2019 Mccoy C

Total Page:16

File Type:pdf, Size:1020Kb

2019 Mccoy C Bangor University DOCTOR OF PHILOSOPHY Cayman Islands Marine Protected Areas, their status, effects and future McCoy, Croy Award date: 2019 Awarding institution: Bangor University Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 Cayman Islands Marine Protected Areas, their status, effects and future Croy McCoy A thesis submitted to Bangor University, School of Ocean Sciences for the degree of Doctor of Philosophy November 2018 1 Abstract Caribbean coral reefs in the1950s through to the early 1970s were viewed as robust and stable ecosystems, and not considered threatened in any way by a human-dominated world. However, in 1982- 1983, in the western Atlantic region including the Caribbean basin, the sea-urchin Diadema antillarium, a keystone grazer, died off suddenly. This event, coupled with over-fishing of herbivores and multiple coral-bleaching episodes in the Caribbean region dating back to the 1970s triggered a phase shift from a coral-dominated to an algal-dominated environment. The decline of coral reefs, including fisheries, in the Caribbean region, had fuelled much debate, as several scientists had hypothesized that, by the time humans started studying the coral reefs in the 1950s, the reefs were already overfished and in a degraded state. However, concerns were raised mainly on noticing the gradual loss of the goods and services provided by the coral reefs. With >275 million people in the global tropics living at <30-km distance away from coral reefs, of which >43 million of those people residing in the Caribbean basin has raised the alarm about the loss of coral cover from ~50% average 4 decades ago to a mere regional average of ~12% presently. Though this decline can be attributed to several factors, including the consequences of climate change, over-fishing, ocean acidification, and destructive cyclones, it has spurred and driven coral reef researchers to understand the ecology and biology of these ancient animals better. Furthermore, in the last few decades, coral reefs’ ability to function while facing these threats has prompted additional research to understand the ecological and biological attributes of coral reefs and their associated organisms, such as reef fish populations, to ascertain what drives their relationship. However, those underpinning biological and ecological metrics have seemingly eluded coral reef scientist over the past four decades. In September 2009, the Cayman Islands coral reefs experienced a localized acute coral bleaching event with water temperature > 30 C for six weeks. This event was caused by a whirlpool of hot water originating off of the island of Cuba southern shelf. Bleaching was observed down to a depth of 100 m using a remotely operated underwater vehicle (ROV). Furthermore, satellite water temperature data from the National Oceanic and Atmospheric Administration (NOAA) showed that water temperatures extended to a depth of 450 m. The coral reefs of the Cayman Islands recovered without any measurable coral mortality; however, there was a notable decline in algal mortality for the island of Grand Cayman. Furthermore, in both 2015 and 2016, the global marine heatwave, the longest ever on record that effected greater than one-quarter of the ocean surface, with devastating consequences for marine ecosystems globally had a negligible effect on the coral reefs of the Cayman Islands. Data was collected on the Benthos and their fish assemblages over years (2009–2012), islands, coast (North, South and West) habitats (deep and shallow) and protection status (MPA and non-MPA) at 55 sites across the 3 Cayman Islands; Grand Cayman (GCM, n=27), Little Cayman (LC, n=16) and Cayman Brac (CB, n=12). Total fish biomass differed significantly over the years, showing an overall strong reserve effect (p = 0.001). A significant spill-over effect for the shallow terrace reef on the northern boundary of the MPA in GCM was detected in the years 2009 (P<0.01) and 2011(P<0.01) No spill-over was evident on the deep terrace reef of any the islands, possibly due to residents able to fish anywhere beyond the 24 m depth contour. With more than 50% of the total variance explained, the analysis of principal coordinates (PCO) showed that the functional differences between MPA and non- MPA regarding fish assemblages across the habitats and islands were highly correlated (p = 0.8) indicative of a positive linear relationship with 4 species of fish: (1) Holacanthus tricolour, (2) Sparissoma aurofrenatum, (3) Anisotremus Surinamensis and (4) Kyphosidae spp. The community structure of fish significantly differed across years on all islands (p < 0.001). The fish communities were found to be most similar between the years 2009 and 2010. However, their differences in community structure increased over time, indicating that MPA’s effects were not consistent across years on all islands. The temporal and spatial changes in the benthic community structure documented during the period of study were complex, and their trajectories depended on a combination of factors such as the habitat type, coast, and island, including protection. SIMPER analysis revealed the largest average dissimilarities to be GCM for the years 2011 and 2012 (54.4%, driven by macroalgae, dead coral and pavement), whereas the lowest was found between the years 2009 (30.9 %, turf, and macroalgae) and 6 2012 (40.5 %, turf algae) in Little Cayman. Differences between turf and macroalgae consistently explained 61% to 79% of the average similarities recorded across the Cayman Islands during the study period. The results clearly show that 2011 was a particular year that introduced significant variation to the benthos community structure, particularly for the island of GCM and CB. Higher values of live coral cover (15–20%) was noted in the deeper and shallower habitats of LC and CB, with no evident trends recorded between the areas with different levels of protection. Lower coral cover was found in the shallow habitats around the GCM, regardless of protection status. There was a clear spatial pattern for macroalgae, showing higher cover in the deeper habitats of LC and CB (50–70%), as compared to the shallow habitats of GCM (34–46%). Higher cover of turf algae was normally associated with the shallower habitats of all three islands, but more so LC and CB. Results from Bio Env analysis clearly showed that both benthic and the fish community assemblages were significant, but weakly correlated (BEST, Rho = 0.26, p = 0.01). Variation of the three combined benthic variables: zoanthids, tunicates, and dead gorgonians better fit with the documented changes in the fish community structure across coasts, islands, habitats, years, and protection status. Additionally, the linear model supported that only the zoanthids, dead gorgonians and the cover of other benthic organisms were significantly correlated with changes in the fish community structure, possibly because they were being used as a food resource. However, the DbRDA plot illustrated that changes in the benthic community structure did not fully explain the observed variation in the fish community structure, suggesting some other metric not studies in this thesis is responsible. Results indicate that the MPA’s of the Cayman Islands are playing a central role in increasing the biomass of key herbivores and carnivores over time. Data collected indicate that the benthic community structure was extremely variable between habitats; this factor explaining more variation compared to the level of protection and suggest that the benthic community structure was a poor predictor for explaining the differences of the fish communities associated to MPAs and non- MPA’s across the Cayman Islands. This study aimed to assess the status and evaluate the effects of protection on the benthos and their fish assemblages of the marine protected areas in the Cayman Islands after 26 years of being actively enforced. It represents an important step in addressing and understanding the Marine Protected Area’s ecological function and performance. It is the intent that the results from this study be used to address the present human usage and increasing pressures on the coral reefs of the Cayman Islands. This includes making recommendations based on results for a new network of MPAs, as the current model has become obsolete, making the MPA’s of the Cayman Islands more “ fit for purpose” in the 21st century for the people of the Cayman Islands. 7 Table of Contents Declaration and Consent .................................................................................... 2 Acknowledgements .............................................................................................. 5 Abstract ...............................................................................................................
Recommended publications
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • An Annotated Bibliography of Diet Studies of Fish of the Southeast United States and Gray’S Reef National Marine Sanctuary
    Marine Sanctuaries Conservation Series MSD-05-2 An annotated bibliography of diet studies of fish of the southeast United States and Gray’s Reef National Marine Sanctuary U.S. Department of Commerce February 2005 National Oceanic and Atmospheric Administration National Ocean Service Office of Ocean and Coastal Resource Management Marine Sanctuaries Division About the Marine Sanctuaries Conservation Series The National Oceanic and Atmospheric Administration’s Marine Sanctuary Division (MSD) administers the National Marine Sanctuary Program. Its mission is to identify, designate, protect and manage the ecological, recreational, research, educational, historical, and aesthetic resources and qualities of nationally significant coastal and marine areas. The existing marine sanctuaries differ widely in their natural and historical resources and include nearshore and open ocean areas ranging in size from less than one to over 5,000 square miles. Protected habitats include rocky coasts, kelp forests, coral reefs, sea grass beds, estuarine habitats, hard and soft bottom habitats, segments of whale migration routes, and shipwrecks. Because of considerable differences in settings, resources, and threats, each marine sanctuary has a tailored management plan. Conservation, education, research, monitoring and enforcement programs vary accordingly. The integration of these programs is fundamental to marine protected area management. The Marine Sanctuaries Conservation Series reflects and supports this integration by providing a forum for publication and discussion of the complex issues currently facing the National Marine Sanctuary Program. Topics of published reports vary substantially and may include descriptions of educational programs, discussions on resource management issues, and results of scientific research and monitoring projects. The series facilitates integration of natural sciences, socioeconomic and cultural sciences, education, and policy development to accomplish the diverse needs of NOAA’s resource protection mandate.
    [Show full text]
  • Chaetodon Ocellatus (Spotfin Butterflyfish)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Chaetodon ocellatus (Spotfin Butterflyfish) Family: Chaetodontidae (Butterflyfish) Order: Perciformes (Perch and Allied Fish) Class: Actinopterygii (Ray-finned Fish) Fig. 1. Spotfin butterflyfish, Chaetodon ocellatus. [http://www.flmnh.ufl.edu/fish/discover/species-profiles/chaetodon-ocellatus, downloaded 7 March 2016] TRAITS. The spotfin butterflyfish gets its name from the black spot located towards the end of its dorsal fin (Fig. 1). With a thin and deep body, the spotfin is disc shaped has a small mouth and teeth in a comb-like shape and arrangement. The body of the spotfin is white, with a vertical black bar that runs through its eye across the head. In juvenile spotfins, there is another black bar that goes from the base of the dorsal fin and ends at the base of the anal fin (Fig. 2). The fins are bright yellow, apart from the pectoral fins which have a yellow streak at the base (Live Aquaria, 1997). The maximum length is 20cm, but they commonly grow to 8-15cm. DISTRIBUTION. The spotfin butterflyfish is mainly found in the western Atlantic Ocean, from North Carolina and Florida to Brazil. The can also be found in the Bahamas, the Gulf of Mexico, Belize and other Caribbean countries including Trinidad and Tobago (Fig. 3). During the mating UWI The Online Guide to the Animals of Trinidad and Tobago Ecology season, the Gulf Stream currents may sometimes disperse the eggs and larvae northward, where the young (juveniles) are seen as far north as Canada during the summer months of June to August.
    [Show full text]
  • Fish and Coral Species Lists Compiled by Coral Cay Conservation: Belize 1990-1998
    FISH AND CORAL SPECIES LISTS COMPILED BY CORAL CAY CONSERVATION: BELIZE 1990-1998 - Edited by - Alastair Harborne, Marine Science Co-ordinator September 2000 CORAL CAY CONSERVATION LTD The Tower, 125 High St., Colliers Wood, London SW19 2JG TEL: +44 (0)20 8545 7721 FAX: +44 (0)870 750 0667 Email: [email protected] www: http://www.coralcay.org/ This report is part of a series of working documents detailing CCC’s science programme on Turneffe Atoll (1994-1998). The series is also available on CD-Rom. CCC fish and coral species lists 1. INTRODUCTION Between 1986 and 1998, Coral Cay Conservation (CCC) provided data and technical assistance to the Belize Department of Fisheries, Coastal Zone Management Unit and Coastal Zone Management Project under the remit of a Memorandum of Understanding. This work has provided data for seven proposed or established marine protected areas at South Water Cay, Bacalar Chico, Sapodilla Cays, Snake Cays, Laughing Bird Cay, Caye Caulker and Turneffe Atoll (Figure 1). These projects have generally provided habitat maps, the associated databases and management recommendations to assist reserve planning. In addition to the data collection, training, capacity building and environmental education undertaken by CCC, the expeditions have also provided opportunities for compiling presence / absence species lists of fish and corals in the different project areas. This document contains the fish list compiled by CCC staff and experienced volunteers and a reprint of Fenner (1999) detailing coral taxonomy in Belize and Cozumel, the Belize component of which was compiled while the author was working as a member of CCC’s field science staff.
    [Show full text]
  • Andrew David Dorka Cobián Rojas Felicia Drummond Alain García Rodríguez
    CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington ACKNOWLEDGMENTS This research was supported by the NOAA Office of Ocean Exploration and Research under award number NA14OAR4320260 to the Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) at Harbor Branch Oceanographic Institute-Florida Atlantic University (HBOI-FAU), and by the NOAA Pacific Marine Environmental Laboratory under award number NA150AR4320064 to the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) at the University of Miami. This expedition was conducted in support of the Joint Statement between the United States of America and the Republic of Cuba on Cooperation on Environmental Protection (November 24, 2015) and the Memorandum of Understanding between the United States National Oceanic and Atmospheric Administration, the U.S. National Park Service, and Cuba’s National Center for Protected Areas. We give special thanks to Carlos Díaz Maza (Director of the National Center of Protected Areas) and Ulises Fernández Gomez (International Relations Officer, Ministry of Science, Technology and Environment; CITMA) for assistance in securing the necessary permits to conduct the expedition and for their tremendous hospitality and logistical support in Cuba. We thank the Captain and crew of the University of Miami R/V F.G. Walton Smith and ROV operators Lance Horn and Jason White, University of North Carolina at Wilmington (UNCW-CIOERT), Undersea Vehicle Program for their excellent work at sea during the expedition.
    [Show full text]
  • Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
    Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E.
    [Show full text]
  • Baseline Multispecies Coral Reef Fish Stock Assessment for the Dry Tortugas
    NOAA Technical Memorandum NMFS-SEFSC-487 Baseline Multispecies Coral Reef Fish Stock Assessment for the Dry Tortugas Jerald S. Ault, Steven G. Smith, Geoffrey A. Meester, Jiangang Luo, James A. Bohnsack, and Steven L. Miller U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, Florida 33149 August 2002 NOAA Technical Memorandum NMFS-SEFSC-487 Baseline Multispecies Coral Reef Fish Stock Assessment for the Dry Tortugas Jerald S. Ault 1, Steven G. Smith 1, Geoffrey A. Meester 1, Jiangang Luo 1, James A. Bohnsack 2 , and Steven L. Miller3 with significant contributions by Douglas E. Harper2, Dione W. Swanson3, Mark Chiappone3, Erik C. Franklin1, David B. McClellan2, Peter Fischel2, and Thomas W. Schmidt4 _____________________________ U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary National Oceanic and Atmospheric Administration Conrad C. Lautenbacher, Jr., Under Secretary for Oceans and Atmosphere National Marine Fisheries Service William T. Hogarth, Assistant Administrator for Fisheries August 2002 This technical memorandum series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information. Although the memoranda are not subject to complete formal review, editorial control, or detailed editing, they are expected to reflect sound professional work. 1 University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL 2 NOAA/Fisheries Southeast Fisheries Science Center, Miami, FL 3 National Undersea Research Center, Key Largo, FL 4 National Park Service, Homestead, FL NOTICE The National Marine Fisheries Service (NMFS) does not approve, recommend, or endorse any proprietary product or material mentioned in this publication.
    [Show full text]
  • Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae) Associated with Venezuelan Marine Fishes (Elasmobranchii, Actinopterygii)
    Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae) associated with Venezuelan marine fishes (Elasmobranchii, Actinopterygii) Lucy Bunkley-Williams,1 Ernest H. Williams, Jr.2 & Abul K.M. Bashirullah3 1 Caribbean Aquatic Animal Health Project, Department of Biology, University of Puerto Rico, P.O. Box 9012, Mayagüez, PR 00861, USA; [email protected] 2 Department of Marine Sciences, University of Puerto Rico, P.O. Box 908, Lajas, Puerto Rico 00667, USA; ewil- [email protected] 3 Instituto Oceanografico de Venezuela, Universidad de Oriente, Cumaná, Venezuela. Author for Correspondence: LBW, address as above. Telephone: 1 (787) 832-4040 x 3900 or 265-3837 (Administrative Office), x 3936, 3937 (Research Labs), x 3929 (Office); Fax: 1-787-834-3673; [email protected] Received 01-VI-2006. Corrected 02-X-2006. Accepted 13-X-2006. Abstract: The parasitic isopod fauna of fishes in the southern Caribbean is poorly known. In examinations of 12 639 specimens of 187 species of Venezuelan fishes, the authors found 10 species in three families of isopods (Gnathiids, Gnathia spp. from Diplectrum radiale*, Heteropriacanthus cruentatus*, Orthopristis ruber* and Trachinotus carolinus*; two aegids, Rocinela signata from Dasyatis guttata*, H. cruentatus*, Haemulon auro- lineatum*, H. steindachneri* and O. ruber; and Rocinela sp. from Epinephelus flavolimbatus*; five cymothoids: Anilocra haemuli from Haemulon boschmae*, H. flavolineatum* and H. steindachneri*; Anilocra cf haemuli from Heteropriacanthus cruentatus*; Haemulon bonariense*, O. ruber*, Cymothoa excisa in H. cruentatus*; Cymothoa oestrum in Chloroscombrus chrysurus, H. cruentatus* and Priacanthus arenatus; Cymothoa sp. in O. ruber; Livoneca sp. from H. cruentatus*; and Nerocila fluviatilis from H. cruentatus* and P. arenatus*). The Rocinela sp. and A.
    [Show full text]
  • Perciformes Suborders Gobiesocoidei, Callionymoidei, Acanthuroidei
    1334 Perciformes Suborders Gobiesocoidei, Callionymoidei, Acanthuroidei Selected meristic characters in species belonging to the suborders Gobiesocoidei, Callionymoidei and Acanthuroidei whose adults or larvae have been collected in the study area. Classification sequence follows G. D. Johnson, 1993; Leis and Carson-Ewart, 2003. The inclusion of Chaetodontidae, Ephippidae and Pomacanthidae in the Acanthuroidei (sensu Tyler et al., 1989) explained on next page. Sources: Davis, 1966; Miller and Jorgenson, 1973; Leis and Richards, 1984; Randall, 2002 Suborder Family Species Vertebrae Dorsal Fin Rays Anal Fin Rays Pectoral Fin Rays Gobiesocoidei Gobiesocidae Gobiesox strumosus 25–26 9–12 8–10 21–23 Callionymoidei Callionymidae Diplogrammus pauciradiatus 18 IV, 6 4 16–19 Foetorepus agassizii 20–21 IV, 8 7 20–23 Foetorepus goodenbeani 21 IV, 8 7 21 Paradiplogrammus bairdi 21–22 IV, 9–10 6–9 19–20 Draconettidae Centrodraco acanthopoma 23 III, 14 13 24–26 Acanthuroidei Acanthuridae Acanthurus bahianus 22 IX, 23–26 III, 21–23 15–17 Acanthurus chirurgis 22 IX, 24–25 III, 22–23 16–17 Acanthurus coeruleus 22 IX, 26–28 III, 24–26 16–17 Chaetodontidae Chaetodon capistratus 24 XII–XIII, 18–20 III, 16–17 14 Chaetodon ocellatus 24 XII–XIV, 18–21 III, 15–18 14–15 Chaetodon striatus 24 XII, 19–20 III, 16–17 14 Ephippidae Chaetodipterus faber 24 IX, 21–23 III, 17–18 17–18 Luvaridae Luvarus imperialis 23 II, 12–13 13–14 17–20 Pomacanthidae Pomacanthus arcuatus 24 IX, 31–33 III, 23–25 19–20 Early Stages of Fishes in the Western North Atlantic Ocean 1335 Perciformes Suborders Gobiesocoidei, Callionymoidei, Acanthuroidei Gobiesocoidei: Represented in the study area by a single species in the family Gobiesocidae.
    [Show full text]
  • CHAETODONTIDAE Deep-Water Forms. in the Area Prognathodes
    click for previous page Perciformes: Percoidei: Chaetodontidae 1663 CHAETODONTIDAE Butterflyfishes by W.E. Burgess, Red Bank, New Jersey, USA iagnostic characters: Small to medium-sized (to 19 or 20 cm) fishes with body deep and strongly com- Dpressed, oval to orbicular in shape.Head about as high as long;preopercle never with a strong spine at angle; mouth very small, terminal, protractile, the gape not extending to anterior rim of orbit; teeth setiform, usually arranged in brush-like bands in jaws; no teeth present on roof of mouth. Snout slightly to greatly prolonged in some species. Gill membranes narrowly attached to isthmus. Dorsal fin with 6 to 16 spines (12 to 14 in western Atlantic species), and 15 to 30 soft rays (18 to 23 in western Atlantic species); continuous or sometimes with a slight notch between soft and spinous portions; no procumbent (forward pointing) spine in front of dorsal fin. Anal fin with 3 to 5 spines (3 in western Atlantic species) and 14 to 23 soft rays (14 to 18 in western Atlantic species). Caudal fin emarginate to rounded, with 17 principal rays, 15 of which are branched. Lateral line extending to base of caudal fin or ending near base of soft portion of dorsal fin (ending near base of soft dorsal-fin rays in western Atlantic species). Scales ctenoid, small to medium-sized, rounded to angular in shape, extending onto soft portions of vertical fins. Well-developed axillary scaly process present at base of pelvic-fin spine. Twenty-four vertebrae (11 + 13). Pelagic larvae with bony plates in head region pres- ent, called the ‘tholichthys’.
    [Show full text]
  • NEAMAP Diet Guide
    NEAMAP Northeast Area Monitoring and Assessment Program Prey Species 2006-2012 Stenotomus chrysops VIMSCODE: 0001 Common Name: Scup Stomachs Processed (Full Workup Samples): 7,241 % Empty Stomachs or No/Improper Sample: 30% bony fishes cartilaginous fishes crustaceans other animals molluscs miscellaneous worms Prey Species COMMON LATIN COUNT PERCENT 0708 unidentified material unidentified material 1169 16.14 0775 unidentified polychaete Polychaeta 1015 14.02 0636 four‐eyed amphipods (Ampelisca spp.) Ampelisca spp. 729 10.07 0841 unidentified amphipod Amphipoda spp. 564 7.79 0507 common burrower amphipod Leptocheirus plumulosus 463 6.39 0758 unidentified right‐hand hermit crab Pagurus spp. 307 4.24 0671 amphipod (Corophium spp.) Corophium spp. 288 3.98 5039 unidentified clam Bivalvia 247 3.41 0694 amphipod (Gammarus spp.) Gammarus spp. 195 2.69 0604 sand shrimp Crangon septemspinosa 189 2.61 5000 unidentified fish Actinopterygii 144 1.99 7581 long‐clawed hermit crab Pagurus longicarpus 139 1.92 0673 unidentified crustacean Crustacea 137 1.89 0103 bay anchovy Anchoa mitchilli 117 1.62 5035 unidentified crab Decapoda 103 1.42 5003 unidentifed clam siphon Bivalvia 101 1.39 0764 polychaete (Pherusa affinis) Pherusa affinis 95 1.31 0574 unidentified mysid Mysidae 93 1.28 0699 mysid Neomysis americana 93 1.28 0798 polychaete (Terebellidae) Terebellidae 90 1.24 0709 unidentified mollusc meat Mollusca 85 1.17 0529 fish scales fish scales 80 1.10 0738 red‐eyed amphipod Monoculodes edwardsi 72 0.99 0658 skeleton shrimp (Caprellidae) Caprellidae spp 68 0.94 0884 unidentified drill or snail Gastropoda 67 0.93 5012 crab parts crab parts 65 0.90 0674 unidentified cumacean Cumacea 60 0.83 0656 Atlantic rock crab Cancer irroratus 56 0.77 0697 unidentified bloodworm Glycera spp.
    [Show full text]
  • 2020 Status Report Scoring Methodology for Atlantic Jurisdictions
    NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION AND THE UNIVERSITY OF MARYLAND CENTER FOR ENVIRONMENTAL SCIENCE 2020 Status Report Scoring Methodology for Atlantic Jurisdictions Indicator calculations and scoring for coral reef status reports of the Atlantic jurisdictions: Flower Garden Banks, the United States Virgin Islands, Puerto Rico, and Florida’s Coral Reef Caroline Donovan, Erica K. Towle, Jeremiah Blondeau, Mark Eakin, Kimberly Edwards, Peter Edwards, Ian Enochs, Chloe Fleming, Nathan Formel, Erick Geiger, Matthew Gorstein, Jay Grove, Sarah Groves, Matthew Johnson, Heath Kelsey, Derek Manzello, Nathan Miller, Shay Viehman Contents I. BACKGROUND ............................................................................................................................................ 4 I.I. The motivation behind status and trends reporting ............................................................................ 4 I.II Create a conceptual framework .......................................................................................................... 5 II. ATLANTIC JURISDICTIONS WITH REEF AREAS ........................................................................................... 6 II.I. Florida’s Coral Reef ............................................................................................................................. 6 II.II United States Virgin Islands (USVI) ..................................................................................................... 6 II. III Puerto Rico .......................................................................................................................................
    [Show full text]