Chronology of Major Litigation Involving the Central Valley Project and the State Water Project
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tri-Dam Project
AGENDA MATERIALS TRI-DAM PROJECT TRI-DAM POWER AUTHORITY \\IJ IJ\\ BOARD MEETING March 19, 2020 REGULAR BOARD MEETING AGENDA TRI-DAM PROJECT of THE OAKDALE IRRIGATION DISTRICT and THE SOUTH SAN JOAQUIN IRRIGATION DISTRICT MARCH 19, 2020 8:00A.M. CALL TO ORDER: Oakdale Irrigation District 1205 East F Street Oakdale, CA 95361 PLEDGE OF ALLEGIANCE ROLL CALL: John Holbrook, Bob Holmes, Dave Kamper, Ralph Roos, Mike Weststeyn Gail Altieri, Brad DeBoer, Herman Doornenbal, Tom Orvis, Linda Santos PUBLIC COMMENT: The Joint Board of Directors encourages publi c participation at Board meetings. Matters affecting the operation of the Tri-Dam Project and under the jurisdiction of the Joint Districts and not posted on the Agenda may be addressed by the publi c, and limited to 5 minutes per person. California law prohibits the Board from taking action on any matter that is not on the posted Agenda unless the Board determines that it is a situation specified in Government Code Subsection 54954.2. CONSENT CALENDAR ITEMS 1-2 l. Approve the regular board meeting minutes of February 20, 2020. 2. Approve February 2020 financial statements and statement of obligations. a. Investment p01tfolio and reserve fund status. ACTION CALENDAR ITEMS 3- 11 3. Discussion and possible action to approve annual fee for use of Federal Lands for operations of the Tri-Dam Project 4. Discussion and possible action to authorize the General Manager to sign the Professional Services Agreement with Gannett Fleming, Inc. for the preparation of the dam breach analysis and updated inundation mapping for Beardsley, Donnells, Tulloch and Goodwin Projects, including a budget adjustment for Account #59690. -
Executive Summary
Preliminary Mitigated Negative Declaration Date: January 9, 2019 Case No.: 2016-006868ENV Project Title: SFPUC Reliable Power Project Project Location: Portions of the San Francisco Public Utilities Commission Rights of Way in Stanislaus, Mariposa, and Tuolumne Counties Zoning: Various Project Sponsor San Francisco Public Utilities Commission Antonia Sivyer (415) 554-2474 Lead Agency: San Francisco Planning Department Staff Contact: Timothy Johnston – (415) 575-9035 [email protected] PROJECT DESCRIPTION: The San Francisco Public Utilities Commission (SFPUC) proposes to implement the Reliable Power Project (proposed project) for maintaining the reliability of the SFPUC’s electrical transmission system between the Holm and Kirkwood Powerhouses and the Warnerville Substation. The project includes implementation of a long-term vegetation management program that would address the North American Electric Reliability Corporation’s reliability standard (FAC-003) and other regulatory requirements that seek to minimize the risk of power outages and fires from vegetation contact with transmission lines on or near the right of way for electrical transmission lines1. In addition to implementation of the vegetation management program, the proposed project would include repairs and replacements for culverts associated with transmission line access roads and construction of a sand storage shed to stockpile sand for winter road treatments needed for access during winter months. Construction activities associated with the proposed project would occur within existing SFPUC facility and right of way boundaries in Stanislaus County, Mariposa County, and Tuolumne County, and would not require the acquisition of new property. Project implementation involving vegetation management would be ongoing. Construction activities and duration for culvert repair and/or replacement would vary along the transmission corridor, but would be short-term in nature, generally requiring a few of days to a couple of weeks to complete. -
PIT Tag Monitoring for Emigrating Juvenile Chinook Salmon at Three Flow Conditions
PIT Tag Monitoring for Emigrating Juvenile Chinook Salmon at Three Flow Conditions Introduction Historically, California’s upper San Joaquin River (SJR) supported stable populations of fall- and spring-run Chinook salmon (Oncorhynchus tshawytscha). However, both populations were extirpated from the system in the mid-twentieth century following the development of Friant Dam (Moyle 2002). In response to the San Joaquin River litigation Settlement, the San Joaquin River Restoration Program (SJRRP) has implemented an objective to restore a naturally reproducing and self-sustaining population of Chinook salmon, as well as other fishes, in the system. Because the anadromous life-cycle of SJR Chinook salmon requires conveyance of juveniles from a riverine system to the Pacific Ocean to support the return of spawning adults, meeting this objective requires the consideration of environmental conditions and a connected river system. Though there are likely a multitude of environmental parameters that impact emigrating juvenile salmon, flow regime and predation are often cited as having a significant effect on travel speed and survivability (Raymond 1968; Berggren and Filardo1993; Michel et al. 2013). Flows in the SJR are highly regulated as means to support agricultural production, and non-native piscivorous fish in the restoration reach tend to occur more frequently downstream of Reach 1 (Gravelly Ford to confluence of Merced River; SJRRP 2013 I&M Report). Anecdotal evidence collected during SJRRP fish inventory and monitoring efforts suggests many of the non-native piscivores tend to reside in anthropogenic altered habitats (e.g., mine pits, altered channels, etc), which may pose a challenge to emigrating salmon. River flow conditions and water temperatures were managed during spring releases to elicit downstream fish movement with pulse flows and receding flows benches to avoid stranding. -
Regulatory Implications of Using Constructed Wetlands Totreat Selenium-Laden Wastewater
Ecotoxicology and Environmental Safety 52, 46 56 (2002) Environmental Research, Section B doi: IO. 1006/eesa.2002.2145, available online at http://www/idealibrary.com on IO E +l” Regulatory Implications of Using Constructed Wetlands toTreat Selenium-Laden Wastewater and agricultural wastewater during the past two decades. The practice of using constructed wetlands to treat seleninm- Textbooks such as those by Hammer (1989), Moshiri laden wastewater is gaining popularity in the linited States and (1993), and Kadlec and Knight (1996) attest to the elsewhere. However, proponents of treatment wetlands often escalation in awareness and application of this treatment overlook important ecological liabilities and regulatory implica- technology. Constructed wetlands can substantially im- tions when developing new methods and applications. Their prove down-gradient water quality by removing pollutants research studies typically seek to answer a basic performance question-are treatment wetlands effective in improving water through a variety of chemical, physical, and biological quality-rather than answering an implicit safety question-are processes. Pilot or operational-scale wetlands have been they hazardous to wildlife. Nevertheless, wetland owners are used to remove everything from sediment and nutrients to responsible for both the operational performance of treatment organic chemicals, pesticides, trace elements, and heavy wetlands and the health of animals that use them. This is true metals. With their apparent low cost relative to conven- even if wetlands were not created with the intent of providing tional wastewater treatment methods, as well as the wildlife habitat; the owner is still legally responsible for toxic environmentally friendly image they generally convey, hazards. If poisoning of fish and wildlife occurs, the owner can be constructed wetlands have become popular throughout prosecuted under a variety of federal and state laws, for many regions of the world (Kadlec and Knight, 1996). -
Upper San Joaquin River Basin Storage Investigation Draft
Chapter 11 Geology and Soils This chapter describes the affected environment for geology and soils, as well as potential environmental consequences and associated mitigation measures, as they pertain to implementing the alternatives. This chapter presents information on the primary study area (area of project features, the Temperance Flat Reservoir Area, and Millerton Lake below RM 274). It also discusses the extended study area (San Joaquin River from Friant Dam to the Merced River, the San Joaquin River from the Merced River to the Delta, the Delta, and the CVP and SWP water service areas). Affected Environment This section describes the affected environment related to geology, geologic hazards, erosion and sedimentation, geomorphology, mineral resources, soils, and salts. Where appropriate, geology and soils characteristics are described in a regional context, including geologic provinces, physiographic regions, or other large-scale areas, with some area-specific geologic maps and descriptions of specific soil associations. Geology This section describes the geology of the primary and extended study areas. Primary Study Area A description of the surficial geologic units encountered in the primary study area is presented in Table 11-1. Geologic maps of the primary study area and the area of project features are presented in Figure 11-1 and Figure 11-2, respectively. Draft – August 2014 – 11-1 Upper San Joaquin River Basin Storage Investigation Environmental Impact Statement Table 11-1. Description of Surficial Geologic Units of the Primary Study Area Geologic Map of Millerton Lake Quadrangle, West-Central Sierra Nevada, California1 Formation Surficial Deposits General Features Abbreviation Plutonic rocks characterized by undeformed blocky hornblende prisms as long as 1 cm and by biotite books as Tonalite of Blue Canyon much as 5 mm across. -
Areas Susceptible to Irrigation-Induced Selenium Contamination of Water and Biota in the Western United States
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications of the US Geological Survey US Geological Survey 1999 Areas Susceptible to Irrigation-Induced Selenium Contamination of Water and Biota in the Western United States Ralph L. Seiler U.S. Geological Survey Joseph P. Skorupa U.S. Geological Survey Lorri A. Peltz U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgspubs Part of the Earth Sciences Commons Seiler, Ralph L.; Skorupa, Joseph P.; and Peltz, Lorri A., "Areas Susceptible to Irrigation-Induced Selenium Contamination of Water and Biota in the Western United States" (1999). Publications of the US Geological Survey. 84. https://digitalcommons.unl.edu/usgspubs/84 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications of the US Geological Survey by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Areas Susceptible to Irrigation-Induced Selenium Contamination of Water and Biota in the Western United States U.S. GEOLOGICAL SURVEY CIRCULAR 1180 Marine rocks like those exposed at the base of Mount Garfield, Colo., are sources for trace elements in many irrigated areas of the Western United States. Photograph by James G. Crock, U.S. Geological Survey, 1992 U.S. DEPARTMENT OF THE INTERIOR Prepared in cooperation: U.S. GEOLOGICAL SURVEY U.S. FISH AND WILDLIFE SERVICE BUREAU OF RECLAMATION BUREAU OF INDIAN AFFAIRS Availability of Publications of the U.S. Geological Survey Order U.S. Geological Survey (USGS) publications from the Documents. -
Trinity Dam Operating Criteria Trinity River Division Central Valley Project-California
·rRlNITY ~IVER BASIN us RESOURCE LIBRARY BR TRINITY COUNTY LIBRARY T7 WEAVERVILLE, CALIFORNIA 1979 (c.l) Trinity Dam Operating Criteria Trinity River Division Central Valley Project-California TRINITY COUNTY JULY 1979 TRINITY RIVER BASIN RESOURC E LIBRARY TRINITY RIVER DIVISION CENTRAL VALLEY PROJECT CALIFORNIA Trinity Dam Operating Criteria Prepared for the Trinity River Basin Fish and Wildlife Task Force July 1979 United States Department of the Interior Bureau of Reclamation Mid-Pacific Region 1 ~ 7 5 122 R 1 W R 1 E 2 23° \ R 10 W ( T 38 N ----- ·-----]r------------r-CANADA ' I • I WA r NORTH ~ J SHINGTON ' \ ' DAKOTA ) ___ 1 • \.-.. ..-- .. J, ': M 0 N TAN A !___ - ----\ ' \ souTH : i ,----- - ~ ~~ ,o. 0 R EGON ( ,_---, : DAKOTA I : IOAHo 1 I __ __ \ \~' I W YOMING ·----- ~ -- -----, ___ , ,I \ ~ ~u I ~ 0 ; ------1 , NEBRASKA ', 1\ ~ I I ·--------'--, ~ I NEVA 1' 1: 0 ~1 : t------- -'.) I I J \_ DA UTAH COLORADO: ANSAS ' ~,J t -+- ---1--- .. - ', : : I K .\ ~ I . ---- .... ~ ' I 4!< l o ' ------·------ -- -~----- ', ~ -r' "::: rJ A ~ '!> ','\_r) i t---! OKLAHOMA\ -:- . I , , r/ / ;' ARIZONA I' NEW MEXICO. L ______ 1_ MALIN-ROUND MOUNTAIN 500 KV ~ . ' ,... 36 : , I l PACIFIC NW-PAC/FIC SW INTERTIE ---, ' ' ', I, ---~-E~~'-;:--·;;::<_-'r EX A_(S ---i- - ~ ~ - t \. .. _;··-....., ~ CLAIR ENGLE LAKE IN 0 EX M A P '._\_ ~.:.. (__j ~ ) I I / \ I - BUREAU OF RECLAMATION HASTAL~l WHISKEYTOWN-SHASTA( rr TRINITY [NAT . lj r COMPLETED OR AUTHORIZED WORKS 34 TRINITY DAM & POWERP~LANT~- ? ) RECrATION AREAS (~ ,- DAM AND RESERVOIR LEWISTON LAKE TRIINir/cARR 230 KV ? 0 I <=::? r ~-~~- _./ TUNNEL ~<";:1 r ~ -+ ---< - .r') d,):3_ -}N , ··- •J?:y,--.___ N CONDUIT - ~~ wcAv~~VIL' 7 __r~\. -
Cvp Overview
Central Valley Project Overview Eric A. Stene Bureau of Reclamation Table Of Contents The Central Valley Project ......................................................2 About the Author .............................................................15 Bibliography ................................................................16 Archival and Manuscript Collections .......................................16 Government Documents .................................................16 Books ................................................................17 Articles...............................................................17 Interviews.............................................................17 Dissertations...........................................................17 Other ................................................................17 Index ......................................................................18 1 The Central Valley Project Throughout his political life, Thomas Jefferson contended the United States was an agriculturally based society. Agriculture may be king, but compared to the queen, Mother Nature, it is a weak monarch. Nature consistently proves to mankind who really controls the realm. The Central Valley of California is a magnificent example of this. The Sacramento River watershed receives two-thirds to three-quarters of northern California's precipitation though it only has one-third to one-quarter of the land. The San Joaquin River watershed occupies two- thirds to three-quarter of northern California's land, -
Friant Division Facts
FFrriiaanntt DDiivviissiioonn FFaaccttss FRIANT DAM Type Concrete gravity Location San Joaquin River above Friant, 17 miles northeast of downtown Fresno Groundbreaking Ceremony November 5, 1939 Basic Construction Period 1939-42 (Outlet gates installed in 1944; spillway drum gates installed in 1947) Outlets To the San Joaquin River, Madera Canal and Friant-Kern Canal Power Plants Operated by the Friant Power Authority (on the river and canal outlets), and by the Orange Cove Irrigation District (on a water line supplying the Friant fish hatchery) Named For The nearby town of Friant, recalling pioneer lumberman Thomas Friant Dimensions Structural Height 319 feet (97.23 meters) Hydraulic Height 296 feet (90.2 meters) Top Width 20 feet (6.1 meters) Maximum Base Width 267 feet (81.4 meters) Crest Length 3,488 feet (1,063 meters) Crest Elevation 581.3 feet (177.2 meters) above sea level Total Concrete Volume 2,135,000 cubic yards (1,632,325 cubic meters) Spillway Overflow section at dam's center controlled by three 18- by 100-foot gates, including two new rubberized air-filled bladder gates and one drum gate Elevation, Top of Gates 578.0 feet (176.2 meters) Spillway Crest Elevation 560.0 feet (170.7 meters) Maximum Release To River 59,770 cubic feet per second, on January 3, 1997 MILLERTON LAKE Total Capacity 520,500 acre feet (elevation 578 feet) Record Maximum Storage 530,452 acre feet, on January 3, 1997(elevation 580.01 feet) "Dead" Storage 135,000 acre feet (capacity below canal outlets) "Active" Storage 385,500 acre feet (maximum available for beneficial Friant Division use) Surface Area At Capacity 4,900 acres (1,983 hectares) Maximum Length 15 miles (24.1 kilometers) First Water in Reservoir October 20, 1941 (after temporary river outlets were closed) First Controlled Storage February 21, 1944 (after outlet gate valves were installed) Named For The town of Millerton, county seat of Fresno County from 1856-74, the site of which is inundated by the reservoir. -
Appendix a Water Project Facilities and Operations January 2017
Appendix A Water Project Facilities and Operations January 2017 Water Project Facilities and Operations Final TABLE OF CONTENTS Page A.1 WATER PROJECT FACILITIES AND OPERATIONS ...................................................... A-1 A.1.1 Temporary, Operable, and Non-physical Barriers ...................................... A-1 A.1.2 Clifton Court Forebay Gates ....................................................................... A-3 A.1.3 SWP and CVP Exports ................................................................................ A-3 A.1.4 OMR Flow................................................................................................... A-4 A.1.5 Vernalis Inflow:Export Ratio ...................................................................... A-4 A.1.6 San Joaquin River Inflow ............................................................................ A-4 A.2 REFERENCES .................................................................................................... A-5 LIST OF TABLES Table A.1-1. Number of Days During the Fall When the DCC Has Been Closed ............... A-2 A-i Water Project Facilities and Operations Final A.1 WATER PROJECT FACILITIES AND OPERATIONS The State Water Project (SWP) and Central Valley Project (CVP) include upstream reservoirs (Shasta and Keswick dams on the Sacramento River, Oroville Dam on the Feather River, Folsom and Nimbus dams on the American River, New Melones Dam on the Stanislaus River), several water conveyance canals, water export and fish salvage facilities located -
Applicant-Prepared Essential Fish Habitat Assessment Don Pedro Project Ferc No
APPLICANT-PREPARED ESSENTIAL FISH HABITAT ASSESSMENT DON PEDRO PROJECT FERC NO. 2299 Prepared for: Turlock Irrigation District – Turlock, California Modesto Irrigation District – Modesto, California Prepared by: HDR Engineering, Inc. September 2017 This Page Intentionally Left Blank. TABLE OF CONTENTS Section No. Description Page No. PREFACE ................................................................................................................................. XIII 1.0 INTRODUCTION.......................................................................................................... 1-1 1.1 Essential Fish Habitat Regulatory Framework .................................................... 1-1 1.2 EFH Action Area ................................................................................................. 1-1 1.3 Public Review and Consultation during Relicensing........................................... 1-2 1.3.1 Notice of Intent and Pre-Application Document ..................................... 1-2 1.3.2 Scoping and Study Plan Development ..................................................... 1-4 1.3.3 Pre-Filing Consultation Workshop Process ............................................. 1-5 1.3.4 Initial and Updated Study Reports ........................................................... 1-6 1.3.5 Draft License Application ........................................................................ 1-6 1.3.6 Post-Filing Consultation and Alternatives Analysis ................................ 1-7 2.0 PROJECT DESCRIPTION ......................................................................................... -
Reclamation's Salinity Management Plan
Reclamation’s Salinity Management Plan Revised May November 2010 Actions to Address the Salinity and Boron Total Maximum Daily Load Issues For the Lower San Joaquin River Table of Contents Changing Landscape.........................................................................................................................1 Current Actions.................................................................................................................................2 Flow Actions.....................................................................................................................................3 New Melones Operations – Dilution Flows...............................................................................3 Water Acquisitions....................................................................................................................44 San Joaquin River Restoration Program..................................................................................55 Salt Load Reduction Actions ..........................................................................................................66 Grassland Drainage Area Salinity Reduction ..........................................................................66 Water Use Efficiency Grant Programs .....................................................................................77 Water Conservation Field Services Program......................................................................77 WaterSMART (previously Water 2025) Grant Program................................................