Production of Tyrosine and Histidine Decarboxylase by Dairy-Related Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Production of Tyrosine and Histidine Decarboxylase by Dairy-Related Bacteria 241 Journal of Food Protection Vol. 40, No. 4, Pages 241·245 fA.pril, 1977) Copyright © 1977, International Association of Milk, Food, and Environmental Sanitarians Production of Tyrosine and Histidine Decarboxylase by Dairy-Related Bacteria M. N. VOIGT and R. R. EITENMILLER Department ofFood Science University ofGeorgia, Athens, Georgia 30602 Downloaded from http://meridian.allenpress.com/jfp/article-pdf/40/4/241/1649644/0362-028x-40_4_241.pdf by guest on 27 September 2021 (Received for publication August 2, 1976) ABSTRACT be harvested at either two-thirds maximal growth or at Manometric and radiometric procedures were used to determine the the end of active cell division (3). Acetone drying of ability of 38 dairy-related bacteria and four commercial starter bacteria cells is the standard method used to prepare preparations to produce tyrosine and histidine decarboxylase. All of the bacterial decarboxylases for biochemical studies, and 14 cultures had slight ability to cause release of C02 from carboxyl with the exception of ornithine decarboxylase, activities 14C-tyrosine and most released 14C0 from labeled histidine; however, 2 are not affected by the procedure (12, 33). because of inherent errors of the assay in detecting low levels of specific decarboxylase activity, the C02 release was not considered positive for A survey for tyrosine decarboxylase activity in bacteria specific decarboxylase activity unless the results were verified by the by Gale (12) included 800 streptococci; of these, manometric technique. One strain of Streptococcus lactis, a approximately 500 synthesized the enzyme. Most of the .Micrococcus luteus strain, and two Leuconostoc cremoris strains had active t}Tosine decarboxylase systems. Only Clostridium perfringens and 500 belonged to Lancefield's Group D and one culture an Escherichia coli strain were found to produce histidine was Streptococcus lactis. Koessler et al. (21) found five decarboxyiase. None of the commercial starter cultures produced the streptococci that produced tyrosine decarboxylase which enzymes. It was not determined whether tyramine or histamine was included S. lactis from milk with the activity. Various produced by the nonspecific decarboxylase activity. workers have reported the enzyme to be present in Eschen'chia coli (4, 11, 16). Gale found tyrosine Undesirable physiological reactions have been report­ decarboxylase activity in nine of 100 cultures of this ed following ingestion of foods containing biologically species. Lagerborg and Clapper {22) surveyed 33 active amines (1, 7, 19, 27). Rice et al. (30) discussed the lactobacilli and found one strain related to Lactobacillus roles of drug inducement and genetic tendencies in casei or Lactobacillus arabinosus that released carbon triggering these reactions. dioxide from tyrosine. They found an unknown Amines in food products are produced by specific Lactobacillus species with the same activity, and another amino acid decarboxylases, and amine build-up is the Lactobacillus species that decarboxylated both tyrosine result of the growth of decarboxylase-positive bacteria and histidine, a most unusual find, since this is the only under conditions favorable to enzyme synthesis and culture reported in the literature to possess both activity (10, 25, 26, 29, 33). Koessler et al. (21) postulated activities. Umezu (34) identified a tyrosine decarboxylase that decarboxylation may be a protective mechanism for in a strain of Leuconostoc mesenteroides var. Sake. bacteria against an acid environment. That is, when the Blackwell and Mabbitt (4), after noting the presence of hydrogen ion concentration becomes sufficient to threat­ Group D streptococci (10,000 colony forming units/g of en the life of the microorganism, a decarboxylase may be cheese) and E. coli in ripened cheese. concluded that synthesized. In 1946, Gale (12) summarized several these bacteria were the most likely source of the conditions that must be considered to optimize the decarboxylase enzymes responsible for formation of synthesis of bacterial decarboxylases. These conditions t}Tamine in cheese. Recently, Rice and Koehler (31) included most of the following: (a) the organism must surveyed several pediococci and lactobacilli common to have the genetic potential to synthesize the enzyme; (b) sausage starters and found the bacteria lacking in the particular substrate amino acid needs to be supplied tyrosine and histidine decarboxylase. A Streptococcus in the growth medium, as well as pyridoxine and species isolated by these authors was an active tyrosine­ nicotinic acid, except for histidine and glutamate decarboxylating organism. decarboxylase (2, 3, 14. 28); (c) the gro'"1h medium must Histidine decarboxylase is widely distributed in the be acid, usually obtained by supplying a fermentable genera Escherichia. Salmonella. Clostridium, Bacillus. carbohydrate to the medium (9, 17, 22. 25); (d) the and Lactobacillus (20. 21, 27). Evidence for the enz}me medium should be unbuffered (3); (e) the gro\\'ih in E. coli include the finding by Gale (12) that 14 of 155 temperature should be Q.7 C; and (j) the culture should cultures possessed the enzyme and the report by Hanke 242 VOIGT AND EITENMILLER and Koessler (16) that six of 20 eolifonn cultures Tyrosine and histidine decarboxylase activities were determined by synthesized the enzyme. Havelka (1 TJ noted that 71.4 o/o of an isotopic assay method adapted from the procedure of Levine and all Enterobacteriacae isolated from the imported marine Watts (23) and by a manometric method. The isotopic procedure consisted of incubating LO ml of cultured skim milk with L 9 ml of 1 M fish produced histamine. Eggerth (8) found 40 strains of sodium acetate buffer containing 2.5 x 10-4 M tyrosine or histidine, pH bacteria of intestinal origin capable of decarboxylating 5.5, and 100 111 (0.125 f'Ci) of 14C-carboxyl tyrosine or histidine histidine. Histidine decarboxylase activity was found by (Ca!Atomic, Los Angeles) at 27 C for 60 min in a reaction vessel (a Rodwell (32) in strains of Lactobacillus pentoaceticus and polyethylene scintillation vial). All buffers contained 1.05 x to-• M Lactobacillus bifidus as well and in Lactobacillus 30a and ~ireptomycin sulfate to inhibit bacterial gro.,.,'th. All reactions were carried out in duplicate. Following incubation, 2 ml of 1.2 N perchloric Lactobacillus 60. However, the number of dairy-type acid was injected into the flasks to stop the reactions and to liberate 14 14 lactobacilli found to contain the enzyme has been small. dissolved C02• The liberated C02 was trapped on filter paper (3 MM Horakova et al. (18) isolated a Lactobacillus thought to Whatman, 1 x 3 em rolled cylinders) containing hyamine hydroxide to related to Lactobacillus acidophilus that decarboxy­ (New England Nuclear, Boston). The filter paper trap was suspended over the reaction solution by a paper clip inserted into a No. 2 rubber lated histidine. In 1968, DeKoning (TJ reported that a Downloaded from http://meridian.allenpress.com/jfp/article-pdf/40/4/241/1649644/0362-028x-40_4_241.pdf by guest on 27 September 2021 stopper. After shaking for 30 min in a Dubnoff Metabolic Shaker Lactobacillus was responsible for formation of toxic (Burrell Corp., Pittsburgh) to insure complete liberation and 14 amounts of histamine in a Gouda Cheese. The author entrapment of dissolved C02 , the filter paper was transferred to a indicated that the lactobacilli were an unusual contami­ scintillation vial containing 10 ml of a toluene scintillation fluor (4 g of nant originating in the rennet. 2,5-diphenyloxazola (PPO), 100 mg of P-bis-[2-(5-phenyloxazoyl)] ben­ The objective of the present study was to survey dairy zene (PO POP), and 1000 ml toluene, all Beckman, Fullerton, California) and then counted in a Beckman Model LS-100 C Liquid Scintillation starter cultures and dairy-related microflora for tyrosine Counter. Controls for background correction consisted of reaction and histidine decarobxylase activity. The study was mixtures containing heat inacitvated culture media or acetone-dried conducted because bacterial decarboxylase studies have cells. Reaction rates were reported as nMoles C02 released/min/rug of not included a variety of dairy-type bacteria. It was acetone dried cells, nMoles C02 released/min/ml of skim milk culture, intended that the information would indicate the or nMoles C02 released/minim! of sonicated extract. Manometric assays were carried out on a Gilson Differential potential of dairy starters to contribute to tyramine and Respirometer (Gilson Medical Electronics, Inc., Middleton, Wis.). histamine build-up. Enzyme preparation for the manometric assay consisted of acetone­ dried cells grown in TYEB and resuspended in 0.5 M sodium acetate, MATERIALS AND METHODS pH 5.5. One milliliter of the acetate buffer and 1 ml of the cell suspension were added to the main compartment of the Gilson flask. The 38 dairy-type cultures and the four starter cultures were obtained One side arm of the flask contained 0.5 ml of substrate (0.5 M tyrosine from Miles Laboratories, Chr. Hansens's Laboratory, Kraft Foods, and or histidine in 0.5 M sodium acetate buffer, pH 5.5). Reaction com­ the Universities of Nebraska, Wisconsin, North Carolina State, and ponents were allowed to equilibrate for 10 min at 27 C before the Georgia. Cultures were maintained in broth containing 1% of the substrate was tipped in. Release of C0 were monitored for 60 min and following in distilled water: tryptone, yeast extract, and dextrose 2 re5ults were reported as nMoles C0 released/min/rug of cells. ITYEB). In addition, the TYEB contained 100 mg of tyrosine and 2 histidine/liter. Cultures were activated at 27 C by repeated transfer in RESULTS AND DISCUSSION skim milk or TYEB allowing 24 h between each transfer. Cells grown in TYEB were harvested after 24 h of growth at 27 C, The decarboxylase Data in Tables 1-3 show the ability of the various assays were carried out on the preparations from the cultures grown in bacteria to decarboxylate tyrosine and histidine. The 10% skim milk and in the TYEB medium.
Recommended publications
  • Neurotransmitter Resource Guide
    NEUROTRANSMITTER RESOURCE GUIDE Science + Insight doctorsdata.com Doctor’s Data, Inc. Neurotransmitter RESOURCE GUIDE Table of Contents Sample Report Sample Report ........................................................................................................................................................................... 1 Analyte Considerations Phenylethylamine (B-phenylethylamine or PEA) ................................................................................................. 1 Tyrosine .......................................................................................................................................................................................... 3 Tyramine ........................................................................................................................................................................................4 Dopamine .....................................................................................................................................................................................6 3, 4-Dihydroxyphenylacetic Acid (DOPAC) ............................................................................................................... 7 3-Methoxytyramine (3-MT) ............................................................................................................................................... 9 Norepinephrine ........................................................................................................................................................................
    [Show full text]
  • Histidine Decarboxylase Knockout Mice Production and Signal
    Nitric Oxide Mediates T Cell Cytokine Production and Signal Transduction in Histidine Decarboxylase Knockout Mice This information is current as Agnes Koncz, Maria Pasztoi, Mercedesz Mazan, Ferenc of October 1, 2021. Fazakas, Edit Buzas, Andras Falus and Gyorgy Nagy J Immunol 2007; 179:6613-6619; ; doi: 10.4049/jimmunol.179.10.6613 http://www.jimmunol.org/content/179/10/6613 Downloaded from References This article cites 41 articles, 8 of which you can access for free at: http://www.jimmunol.org/content/179/10/6613.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Nitric Oxide Mediates T Cell Cytokine Production and Signal Transduction in Histidine Decarboxylase Knockout Mice1 Agnes Koncz,*† Maria Pasztoi,* Mercedesz Mazan,* Ferenc Fazakas,‡ Edit Buzas,* Andras Falus,*§ and Gyorgy Nagy2,3*¶ Histamine is a key regulator of the immune system.
    [Show full text]
  • In Vitro Pharmacology of Clinically Used Central Nervous System-Active Drugs As Inverse H1 Receptor Agonists
    0022-3565/07/3221-172–179$20.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 322, No. 1 Copyright © 2007 by The American Society for Pharmacology and Experimental Therapeutics 118869/3215703 JPET 322:172–179, 2007 Printed in U.S.A. In Vitro Pharmacology of Clinically Used Central Nervous System-Active Drugs as Inverse H1 Receptor Agonists R. A. Bakker,1 M. W. Nicholas,2 T. T. Smith, E. S. Burstein, U. Hacksell, H. Timmerman, R. Leurs, M. R. Brann, and D. M. Weiner Department of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.A.B., H.T., R.L.); ACADIA Pharmaceuticals Inc., San Diego, California (R.A.B., M.W.N., T.T.S., E.S.B., U.H., M.R.B., D.M.W.); and Departments of Pharmacology (M.R.B.), Neurosciences (D.M.W.), and Psychiatry (D.M.W.), University of California, San Diego, California Received January 2, 2007; accepted March 30, 2007 Downloaded from ABSTRACT The human histamine H1 receptor (H1R) is a prototypical G on this screen, we have reported on the identification of 8R- protein-coupled receptor and an important, well characterized lisuride as a potent stereospecific partial H1R agonist (Mol target for the development of antagonists to treat allergic con- Pharmacol 65:538–549, 2004). In contrast, herein we report on jpet.aspetjournals.org ditions. Many neuropsychiatric drugs are also known to po- a large number of varied clinical and chemical classes of drugs tently antagonize this receptor, underlying aspects of their side that are active in the central nervous system that display potent effect profiles.
    [Show full text]
  • Gut Bacterial Tyrosine Decarboxylases Restrict the Bioavailability Of
    bioRxiv preprint doi: https://doi.org/10.1101/356246; this version posted August 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Gut bacterial tyrosine decarboxylases restrict the bioavailability of levodopa, the primary treatment in Parkinson’s disease Authors: Sebastiaan P. van Kessel1, Alexandra K. Frye1, Ahmed O. El-Gendy1,2, Maria Castejon1, Ali Keshavarzian3, Gertjan van Dijk4, Sahar El Aidy1*† Affiliations: 1 Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands. 2 Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt 3 Division of Digestive Disease and Nutrition, Section of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois. 4 Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands. * Corresponding author. Email: [email protected] † Present address: Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands. P:+31(0)503632201. 1 bioRxiv preprint doi: https://doi.org/10.1101/356246; this version posted August 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary Human gut bacteria play a critical role in the regulation of immune and metabolic systems, as well as in the function of the nervous system. The microbiota senses its environment and responds by releasing metabolites, some of which are key regulators of human health and disease.
    [Show full text]
  • Structure and Ligands Interactions of Citrus Tryptophan Decarboxylase by Molecular Modeling and Docking Simulations
    Communication Structure and Ligands Interactions of Citrus Tryptophan Decarboxylase by Molecular Modeling and Docking Simulations Angelo Facchiano 1,*, Domenico Pignone 2, Luigi Servillo 3, Domenico Castaldo 4 and Luigi De Masi 5,* 1 Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze dell’Alimentazione (ISA), 83100 Avellino, Italy; [email protected] 2 CNR, Istituto di Bioscienze e BioRisorse (IBBR), 70126 Bari, Italy; [email protected] 3 Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; [email protected] 4 Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA), Azienda Speciale della Camera di Commercio di Reggio Calabria, 89125 Reggio Calabria, Italy; [email protected] 5 CNR, IBBR, 80055 Portici, Italy; [email protected] * Correspondence: [email protected] (A.F.); [email protected] (L.D.M.). Received: 29 December 2019; Accepted: 22 March 2019; Published: 26 March 2019 Abstract: In a previous work, we in silico annotated protein sequences of Citrus genus plants as putative tryptophan decarboxylase (pTDC). Here, we investigated the structural properties of Citrus pTDCs by using the TDC sequence of Catharanthus roseus as an experimentally annotated reference to carry out comparative modeling and substrate docking analyses. The functional annotation as TDC was verified by combining 3D molecular modeling and docking simulations, evidencing the peculiarities and the structural similarities with C. roseus TDC. Docking with L-tryptophan as a ligand showed specificity of pTDC for this substrate. These combined results confirm our previous in silico annotation of the examined protein sequences of Citrus as TDC and provide support for TDC activity in this plant genus.
    [Show full text]
  • Screening Method to Evaluate Amino Acid-Decarboxylase Activity of Bacteria Present in Spanish Artisanal Ripened Cheeses
    foods Article Screening Method to Evaluate Amino Acid-Decarboxylase Activity of Bacteria Present in Spanish Artisanal Ripened Cheeses Diana Espinosa-Pesqueira, Artur X. Roig-Sagués * and M. Manuela Hernández-Herrero CIRTTA—Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Travessera dels Turons S/N, 08193 Barcelona, Spain; [email protected] (D.E.-P.); [email protected] (M.M.H.-H.) * Correspondence: [email protected]; Tel.: +34-935-812-582 Received: 13 September 2018; Accepted: 31 October 2018; Published: 6 November 2018 Abstract: A qualitative microplate screening method, using both low nitrogen (LND) and low glucose (LGD) decarboxylase broths, was used to evaluate the biogenic amine (BA) forming capacity of bacteria present in two types of Spanish ripened cheeses, some of them treated by high hydrostatic pressure. BA formation in decarboxylase broths was later confirmed by High Performance Liquid Chromatography (HPLC). An optimal cut off between 10–25 mg/L with a sensitivity of 84% and a specificity of 92% was obtained when detecting putrescine (PU), tyramine (TY) and cadaverine (CA) formation capability, although these broths showed less capacity detecting histamine forming bacteria. TY forming bacteria were the most frequent among the isolated BA forming strains showing a strong production capability (exceeding 100 mg/L), followed by CA and PU formers. Lactococcus, Lactobacillus, Enterococcus and Leuconostoc groups were found as the main TY producers, and some strains were also able to produce diamines at a level above 100 mg/L, and probably ruled the BA formation during ripening. Enterobacteriaceae and Staphylococcus spp., as well as some Bacillus spp.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0292100 A1 Fiene Et Al
    US 20090292100A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0292100 A1 Fiene et al. (43) Pub. Date: Nov. 26, 2009 (54) PROCESS FOR PREPARING (86). PCT No.: PCT/EP07/57646 PENTAMETHYLENE 1.5-DIISOCYANATE S371 (c)(1), (75) Inventors: Martin Fiene, Niederkirchen (DE): (2), (4) Date: Jan. 9, 2009 (DE);Eckhard Wolfgang Stroefer, Siegel, Mannheim (30) Foreign ApplicationO O Priority Data Limburgerhof (DE); Stephan Aug. 1, 2006 (EP) .................................. O61182.56.4 Freyer, Neustadt (DE); Oskar Zelder, Speyer (DE); Gerhard Publication Classification Schulz, Bad Duerkheim (DE) (51) Int. Cl. Correspondence Address: CSG 18/00 (2006.01) OBLON, SPIVAK, MCCLELLAND MAIER & CD7C 263/2 (2006.01) NEUSTADT, L.L.P. CI2P I3/00 (2006.01) 194O DUKE STREET CD7C 263/10 (2006.01) ALEXANDRIA, VA 22314 (US) (52) U.S. Cl. ........... 528/85; 560/348; 435/128; 560/347; 560/355 (73) Assignee: BASFSE, LUDWIGSHAFEN (DE) (57) ABSTRACT (21) Appl. No.: 12/373,088 The present invention relates to a process for preparing pen tamethylene 1,5-diisocyanate, to pentamethylene 1,5-diiso (22) PCT Filed: Jul. 25, 2007 cyanate prepared in this way and to the use thereof. US 2009/0292100 A1 Nov. 26, 2009 PROCESS FOR PREPARING ene diisocyanates, especially pentamethylene 1,4-diisocyan PENTAMETHYLENE 1.5-DIISOCYANATE ate. Depending on its preparation, this proportion may be up to several % by weight. 0014. The pentamethylene 1,5-diisocyanate prepared in 0001. The present invention relates to a process for pre accordance with the invention has, in contrast, a proportion of paring pentamethylene 1,5-diisocyanate, to pentamethylene the branched pentamethylene diisocyanate isomers of in each 1.5-diisocyanate prepared in this way and to the use thereof.
    [Show full text]
  • Oxygen Reactivity with Pyridoxal 5′-Phosphate Enzymes: Biochemical Implications And… 1091
    Amino Acids (2020) 52:1089–1105 https://doi.org/10.1007/s00726-020-02885-6 INVITED REVIEW Oxygen reactivity with pyridoxal 5′‑phosphate enzymes: biochemical implications and functional relevance Giovanni Bisello1 · Carmen Longo1 · Giada Rossignoli1 · Robert S. Phillips2,3 · Mariarita Bertoldi1 Received: 6 May 2020 / Accepted: 18 August 2020 / Published online: 25 August 2020 © The Author(s) 2020 Abstract The versatility of reactions catalyzed by pyridoxal 5′-phosphate (PLP) enzymes is largely due to the chemistry of their extraordinary catalyst. PLP is necessary for many reactions involving amino acids. Reaction specifcity is controlled by the orientation of the external aldimine intermediate that is formed upon addition of the amino acidic substrate to the coenzyme. The breakage of a specifc bond of the external aldimine gives rise to a carbanionic intermediate. From this point, the dif- ferent reaction pathways diverge leading to multiple activities: transamination, decarboxylation, racemization, elimination, and synthesis. A signifcant novelty appeared approximately 30 years ago when it was reported that some PLP-dependent decarboxylases are able to consume molecular oxygen transforming an amino acid into a carbonyl compound. These side paracatalytic reactions could be particularly relevant for human health, also considering that some of these enzymes are responsible for the synthesis of important neurotransmitters such as γ-aminobutyric acid, dopamine, and serotonin, whose dysregulation under oxidative conditions could have important implications in neurodegenerative states. However, the reactivity of PLP enzymes with dioxygen is not confned to mammals/animals. In fact, some plant PLP decarboxylases have been reported to catalyze oxidative reactions producing carbonyl compounds. Moreover, other recent reports revealed the existence of new oxidase activities catalyzed by new PLP enzymes, MppP, RohP, Ind4, CcbF, PvdN, Cap15, and CuaB.
    [Show full text]
  • Monoamine Biosynthesis Via a Noncanonical Calcium-Activatable Aromatic Amino Acid Decarboxylase in Psilocybin Mushroom
    Monoamine Biosynthesis via a Noncanonical Calcium-Activatable Aromatic Amino Acid Decarboxylase in Psilocybin Mushroom The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Torrens-Spence, Michael Patrick et al. "Monoamine Biosynthesis via a Noncanonical Calcium-Activatable Aromatic Amino Acid Decarboxylase in Psilocybin Mushroom." ACS chemical biology 13 (2018): 3343-3353 © 2018 The Author(s) As Published 10.1021/acschembio.8b00821 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/124629 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Articles Cite This: ACS Chem. Biol. XXXX, XXX, XXX−XXX pubs.acs.org/acschemicalbiology Monoamine Biosynthesis via a Noncanonical Calcium-Activatable Aromatic Amino Acid Decarboxylase in Psilocybin Mushroom † ∇ † ‡ § ∇ † † ∥ Michael Patrick Torrens-Spence, , Chun-Ting Liu, , , , Tomaś̌Pluskal, Yin Kwan Chung, , † ‡ and Jing-Ke Weng*, , † Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States ‡ Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States § Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States ∥ Division of Life Science, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China *S Supporting Information ABSTRACT: Aromatic L-amino acid decarboxylases (AAADs) are a phylogenetically diverse group of enzymes responsible for the decarboxylation of aromatic amino acid substrates into their corresponding aromatic arylalkylamines. AAADs have been extensively studied in mammals and plants as they catalyze the first step in the production of neurotransmitters and bioactive phytochemicals, respectively.
    [Show full text]
  • With [3H]Mepyramine (Trieyclic Antidepressants/Antihistamine/Neurotransmitter/Amitriptyline) VINH TAN TRAN, RAYMOND S
    Proc. Nati. Acad. Sci. USA Vol. 75, No. 12, pp. 6290-6294,, December 1978 Neurobiology Histamine H1 receptors identified in mammalian brain membranes with [3H]mepyramine (trieyclic antidepressants/antihistamine/neurotransmitter/amitriptyline) VINH TAN TRAN, RAYMOND S. L. CHANG, AND SOLOMON H. SNYDER* Departments of Pharmacology and Experimental Therapeutics, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Communicated by Julius Axelrod, August 30,1978 ABSTRACT The antihistamine [3H mepyramine binds to Male Sprague-Dawley rats (150-200 g) were killed by cer- HI histamine receptors in mammalian brain membranes. vical dislocation, their brains were rapidly removed and ho- Potencies of H1 antihistamines at the binding sites correlate mogenized with a Polytron for 30 min (setting 5) in 30 vol of with their pharmacological antihistamine effects in the guinea pig ileum. Specific [3Himepyramine binding is saturable with ice-cold Na/K phosphate buffer (50 mM, pH 7.5), and the a dissociation constant of about 4 nM in both equilibrium and suspension was centrifuged (50,000 X g for 10 min). The pellet kinetic experiments and a density of 10pmolper gram ofwhole was resuspended in the same volume of fresh buffer and cen- brain. Some tricyclic antidepressants are potent inhibitors of trifuged, and the final pellet was resuspended in the original secific [3Hmepamine binding. Regional variations of volume of ice-cold buffer by Polytron homogenization. Calf [3Hjmepyramine ing do not correlate with variations in brains were obtained from a local abattoir within 2 hr after the endogeneous histamine and histidine decarboxylase activity. death of the animals and transferred to the laboratory in ice- Histamine is a neurotransmitter candidate in mammalian brain cold saline.
    [Show full text]
  • Histidine Enhances Carbamazepine Action Against Seizures and Improves Spatial Memory Deficits Induced by Chronic Transauricular Kindling in Rats1
    Acta Pharmacologica Sinica 2005 Nov; 26 (11): 1297–1302 Full-length article Histidine enhances carbamazepine action against seizures and improves spatial memory deficits induced by chronic transauricular kindling in rats1 Qing LI2,3, Chun-lei JIN2, Li-sha XU2, Zheng-bin ZHU-GE 2, Li-xia YANG2, Lu-ying LIU2, Zhong CHEN2,4 2Department of Pharmacology, Zhejiang University, Hangzhou 310031, China; 3Department of Physiology, Zhejiang Medical College, Hangzhou 310053, China Key words Abstract histidine; carbamazepine; memory disorders; Aim: To investigate whether histidine can enhance the anticonvulsant efficacy of transauricular kindled seizures; epilepsy carbamazepine (CBZ) and simultaneously improve the spatial memory impairment 1 Project supported by the National Natural induced by transauricular kindled seizures in Sprague-Dawley rats. Methods: Science Foundation of China (No 30371638, Chronic transauricular kindling was induced by repeated application of initially 30472013), Natural Science Foundation of subconvulsive electrical stimulation through ear-clip electrodes once every 24 h Zhejiang Province (No R303779), Scientific Research Foundations of Zhejiang Province until the occurrence of 3 consecutive clonic-tonic seizures. An 8-arm radial maze (No 2004C34002) and the Scientific (4 arms baited) was used to measure spatial memory, and histamine and γ-amino- Foundation of the Department of Education butyric acid levels were measured by high performance liquid chromatography of Zhejiang Province (No 20040284). 4 Correspondence to Prof Zhong CHEN. (HPLC). Results: Chronic transauricular kindling produced a significant impair- Phn/Fax 86-571-8721-7446. ment of spatial memory and a marked decrease in histamine content in the hypotha- E-mail [email protected] lamus, the brainstem, and the hippocampus.
    [Show full text]
  • Histamine, Metabolic Remodelling and Angiogenesis: a Systems Level Approach †
    biomolecules Review Histamine, Metabolic Remodelling and Angiogenesis: A Systems Level Approach † Aurelio A. Moya-García 1,2,‡ , Almudena Pino-Ángeles 3,4,‡, Francisca Sánchez-Jiménez 5,§, José Luis Urdiales 1,2,5,* and Miguel Ángel Medina 1,2,5 1 Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; [email protected] (A.A.M.-G.); [email protected] (M.Á.M.) 2 Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain 3 Unidad de Lípidos y Arteriosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; [email protected] 4 Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain 5 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29010 Málaga, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-9521-37285 † To Professor Rafael Peñafiel, in memoriam. ‡ These authors contributed equally to this work. § Retired; formerly as in affiliations 1 and 2. Abstract: Histamine is a highly pleiotropic biogenic amine involved in key physiological processes including neurotransmission, immune response, nutrition, and cell growth and differentiation. Its effects, sometimes contradictory, are mediated by at least four different G-protein coupled receptors, Citation: Moya-García, A.A.; which expression and signalling pathways are tissue-specific. Histamine metabolism conforms a Pino-Ángeles, A.; Sánchez-Jiménez, F.; Urdiales, J.L.; Medina, M.Á. very complex network that connect many metabolic processes important for homeostasis, including Histamine, Metabolic Remodelling nitrogen and energy metabolism.
    [Show full text]