WRDS Library online at: http://library.wrds.uwyo.edu Mailing Address: Water Resources Data System University of Wyoming, Dept 3943 1000 E University Avenue Laramie, WY 82071 Physical Address: Wyoming Hall, Room 249 University of Wyoming Laramie, WY 82071 Phone: (307) 766-6651 Fax: (307) 766-3785 Funding for WRDS and the creation of this electronic document was provided by the Wyoming Water Development Commission (http://wwdc.state.wy.us) VOLUME 11-A OCCURRENCE AND CHARACTERISTICS OF GROUND WATER IN THE BIGHORN BASIN, WYOMING Robert Libra, Dale Doremus , Craig Goodwin Project Manager Craig Eisen Water Resources Research Institute University of Wyoming Report to U.S. Environmental Protection Agency Contract Number G 008269-791 Project Officer Paul Osborne June, 1981 INTRODUCTION This report is the second of a series of hydrogeologic basin reports that define the occurrence and chemical quality of ground water within Wyoming. Information presented in this report has been obtained from several sources including available U.S. Geological Survey publications, the Wyoming State Engineer's Office, the Wyoming Geological Survey, and the Wyoming Oil and Gas Conservation Commission. The purpose of this report is to provide background information for implementation of the Underground Injection Control Program (UIC). The UIC program, authorized by the Safe Drinking Water Act (P.L.
    [Show full text]
  • Appendix 1 – Environmental Predictor Data
    APPENDIX 1 – ENVIRONMENTAL PREDICTOR DATA CONTENTS Overview ..................................................................................................................................................................................... 2 Climate ......................................................................................................................................................................................... 2 Hydrology ................................................................................................................................................................................... 3 Land Use and Land Cover ..................................................................................................................................................... 3 Soils and Substrate .................................................................................................................................................................. 5 Topography .............................................................................................................................................................................. 10 References ................................................................................................................................................................................ 12 1 OVERVIEW A set of 94 potential predictor layers compiled to use in distribution modeling for the target taxa. Many of these layers derive from previous modeling work by WYNDD1, 2, but a
    [Show full text]
  • Moneta Divide Map 6 Geologic
    Geologic Units Mesozoic - Paleozoic Cenozoic/Quaternary MzPz: Mesozoic and II Qa: Alluvium and D Paleozoic rocks Colluvium L___J Paleozoic/Permian Qt: Gravel, Pediment, II Pp: Phosphoria and Sand Deposits Formation and related - L___J rocks II Qs: Dune Sand and L___J Loess Paleozoic/Carboniferous Cenozoic/Tertiary PM : Tensleep Sandstone D and Amsden Formation Tim: Indian Meadows Formation P*M: Casper Formation and Madison Limestone -D Tm: Miocene rocks (N ,S) MD: Madison Tml: Lower Miocene Limestone rocks Mm : Madison Twr: White River - Limestone or Group Formation D -D (N) , or Madison ·- .... ---..:::-.::--------.... Limestone (S) ......... -- Twb : Wagon Bed --. - Formation --- --- Paleozoic/Cambrian Twdr: Wind River _r: Gallatin Limestone, Formation Gros Ventre Formation D and equivalents, and Tfu : Fort Union Formation Flathead Sandstone (N), or Cambrian rocks (S) Cenozoic - Mesozoic Pzr: Madison Limestone, Darby Formation , Bighorn TKu : Sedimentary Dolomite, Gallatin Rocks - Limestone, Gros Ventre Formation and Flathead Mesozoic/Cretaceous .. O_: Bighorn Dolomite, Kim: Lance Formation, D Gallatin Limestone, and D Fox Hills Sandstone, Gros Ventre Formation (TB) Meeteetse Formation Archaen Kml: Meeteetse .. Ugn: Oldest Twdr Formation and Lewis D Gneiss complex Shale Kmv: Mesaverde WVsv: Formation Metasedimentary and metavolcanic rocks Kc: Cody Shale - Wg : Granitic Rocks N ------ Fault Line ~ Mesozoic/Jurassic w KJ :Cloverly and Morrison Cl Project Features D Formations (N , S) . Jsg: Sundance and Production Area . Gypsum Spring D Formations Disposal Areas Mesozoic/Triassic D "cd: Chugwater and Treated Water Discharge D Dinwoody Formations ~ Pipeline Corridors Source: Geologic Units, USGS 1994 Product Pipeline (Upda ted 2013); USGS 2005 Corridor Disposal Area Water Pipeline Corridor Map6 Geologic Map Moneta Divide Natural Gas and Oil Development Project Draft Environmental Impact Statement April 2019 No warranty is made by the Bureau of Land Management for use ofthe data for purposes not intended by the BLM .
    [Show full text]
  • A Preliminary Assessment of Paleontological Resources at Bighorn Canyon National Recreation Area, Montana and Wyoming
    A PRELIMINARY ASSESSMENT OF PALEONTOLOGICAL RESOURCES AT BIGHORN CANYON NATIONAL RECREATION AREA, MONTANA AND WYOMING Vincent L. Santucci1, David Hays2, James Staebler2 And Michael Milstein3 1National Park Service, P.O. Box 592, Kemmerer, WY 83101 2Bighorn Canyon National Recreation Area, P.O. Box 7458, Fort Smith, MT 59035 3P.O. Box 821, Cody, WY 82414 ____________________ ABSTRACT - Paleontological resources occur throughout the Paleozoic and Mesozoic formations exposed in Bighorn Canyon National Recreation Area. Isolated research on specific geologic units within Bighorn Canyon has yielded data on a wide diversity of fossil forms. A comprehensive paleonotological survey has not been previously undertaken at Bighorn Canyon. Preliminary paleontologic resource data is presented in this report as an effort to establish baseline data. ____________________ INTRODUCTION ighorn Canyon National Recreation Area (BICA) consists of approximately 120,000 acres within the Bighorn Mountains of north-central Wyoming and south-central Montana B (Figure 1). The northwestern trending Bighorn Mountains consist of over 9,000 feet of sedimentary rock. The predominantly marine and near shore sedimentary units range from the Cambrian through the Lower Cretaceous. Many of these formations are extremely fossiliferous. The Bighorn Mountains were uplifted during the Laramide Orogeny beginning approximately 70 million years ago. Large volumes of sediments, rich in early Tertiary paleontological resources, were deposited in the adjoining basins. This report provides a preliminary assessment of paleontological resources identified at Bighorn Canyon National Recreation Area. STRATIGRAPHY The stratigraphic record at Bighorn Canyon National Recreation Area extends from the Cambrian through the Cretaceous (Figure 2). The only time period during this interval that is not represented is the Silurian.
    [Show full text]
  • Pennsylvanian and Associated Rocks in Wyomin
    Pennsylvanian and Associated Rocks in Wyomin By WILLIAM W. MALLORY SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 5S4-G A regional study of the extent, thickness, lit ho logy, and stratigraphic relations of the Tensleep, Ams- den, Casper, and Fountain Formations, with em­ phasis on origin,paleogeography, and paleotectonic implications UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1967 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract. _________________________________________ Gl Casper Formation._________________________________ G17 Introduction. ______________________________________ 1 Fountain Formation._______________________________ 18 Location and extent of the area. _ _________________ 1 Minnelusa and Hartville Formations __________________ 18 Scope and objectives. ___________________________ 1 Morgan Formation and Weber Sandstone-_____________ 20 Previous work and acknowledgments. ____________ 2 Rocks of Morrow age in the Minnelusa, Hartville, Casper, Methods of study. _____________________________ 2 and Morgan Formations..___________-_-_--______-_ 20 Tectonic setting of the Middle Rocky Mountain region in Tensleep Sandstone._____-____________------------__ 21 Pennsylvanian time.. _ ____________________________ 3 Lithology and thickness.___-_-____-------_______ 21 Definition of the Pennsylvanian System
    [Show full text]
  • A Discussion of the Geology and an Isopach Map of the Pennsylvanian System in Wyoming and Adjacent Areas B
    Montana Tech Library Digital Commons @ Montana Tech Bachelors Theses and Reports, 1928 - 1970 Student Scholarship 5-1948 A Discussion of the Geology and an Isopach Map of the Pennsylvanian System in Wyoming and Adjacent Areas B. R. Alto Follow this and additional works at: http://digitalcommons.mtech.edu/bach_theses Part of the Ceramic Materials Commons, Environmental Engineering Commons, Geology Commons, Geophysics and Seismology Commons, Metallurgy Commons, Other Engineering Commons, and the Other Materials Science and Engineering Commons Recommended Citation Alto, B. R., "A Discussion of the Geology and an Isopach Map of the Pennsylvanian System in Wyoming and Adjacent Areas" (1948). Bachelors Theses and Reports, 1928 - 1970. 239. http://digitalcommons.mtech.edu/bach_theses/239 This Bachelors Thesis is brought to you for free and open access by the Student Scholarship at Digital Commons @ Montana Tech. It has been accepted for inclusion in Bachelors Theses and Reports, 1928 - 1970 by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact [email protected]. A DISCUSSION OF 1m GEOLOGY AND .AN ISOPACH 1VlAPOJ!' TII.E PEN-NSYLVANIAN SYSTElJ IN WYOMING AND ADa-ACEl~T AREAS by B. R. Alto A Thesis Submitted to the Department or Geology in partial fulfilbuent of the requirements for the Degree or Bachelor of Science in Geological Engineering Montana School of Mines Butte, Montana :May, 1948 A DISCUSSION OF [raE GEOLOGY AND AN ISOPACH ~ OF THE PENNSYLVANIAN SYSTEM IN WYOMING AND ADJACENT AREAS by B. R. Alto A Thesis Submitted to the Department of Geology in partial fulfillment of the requirements for the Degree of ~achelor of Science in Geological Engineering 19150 Montana School of Mines Butte, Montana May, 1948 CONTENTS ~ Page <t> ~ Introduction • • • • • • • • • • 1 )ow-..
    [Show full text]
  • The Yellowstone Paleontological Survey
    E PALEONT ON O T LO S G W I O C L A L L E National Y Park The Yellowstone Service Department of the Interior Paleontological Survey SURVEY Vincent L. Santucci Yellowstone Center for Resources National Park Service Yellowstone National Park, Wyoming YCR-NR-98-1 1998 How to cite this document: Santucci, V. L. 1998. The Yellowstone Paleontological Survey. Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming,YCR-NR-98-1. Current address for Vincent L. Santucci is National Park Service, P.O. Box 592, Kemmerer, WY 83101. The Yellowstone Paleontological Survey To Lt. Col. Luke J. Barnett, III “Uncle by blood, brother in spirit!” Vincent L. Santucci Yellowstone Center for Resources National Park Service Yellowstone National Park, Wyoming YCR-NR-98-1 1998 Table of Contents Introduction .................................................................................................... 1 Stratigraphy .................................................................................................... 4 Fossil Chronology........................................................................................... 6 Taxonomy ..................................................................................................... 12 Localities ...................................................................................................... 15 Interpretation ................................................................................................ 19 Paleontological Resource Management.......................................................
    [Show full text]
  • Physical Stratigraphy of the Phosphoria Formation in Northwestern Wyoming
    Physical Stratigraphy of the Phosphoria Formation in Northwestern Wyoming GEOLOGICAL SURVEY BULLETIN 1042-E CONTRIBUTIONS TO ECONOMIC GEOLOGY PHYSICAL STRATIGRAPHY OF THE PHOSPHORIA FORMATION IN NORTHWESTERN WYOMING By Richard P. Sheldon ABSTRACT The rocks of the Ph'osphoria formation in northwestern Wyoming fall into five stratigraphic units, which, from oldest to youngest, are provisionally called the A, B, C, D, and E units. Units A, C, and E are composed dominantly of chert, carbonate rock, and sandstone, whereas units B and D are composed dominantly of mudstone, phosphorite, and dark carbonate rock. Units C and D are con­ tinuous over all of northwestern Wyoming, whereas unit A grades into unit B and unit -E grades into unit D to the southwest. Both units A and B pinch out to the north. With the possible exception of unit A, these units can be recognized in southwestern Montana. Units B, C, and D are. equivalent to the phosphatic phale, Rex, and upper shale .members of the Phosphoria formation in southeastern Idaho. The formation as a whole exhibits a facies change from dominantly chert, mudstone, and phosphorite in the southwestern part of northwestern Wyoming, to dominantly Carbonate rock and sandstone in the northeastern part. The facies change with thinning and pinching out of units and the intergradation of units, " .. - . The rocks of the formation in the area of the report are cyclically deposited. The rock record of a single ideal cycle consists, from base to top, of carbonate rock, chert, phosphorite, chert, and carbonate rock. Sandstone and glauconite in general are found in the carbonate phase of the cycle, whereas mudstone, pyrite,.and organic matter are found in the chert and phosphorite phases of the cycle.
    [Show full text]
  • Permian Carbonate Facies Wind River Mountains and Western Wind River Basin Wyoming
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1972 Permian carbonate facies Wind River Mountains and western Wind River Basin Wyoming Dennis Carl Ahlstrand The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Ahlstrand, Dennis Carl, "Permian carbonate facies Wind River Mountains and western Wind River Basin Wyoming" (1972). Graduate Student Theses, Dissertations, & Professional Papers. 7096. https://scholarworks.umt.edu/etd/7096 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. PERMIAN CARBONATE FACIES, WIND RIVER MOUNTAINS AND WESTERN WIND RIVER BASIN, WYOMING by Dennis C. Ahlstrand B.A., Eastern Washington State College, 1968 Presented in partial fulfillment of the requirements for the degree of Master of Science UNIVERSITY OF MONTANA 1972 approved by : chairman, Board of E;Examiners De-àh^, Gradühté School UMI Number; EP37897 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT OisMTtation Publishing UMI EP37897 Published by ProQuest LLC (2013).
    [Show full text]
  • Chapter 2 Study Area
    Chapter 2 Study area Keith Clarey Melissa Thompson 2-1 he Greater Green River Basin (GGRB) forest and alpine tundra on the higher mountains. includes the Green River Basin, the Great At lower elevations in the basin, the vegetation in- Divide Basin, and the Little Snake River cludes abundant sagebrush, saltbush, greasewood, TBasin (Figure 1-1). The project boundary is deter- and desert shrub. Forested areas contain lodgepole mined by the distal river drainage basin divides. pine, spruce, fir, and aspen. The drainage basin boundaries overlap several geo- logic features within the GGRB. The continental GEOLOGIC SETTING: STRUCTURE divide marks the northern and eastern boundaries The GGRB is bounded by the Overthrust Belt to of the GGRB; it bifurcates and reconverges around the west, the Hoback Basin to the northwest, the the Great Divide Basin (Figure 1-1). Figure 2-1 Wind River Range and Granite Mountains to the shows the townships and ranges in the GGRB. north, the Rawlins Uplift to the east, the Sierra Madre to the east-southeast, the southern Sand The Wyoming portion of the GGRB, as delineated Wash Basin in Colorado to the south-southeast, using GIS databases, has an area of 20,792 square and the Uinta Mountains in Utah to the south. miles (13,306,700 acres). The Wyoming GGRB Within the GGRB, the Rock Springs Uplift and covers 21.3 percent of the area of the state. The Bridger Basin are located in the Green River Basin adjacent 3,821 square miles (2,445,900 acres) of proper; the Wamsutter Arch separates the Great the Colorado and Utah GGRB added to the Wyo- Divide Basin from the Washakie Basin; and Chero- ming GGRB area gives a total basin area of 24,613 kee Ridge separates the Washakie Basin from the square miles (15,752,500 acres) (Figures 1-1 and Sand Wash Basin (Figure 2-2).
    [Show full text]
  • Bighorn Basin Stratigraphic Column Prior to Arriving at Field Camp
    Tectonic Setting Tectonostratigraphic Stratigraphy and Orogenic Events Assemblage Quaternary Pliocene c i Neog. Miocene o z Oligocene o n Tatman Fm. e Eocene C Willwood Fm. TSA4 Retroarc foreland segmented Paleogene Paleocene Fort Union Fm. Laramide Orogeny by basement uplifts; non-marine Lance Formation Meeteetse Fm. Mesaverde Fm. n TSA3 i g Upper Cody Shale r Retroarc foreland; a shallow marine to Torchlight Sandstone M Frontier Fm. t Peay Sandstone n e sediments Mowry Shale g r Sevier Orogeny Cretaceous Shell Creek Shale e c i Muddy Sandstone v o Thermopolis Shale n z Lower Sykes Mtn. Fm. (“Rusty beds”) o o Cloverly Fm. Greybull Ss. C s e Nevadan Orogeny TSA2 M Morrison Fm. Transitional to retroarc Upper Sundance “upper Sund.” foreland; shallow Formation “lower Sund.” marine & non-marine Middle Gypsum Spring Fm. clastic sediments Jurassic Lower Triassic Chugwater Formation Dinwoody Fm. Goose Phosphoria Egg Fm. Permian Fm. Ancestral Rockies TSA1 Pennsylvanian Tensleep Sandstone Orogeny Amsden Fm. Darwin Ss. Proximal miogeoclinal strata; mixed carbonate Mississippian Madison Limestone c & siliciclastic sediment; i Darby Fm. Antler Orogeny o dominated by shallow z Devonian o marine & marginal e n l Silurian i marine facies a g Bighorn Dolomite r P Ordovician a M Lander Sandstone e Gallatin v Upper i Limestone s s Gros Ventre Fm. a Middle P Flathead Ss. Cambrian Lower Precambrian Crystalline basement Archean crytalline basement Generalized stratigraphic column for the northern Bighorn Basin, Wyoming, with timing of regional orogenic events and interpretation of tectonostratigraphic assemblages. Modified from May et al. (2013; GSA Bulletin, v. 125, p. 1403-1422), who in turn derived their figure from Fox and Dolton (1996; Wyoming Geological Association 47 Annual Field Conference Guidebook, p.
    [Show full text]
  • Geologic Assessment of Undiscovered Oil and Gas
    Chapter 4 Geologic Assessment of Undiscovered Oil and Gas Resources in the Phosphoria Total Petroleum System, Southwestern Wyoming Province, Volume Title Page Wyoming, Colorado, and Utah By Edward A. Johnson Chapter 4 of Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah By USGS Southwestern Wyoming Province Assessment Team U.S. Geological Survey Digital Data Series DDS–69–D U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Denver, Colorado: Version 1, 2005 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Manuscript approved for publication May 10, 2005 ISBN= 0-607-99027-9 Contents Abstract ……………………………………………………………………………………… 1 Introduction
    [Show full text]