Environmental and Plant Genetic Factors Influencing Phyllosphere

Total Page:16

File Type:pdf, Size:1020Kb

Environmental and Plant Genetic Factors Influencing Phyllosphere University of Warwick institutional repository: http://go.warwick.ac.uk/wrap This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information. To see the final version of this paper please visit the publisher’s website. Access to the published version may require a subscription. Author(s): Whipps, J.M.; Hand, P.; Pink, D.; Bending, G.D. Article Title: Phyllosphere microbiology with special reference to diversity and plant genotype Year of publication: 2008 Link to published version: http://dx.doi.org/10.1111/j.1365- 2672.2008.03906.x Publisher statement: The definitive version is available at www.blackwell-synergy.com 1 Phyllosphere microbiology with special reference to diversity and plant 2 genotype 3 John M. Whipps, Paul Hand, David Pink and Gary D. Bending 4 Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK 5 6 Summary 7 The phyllosphere represents the habitat provided by the aboveground parts of plants, and on a 8 global scale supports a large and complex microbial community. Microbial interactions in the 9 phyllosphere can affect the fitness of plants in natural communities, the productivity of 10 agricultural crops, and the safety of horticultural produce for human consumption. The 11 structure of phyllosphere communities reflects immigration, survival and growth of microbial 12 colonists, which is influenced by numerous environmental factors in addition to leaf physico- 13 chemical properties. The recent use of culture independent techniques has demonstrated 14 considerable previously unrecognised diversity in phyllosphere bacterial communities. Deleted: significant 15 Furthermore there is significant recent evidence that plant genotype can play a major role in 16 determining the structure of phyllosphere microbial communities. The main aims of this 17 review are (i) to discuss the diversity of phyllosphere microbial populations (ii) to consider 18 the processes by which microbes colonise the phyllosphere (iii) to address the leaf 19 characteristics and environmental factors which determine survival and growth of colonists Deleted: to 20 (iv) to discuss microbial adaptations which allow establishment in the phyllosphere habitat 21 and (v) to evaluate evidence for plant genotypic control of phyllosphere communities. Finally, 22 we suggest approaches and priority areas for future research on phyllosphere microbiology. 23 24 Keywords: phyllosphere, bacteria, fungi, diversity, culture-independent profiling, plant 25 genotype 1 1 2 Introduction 3 The aerial parts of living plants including leaves, stems, buds, flowers and fruits provide a 4 habitat for microorganisms termed the phyllosphere. Bacteria are considered to be the 5 dominant microbial inhabitants of the phyllosphere, although archaea, filamentous fungi, and 6 yeasts may also be important. These microbes can be found both as epiphytes on the plant 7 surface and as endophytes within plant tissues (Arnold, et al. 2000; Inacio et al. 2002; Lindow 8 and Brandl 2003; Stapleton and Simmons 2006). The global surface area of the phyllosphere 9 has been estimated to total over 4 x 108 km2, supporting bacterial populations in the region of 10 1026 cells (Morris and Kinkel 2002). Furthermore, recent estimates of the diversity of 11 phyllosphere bacteria in the 20 000 vascular plants inhabiting the Brazillian Atlantic forest, 12 suggests the possible occurrence of 2 to 13 million phyllosphere bacterial species in this 13 habitat alone (Lambais et al. 2006). 14 The phyllosphere represents a niche with great agricultural and environmental 15 significance. There is growing evidence for important interactions of phyllosphere microbial 16 inhabitants which may affect the fitness of natural plant populations and the quality and 17 productivity of agricultural crops. Phyllosphere bacteria can promote plant growth and both 18 suppress and stimulate the colonisation and infection of tissues by plant pathogens (Lindow 19 and Brandl 2003; Rasche et al., 2006). Similarly, fungal endophytes of leaves may deter 20 herbivores, protect against pathogens and increase drought tolerance (Arnold et al. 2003; 21 Schweitzer et al. 2006). Furthermore, interactions in the phyllosphere zone determine the 22 extent to which human pathogens are able to colonise and survive on plant tissues, an area of 23 increasing importance with the rise in cases of human disease associated with consumption of Deleted: 2006 24 fresh salad, fruit and vegetable produce (Whipps et al. 2008). 2 1 There is evidence for functional roles within the phyllosphere microbial community which 2 given the size of the habitat could have global significance. The best studied of these is 3 nitrogen fixation. Measured rates of bacterial nitrogen fixation in the phyllosphere vary 4 widely, but in the phyllosphere of trees in some tropical habitats has been reported at rates of 5 over 60 kg N ha-1, although amounts fixed in the phyllosphere of temperate trees is generally 6 considerably lower (Freiberg 1998). Furthermore, N2 fixation or the presence of N2 fixing 7 bacteria has been reported in the phyllosphere of many crop plants (e.g. Murty 1983; 8 Miyamoto et al. 2004). Other environmentally important microbial processes for which there 9 is evidence in the phyllosphere include methanol degradation (Corpe and Rheem, 1989; Van 10 Aken et al. 2004) and nitrification (Papen et al. 2002), although the rates of these process and 11 their ubiquity within the phyllosphere remains to be elucidated. 12 Most knowledge of the structure and activities of phyllosphere microbial communities has 13 been established using culture-dependant methods. However, these are recognised to 14 significantly underestimate diversity, with only 0.1-3 % of environmental bacteria considered 15 culturable (Wagner et al. 1993). Data gathered using these methods therefore relate only to 16 culturable members of the community and provide no information on the vast majority of 17 microbes present in samples. As in other areas of environmental microbiology, the recent 18 application of culture-independent methods based on the characterisation of small subunit 19 rRNA gene sequences for microbial community analysis is providing new insights into the 20 complexity of phyllosphere microbial communities and their interactions with plants and the 21 wider environment. Deleted: The main aims of this review 22 In the current paper we review the extent to which the use of culture independent Deleted: are 23 approaches has changed our understanding of the structure and diversity of phyllosphere 24 communities. A variety of plant, microbial and environmental factors control establishment of 25 microbial communities in the phyllosphere, but recently there has been recognition of the role 3 1 that plant genotype plays in selecting phyllosphere communities. The evidence for the 2 different factors which regulate the structure of phyllosphere communities is discussed with Deleted: (i) to discuss the diversity of phyllosphere 3 special reference to the role of plant genotype. Finally, we suggest approaches and priority microbial populations (ii) to consider the processes by which microbes colonise the 4 areas for future research on phyllosphere microbiology. Although much of the phyllosphere phyllosphere (iii) to address the leaf characteristics and environmental factors which 5 literature is concerned with interactions between plant and plant pathogens (bacteria and fungi determine survival and growth of colonists (iv) to discuss microbial adaptations to the phyllosphere 6 that cause diseases in plants), in the current review emphasis is placed on studies of habitat and (v) to evaluate evidence for plant genotypic control of phyllosphere 7 microorganisms that live in the phyllosphere without causing obvious damage to the plant, as communities. Deleted: Particular attention 8 absence of disease is the normal situation in nature. will be given to recent advances in understanding gained through the application of culture 9 independent methods. 10 Microbial diversity in the phyllosphere 11 The microbial communities of the phyllosphere are diverse, supporting numerous genera of 12 bacteria, filamentous fungi, yeasts, algae and in some situations protozoans and nematodes 13 (Morris et al. 2002; Lindow and Brandl 2003). Bacteria are the most numerous and diverse 14 colonists of leaves, with culturable counts ranging between 102 to 1012 cells g leaf (Thompson 15 et al. 1993; Inacio et al. 2002). Culture-based studies of sugar beet over the whole of the 16 growing season have found more than 78 bacterial species representing 37 known bacterial 17 genera (Thompson et al. 1993). Similar studies in wheat have revealed 88 bacterial species Deleted: However, r 18 representing 37 known bacterial genera (Legard et al. 1994). 19 Recent studies have demonstrated that profiling of phyllosphere communities based on Deleted: in 20 culture dependent methods is likely to be inaccurate and to underestimate diversity (Rasche et Deleted: 21 al. 2006b). In the case of the phyllosphere, use of culture independent approaches has shown 22 that although assumptions regarding the dominant inhabitants are largely correct, the diversity Deleted: ¶ 23 of phyllosphere communities is far greater than previously recognised.Analysis of 16S rDNA 24 cloned directly from leaf samples has demonstrated
Recommended publications
  • How Can We Define “Optimal Microbiota?”
    REVIEW published: 02 October 2018 doi: 10.3389/fnut.2018.00090 How Can We Define “Optimal Microbiota?”: A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture Wakako Ikeda-Ohtsubo 1*, Sylvia Brugman 2, Craig H. Warden 3, Johanna M. J. Rebel 4, Gert Folkerts 5 and Corné M. J. Pieterse 6 1 Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan, 2 Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands, 3 Departments of Pediatrics, Neurobiology Physiology and Behavior, University of California, Davis, Davis, CA, United States, 4 Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands, 5 Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands, 6 Plant–Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands All multicellular organisms benefit from their own microbiota, which play important roles in maintaining the host nutritional health and immunity. Recently, the number of Edited by: studies on the microbiota of animals, fish, and plants of economic importance is rapidly Raquel Hontecillas, expanding and there are increasing expectations that productivity and sustainability Virginia Tech, United States in agricultural management can be improved by microbiota manipulation. However, Reviewed by: Abdel Qawasmeh, optimizing microbiota is still
    [Show full text]
  • Microbial Phyllosphere Populations Are More Complex Than Previously Realized
    Microbial phyllosphere populations are more complex than previously realized Ching-Hong Yang*, David E. Crowley†, James Borneman*, and Noel T. Keen*‡ Departments of *Plant Pathology and †Environmental Sciences, University of California, Riverside, CA 92521 Contributed by Noel T. Keen, December 29, 2000 Phyllosphere microbial communities were evaluated on leaves of including fatty acid methyl ester (FAME), phospholipid fatty field-grown plant species by culture-dependent and -independent acid ester (PLFA), C0t1/2 curve analysis, and denaturing gradient methods. Denaturing gradient gel electrophoresis (DGGE) with 16S gel electrophoresis (DGGE) have also been applied to analyze rDNA primers generally indicated that microbial community struc- microbial communities with or without culturing microbes (15– tures were similar on different individuals of the same plant 19). In virtually all cases, culture-independent methods have species, but unique on different plant species. Phyllosphere bac- revealed more complexity in the microbial populations of par- teria were identified from Citrus sinesis (cv. Valencia) by using ticular ecosystems than culture-based methods. Although cul- DGGE analysis followed by cloning and sequencing of the domi- ture-independent methods have been widely used on samples nant rDNA bands. Of the 17 unique sequences obtained, database from soil, water, and the rhizosphere, they have not been used queries showed only four strains that had been described previ- to examine the phyllosphere (8, 12, 20–26). ously as phyllosphere bacteria. Five of the 17 sequences had 16S In this study, phyllosphere communities on seven different similarities lower than 90% to database entries, suggesting that plant species were evaluated with culture-dependent and -inde- they represent previously undescribed species.
    [Show full text]
  • Engineering the Microbiome for Animal Health and Conservation
    Minireview Engineering the microbiome for animal health and conservation Se Jin Song1 , Douglas C Woodhams2,3, Cameron Martino4, Celeste Allaband5, Andre Mu6,7, Sandrine Javorschi-Miller-Montgomery8,9, Jan S Suchodolski10 and Rob Knight1,8,9,11 1Department of Pediatrics, University of California, San Diego, CA 92093, USA; 2Biology Department, University of Massachusetts Boston, Boston, MA 02125, USA; 3Smithsonian Tropical Research Institute, Panama city 0843-03092, Panama; 4Bioinformatics and Systems Biology Program, University of California, San Diego, CA 92093, USA; 5Biomedical Sciences Graduate Program, University of California, San Diego, CA 92093, USA; 6Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville 3010, Australia; 7Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Australia; 8Department of Bioengineering, University of California, San Diego, CA 92093, USA; 9Center for Microbiome Innovation, University of California, San Diego, CA 92093, USA; 10Gastrointestinal Laboratory, Texas A&M University, College Station, TX 77843, USA; 11Department of Computer Science and Engineering, University of California, San Diego, CA 92093, USA Corresponding authors: Se Jin Song. Email: [email protected]; Rob Knight. Email: [email protected] Impact statement Abstract Considering the clear effects of microbiota Interest in animal microbiomes as therapeutics is rapidly expanding,
    [Show full text]
  • Shaping the Leaf Microbiota: Plant–Microbe–Microbe Interactions
    applyparastyle "fig//caption/p[1]" parastyle "FigCapt" Journal of Experimental Botany, Vol. 72, No. 1 pp. 36–56, 2021 doi:10.1093/jxb/eraa417 Advance Access Publication 10 September 2020 This paper is available online free of all access charges (see https://academic.oup.com/jxb/pages/openaccess for further details) REVIEW PAPER Shaping the leaf microbiota: plant–microbe–microbe Downloaded from https://academic.oup.com/jxb/article/72/1/36/5903797 by Max-Planck-Institut fur Zuchtungsforschung user on 03 May 2021 interactions Vasvi Chaudhry1,*, , Paul Runge1,2,* Priyamedha Sengupta3,*, Gunther Doehlemann3, , Jane E. Parker2,3 and Eric Kemen1,†, 1 Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Tübingen, Germany 2 Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829 Köln, Germany 3 Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Center for Molecular Biosciences, Zuelpicher Str. 47a, D-50674 Cologne, Germany * These authors contributed equally to this work. † Correspondence: [email protected] Received 1 May 2020; Editorial decision 2 September 2020; Accepted 7 September 2020 Editor: Stanislav Kopriva, University of Cologne, Germany Abstract The aerial portion of a plant, namely the leaf, is inhabited by pathogenic and non-pathogenic microbes. The leaf’s phys- ical and chemical properties, combined with fluctuating and often challenging environmental factors, create surfaces Phyllosphere microbe–microbe interactions | that require a high degree of adaptation for microbial colonization. As a consequence, specific interactive processes have evolved to establish a plant leaf niche. Little is known about the impact of the host immune system on phyllosphere colonization by non-pathogenic microbes.
    [Show full text]
  • Article Mode, Which Adds to a Better and Living Conditions of Microorganisms in the Atmosphere Understanding of the Overall Atmospheric Microbiome
    Biogeosciences, 15, 4205–4214, 2018 https://doi.org/10.5194/bg-15-4205-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Community composition and seasonal changes of archaea in coarse and fine air particulate matter Jörn Wehking1,2, Daniel A. Pickersgill1,2, Robert M. Bowers3,4, David Teschner1,2, Ulrich Pöschl2, Janine Fröhlich-Nowoisky2, and Viviane R. Després1,2 1Institute of Molecular Physiology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany 2Max Planck Institute for Chemistry, P.O. Box 3060, 55020 Mainz, Germany 3DOE Joint Genome Institute, Walnut Creek, CA, USA 4University of Colorado, Ecology and Evolutionary Biology, Boulder, CO, USA Correspondence: Viviane R. Després ([email protected]) and Jörn Wehking ([email protected]) Received: 1 December 2017 – Discussion started: 14 December 2017 Revised: 11 June 2018 – Accepted: 15 June 2018 – Published: 11 July 2018 Abstract. Archaea are ubiquitous in terrestrial and marine narchaeaceae, Nitrososphaeraceae, Methanosarcinales, Ther- environments and play an important role in biogeochemical moplasmata, and the genus Nitrosopumilus as the dominating cycles. Although air acts as the primary medium for their taxa. dispersal among different habitats, their diversity and abun- The seasonal dynamics of methanogenic Euryarchaeota dance is not well characterized. The main reason for this point to anthropogenic activities, such as fertilization of agri- lack of insight is that archaea are difficult to culture, seem cultural fields with biogas substrates or manure, as sources of to be low in number in the atmosphere, and have so far been airborne archaea. This study gains a deeper insight into the difficult to detect even with molecular genetic approaches.
    [Show full text]
  • 11 Microbial Communities in the Phyllosphere Johan H.J
    Biology of the Plant Cuticle Edited by Markus Riederer, Caroline Müller Copyright © 2006 by Blackwell Publishing Ltd Biology of the Plant Cuticle Edited by Markus Riederer, Caroline Müller Copyright © 2006 by Blackwell Publishing Ltd 11 Microbial communities in the phyllosphere Johan H.J. Leveau 11.1 Introduction The term phyllosphere was coined by Last (1955) and Ruinen (1956) to describe the plant leaf surface as an environment that is physically, chemically and biologically distinct from the plant leaf itself or the air surrounding it. The term phylloplane has been used also, either instead of or in addition to the term phyllosphere. Its two- dimensional connotation, however, does not do justice to the three dimensions that characterise the phyllosphere from the perspective of many of its microscopic inhab- itants. On a global scale, the phyllosphere is arguably one of the largest biological surfaces colonised by microorganisms. Satellite images have allowed a conservative approximation of 4 × 108 km2 for the earth’s terrestrial surface area covered with foliage (Morris and Kinkel, 2002). It has been estimated that this leaf surface area is home to an astonishing 1026 bacteria (Morris and Kinkel, 2002), which are the most abundant colonisers of cuticular surfaces. Thus, the phyllosphere represents a significant refuge and resource of microorganisms on this planet. Often-used terms in phyllosphere microbiology are epiphyte and epiphytic (Leben, 1965; Hirano and Upper, 1983): here, microbial epiphytes or epiphytic microorganisms, which include bacteria, fungi and yeasts, are defined as being cap- able of surviving and thriving on plant leaf and fruit surfaces. Several excellent reviews on phyllosphere microbiology have appeared so far (Beattie and Lindow, 1995, 1999; Andrews and Harris, 2000; Hirano and Upper, 2000; Lindow and Leveau, 2002; Lindow and Brandl, 2003).
    [Show full text]
  • Functional Characterization of Microbial Symbiotic Associations by Metaproteomics
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2012 Functional Characterization of Microbial Symbiotic Associations by Metaproteomics Jacque Caprio Young [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Other Genetics and Genomics Commons Recommended Citation Young, Jacque Caprio, "Functional Characterization of Microbial Symbiotic Associations by Metaproteomics. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1595 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Jacque Caprio Young entitled "Functional Characterization of Microbial Symbiotic Associations by Metaproteomics." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Life Sciences. Robert L. Hettich, Major Professor We have read this dissertation and recommend its acceptance: Steven Wilhelm, Kurt Lamour, Mircea Podar, Loren Hauser Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Functional Characterization of Microbial Symbiotic Associations by Metaproteomics A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Jacque Caprio Young December 2012 Copyright © 2012 by Jacque Caprio Young All rights reserved.
    [Show full text]
  • Ecology and Evolution of Plant Microbiomes
    MI73CH04-Raaijmakers ARjats.cls August 13, 2019 9:28 Annual Review of Microbiology Ecology and Evolution of Plant Microbiomes Viviane Cordovez,1 Francisco Dini-Andreote,1 Víctor J. Carrión,1,2 and Jos M. Raaijmakers1,2 1Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; email: [email protected] 2Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands Annu. Rev. Microbiol. 2019. 73:69–88 Keywords First published as a Review in Advance on microbiome assembly, plant domestication, community ecology, May 15, 2019 plant-microbe interaction, microbiome engineering The Annual Review of Microbiology is online at micro.annualreviews.org Abstract https://doi.org/10.1146/annurev-micro-090817- Microorganisms colonizing plant surfaces and internal tissues provide a 062524 number of life-support functions for their host. Despite increasing recog- Copyright © 2019 by Annual Reviews. Annu. Rev. Microbiol. 2019.73:69-88. Downloaded from www.annualreviews.org nition of the vast functional capabilities of the plant microbiome, our un- All rights reserved derstanding of the ecology and evolution of the taxonomically hyperdiverse microbial communities is limited. Here, we review current knowledge of Access provided by Texas A&M University - College Station on 01/10/20. For personal use only. plant genotypic and phenotypic traits as well as allogenic and autogenic fac- tors that shape microbiome composition and functions. We give specific em- phasis to the impact of plant domestication on microbiome assembly and how insights into microbiomes of wild plant relatives and native habitats can contribute to reinstate or enrich for microorganisms with beneficial ef- fects on plant growth, development, and health.
    [Show full text]
  • A Brief from the Leaf: Latest Research to Inform Our Understanding of The
    Available online at www.sciencedirect.com ScienceDirect A brief from the leaf: latest research to inform our understanding of the phyllosphere microbiome Johan HJ Leveau The plant leaf surface, or phyllosphere, represents a unique and flowers [17,18], pollen [19], fruit [20,21], stalks [22], and challenging microbial biome with a diverse and dynamic bark [23]; not only leaf surface colonizers (known as community of commensal, parasitic, and mutualistic agents of epiphytic, epiphyllous or foliicolous [24,25] microorgan- microscopic proportions. This mini-review offers a digest of isms), but also endophytes that are found within leaf recently published research dedicated to the study of tissues [26,27]; and not only terrestrial, but also sub- phyllosphere microbiota, framed in the context of processes merged plants [28,29]. Here, however, the term and outcomes of microbial community assembly, structure, ‘phyllosphere’ will be used to exclusively refer to aerial and (inter)activity in the phyllosphere, with particular focus on plant leaf surfaces. Such a narrower focus allows this mini- the contributions of environment, plant, and microbe, and on review to 1) highlight the features and challenges unique the potential benefits of interrogating those contributions at to the leaf surface as a microbial biome or habitat, 2) finer resolutions. consider other plant compartments as potential sources and sinks of leaf surface microbes and as connected parts Address of a larger living entity (i.e. the plant) that influences, and Department of Plant Pathology, University of California, Davis, CA is influenced by, leaf surface-associated microbiota, and 3) 95616, USA provoke thinking about the leaf surface itself as consisting of linked but discrete smaller compartments, such as the Corresponding author: Leveau, Johan HJ ([email protected]) phylloplane, that is, leaf surface landscape, and phyllo- telma, that is, leaf surface waterscape [11 ,16].
    [Show full text]
  • Relationships Between Phyllosphere Bacterial Communities and Plant
    Relationships between phyllosphere bacterial SPECIAL FEATURE communities and plant functional traits in a neotropical forest Steven W. Kembela,b,1, Timothy K. O’Connorb,c, Holly K. Arnoldb, Stephen P. Hubbelld,e, S. Joseph Wrightd, and Jessica L. Greenb,f aDépartement des sciences biologiques, Universitédu Québec àMontréal, Montreal, Quebec, Canada H3C 3P8; bInstitute of Ecology and Evolution, University of Oregon, Eugene, OR 97403; cDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721; dSmithsonian Tropical Research Institute, Panama 0843-03092, Panama; eDepartment of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095; and fSanta Fe Institute, Santa Fe, NM 87501 Edited by Cyrille Violle, Centre National de la Recherche Scientifique, Montpellier, France, and accepted by the Editorial Board January 28, 2014 (received for review November 5, 2012) The phyllosphere—the aerial surfaces of plants, including leaves— taxa but on the entire genomic content of communities of is a ubiquitous global habitat that harbors diverse bacterial com- microbes in different habitats, or “microbiomes” (12). Numerous munities. Phyllosphere bacterial communities have the potential studies of host-associated microbiomes have shown that micro- to influence plant biogeography and ecosystem function through bial biodiversity is a trait (13) that forms part of the extended their influence on the fitness and function of their hosts, but the phenotype of the host organism (4, 14, 15) with important effects host attributes that drive community assembly in the phyllosphere on the health and fitness (16–18) and evolution (19–21) of the are poorly understood. In this study we used high-throughput host.
    [Show full text]
  • Exploring Interactions of Plant Microbiomes Review
    528 Scientia Agricola http://dx.doi.org/10.1590/0103-9016-2014-0195 Review Exploring interactions of plant microbiomes Fernando Dini Andreote*, Thiago Gumiere, Ademir Durrer University of São Paulo/ESALQ – Dept. of Soil Science, C.P. ABSTRACT: A plethora of microbial cells is present in every gram of soil, and microbes are found 09 – 13418-900 – Piracicaba, SP – Brazil. extensively in plant and animal tissues. The mechanisms governed by microorganisms in the *Corresponding author <[email protected]> regulation of physiological processes of their hosts have been extensively studied in the light of recent findings on microbiomes. In plants, the components of these microbiomes may form Edited by: Paulo Cesar Sentelhas distinct communities, such as those inhabiting the plant rhizosphere, the endosphere and the phyllosphere. In each of these niches, the “microbial tissue” is established by, and responds to, specific selective pressures. Although there is no clear picture of the overall role of the plant mi- crobiome, there is substantial evidence that these communities are involved in disease control, enhance nutrient acquisition, and affect stress tolerance. In this review, we first summarize fea- tures of microbial communities that compose the plant microbiome and further present a series of studies describing the underpinning factors that shape the phylogenetic and functional plant- associated communities. We advocate the idea that understanding the mechanisms by which plants select and interact with their microbiomes may have a direct effect on plant development and health, and further lead to the establishment of novel microbiome-driven strategies, that can Received May 30, 2014 cope with the development of a more sustainable agriculture.
    [Show full text]
  • Temporal and Spatial Changes in Phyllosphere Microbiome of Acacia Trees Growing in Arid Environments
    ORIGINAL RESEARCH published: 12 July 2021 doi: 10.3389/fmicb.2021.656269 Temporal and Spatial Changes in Phyllosphere Microbiome of Acacia Trees Growing in Arid Environments Ashraf Al Ashhab 1,2*, Shiri Meshner 1, Rivka Alexander-Shani 1, Hana Dimerets 1, Michael Brandwein 1,3, Yael Bar-Lavan 1 and Gidon Winters 1,2 1 Dead Sea and Arava Science Center, Masada, Israel, 2 Ben-Gurion University of the Negev, Eilat Campus, Be’er Sheva, Israel, 3 Biofilm Research Laboratory, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel Background: The evolutionary relationships between plants and their microbiomes are of high importance to the survival of plants in general and even more in extreme conditions. Changes in the plant’s microbiome can affect plant development, growth, fitness, and health. Along the arid Arava, southern Israel, acacia trees (Acacia raddiana and Acacia tortilis) are considered keystone species. In this study, we investigated the ecological effects of plant species, microclimate, phenology, and seasonality on the epiphytic and endophytic microbiome of acacia trees. One hundred thirty-nine leaf samples were collected throughout the sampling year and were assessed using 16S rDNA gene amplified with five different primers (targeting different gene regions) and Edited by: Markus Puschenreiter, sequenced (150 bp paired-end) on an Illumina MiSeq sequencing platform. University of Natural Resources and Life Sciences Vienna, Austria Results: Epiphytic bacterial diversity indices (Shannon–Wiener, Chao1, Simpson, and Reviewed by: observed number of operational taxonomic units) were found to be nearly double Yosef Steinberger, compared to endophyte counterparts. Epiphyte and endophyte communities were Bar Ilan University, Israel significantly different from each other in terms of the composition of the microbial Upendra Kumar, National Rice Research Institute associations.
    [Show full text]