The Andrew File System (From CMU) Case Study ­ Andrew File System

Total Page:16

File Type:pdf, Size:1020Kb

The Andrew File System (From CMU) Case Study ­ Andrew File System DFS Case Studies, Part 2 The Andrew File System (from CMU) Case Study - Andrew File System ● Designed to support information sharing on a large scale by minimizing client-server communications ● Makes heavy use of caching technologies ● Adopted as the basis for the DCE/DFS file system in the Open Software Foundation©s Distributed Computing Environment (DCE) AFS Characteristics ● Provides transparent access to remote shared files for UNIX programs (using the normal UNIX file primitives) ● Programs access to remote files without modification or recompilation ● AFS is compatible with NFS, in that files may be remotely accessed using NFS ● However, AFS differs markedly from NFS in its design and implementation AFS Design Goals ● Scalability is the most important design goal for the AFS designers ● Designed to perform well with larger numbers of active users (when compared to NFS) ● Key strategy in achieving scalability is the caching of whole (complete) files in client nodes AFS Design Characteristics ● Whole-file serving - the entire contents of directories and files are transmitted to client computers by AFS servers ● Whole-file caching - once a copy of a file (or a file- chunk) has been transferred to a client computer, it is stored in a cache on the local disk; the cache is permanent, surviving reboots of the client computer and it is used to satisfy clients© open requests in preference to remote copies whenever possible AFS Observations ● Shared files that are infrequently updated (such as UNIX commands and libraries) and files accessed solely by a single user account form the overwhelming majority of file accesses ● If the local cache is allocated a sufficiently large amount of storage space, the "working set" of files in regular use on a given workstation are normally retained in the cache until they are needed again ● AFS©s design strategy is based on some assumptions about the average and maximum file size and locality of reference to files in the UNIX environment AFS Assumptions ● Most files are small - less than 10 k-bytes (typically) ● Read operations are six times more likely than writes ● Sequential-access is common, random-access is rare ● Most files are read/written by a single user; even when a file is shared, typically only one of the sharers updates it ● Files are referenced in "bursts" - there©s a high probability that a recently accessed file will be used again in the near future AFS Gotcha! ● There is one important type of file that does not fit in the design goals of AFS - shared databases ● Databases are typically shared by many users and updated frequently ● The AFS designers explicitly excluded the provision of storage facilities for databases from the AFS design goals ● It is argued that the provision of facilities for distributed databases should be addressed separately AFS Questions ● How does AFS gain control when an open or close system call referring to a file in the shared file space is issued by a client? ● How is the AFS server that©s holding the required file actually located? ● What space is allocated for cached files in workstations? ● How does AFS ensure that the cached copies of files are up-to-date when files may be updated by several clients? AFS Software Components ● AFS is implemented as two software components - Vice and Venus ● Vice is the server component, and runs as a user-level UNIX process within the server©s process space ● Venus is the client component Vice and Venus Workstations Servers User Venus program Vice UNIX kernel UNIX kernel User Venus program Network UNIX kernel Vice Venus User program UNIX kernel UNIX kernel Dealing with File Accesses ● Files are either local or shared ● Local files are handled in the usual UNIX way (by UNIX) ● Shared files are stored on servers, and copies of them are cached on the local disks of workstations (as required) ● The AFS namespace is a standard UNIX hierarchy, with a specific sub-tree (called cmu) containing all of the shared files The AFS Namespace Local Shared / (root) tmp bin . vmunix cmu bin Symbolic links Important Points ● The splitting of the file namespace into local and shared files leads to some loss of location transparency, but this is hardly noticeable to users other than system administrators ● Users© directories are always stored in the shared space, enabling users to access their file from any workstation on the network ● Each workstation©s kernel within AFS is modified to intercept the file access system calls and pass them to Venus when they are non-local accesses System Call Integration Workstation User Venus program UNIX file Non-local file system calls operations UNIX kernel UNIX file system Local disk AFS Caching ● One of the file partitions on the local disk of each workstation is used as a cache, holding the cached copies of files from the shared space ● The workstation cache is usually large enough to accommodate several hundred average-sized files ● This renders the workstation largely independent of the Vice servers once a working set of the current user©s files and frequently used system files has been cached AFS Volumes ● Files are grouped into volumes for ease of location and movement ● Each user©s personal files are generally located in a separate volume ● Other volumes are allocated for system binaries, documentation and library code Open/Read/Write/Close within AFS User process UNIX kernel Venus Net Vice open(FileName, If FileName refers to a mode) file in shared file space, pass the request to Check list of files in local cache. If not Venus. present or there is no valid callback promise, send a request for the file to the Vice server that is custodian of the volume containing the Transfer a copy of the file. file and a callback promise to the workstation. Log the Place the copy of the callback promise. file in the local file Open the local file and system, enter its local return the file name in the local cache descriptor to the list and return the local application. name to UNIX. read(FileDescriptor, Perform a normal Buffer, length) UNIX read operation on the local copy. write(FileDescriptor, Perform a normal Buffer, length) UNIX write operation on the local copy. close(FileDescriptor) Close the local copy and notify Venus that the file has been closed. If the local copy has been changed, send a copy to the Vice server Replace the file that is the custodian of contents and send a the file. callback to all other clients holding callback promises on the file. Cache Consistency ● On the Vice server there©s a "callback promise" process that guarantees that it will notify the Venus process whenever any client modifies a file ● When a server performs a request to update a file, it notifies all of the Venus processes to which it has issued callback promises by sending a callback to each ● A callback is a remote procedure call from a server to a Venus process More Caching ● Whenever Venus handles an open on behalf of a client, it checks the cache ● If the required file is found in the cache, then its token is checked ● If its token value is canceled, then a fresh copy of the file must be fetched from the Vice server ● If its token value is valid, then the cached copy can be opened and used without reference to Vice Why Callbacks? ● The callback-based mechanism for maintaining cache consistency offers the most scalable approach ● It has been shown to dramatically reduce the number of client-server interactions The Vice Service Interface Fetch(fid) -> attr, data Returns the attributes (status) and, optionally, the contents of file identified by the fid and records a callback promise on it. Store(fid, attr, data) Updates the attributes and (optionally) the contents of a specified file. Create() -> fid Creates a new file and records a callback promise on it. Remove(fid) Deletes the specified file. SetLock(fid, mode) Sets a lock on the specified file or directory. The mode of the lock may be shared or exclusive. Locks that are not removed expire after 30 minutes. ReleaseLock(fid) Unlocks the specified file or directory. RemoveCallback(fid) Informs server that a Venus process has flushed a file from its cache. BreakCallback(fid) This call is made by a Vice server to a Venus process. It cancels the callback promise on the relevant file. Update Semantics ● The goal of the cache consistency mechanism is to achieve the best approximation to one-copy file semantics that is practicable without serious performance degradation ● It has been shown that the callback promise mechanism maintains a well-known approximation to one-copy semantics AFS Updates ● AFS does not provide extra mechanisms for the control of concurrent updates ● When a file is closed, a copy of the file is returned to the server, replacing the current version ● All but the update resulting from the last "close" will be silently lost (with no error report given) ● Clients must implement concurrency control independently ● Despite this behaviour, AFS©s update semantics are sufficiently close for the vast majority of existing UNIX programs to operate correctly AFS Performance ● When measured, whole-file caching and the callback protocol led to dramatically reduced loads on the servers ● Server loads of 40% were measured with 18 client nodes running a standard NFS benchmark, as opposed to a nearly 100% load using NFS with the same benchmark ● Transarc Corp. installed AFS on over 1000 servers at 150 sites - the survey showed cache hit ratios in the range 96- 98% for accesses to a sample of 32,000 file volumes holding 200 Gig of data DFS Enhancements/Future Developments ● (For full details, refer to the textbook, pages 359ff) ● WebNFS - allows access to NFS servers from the WWW, Java applets, etc.
Recommended publications
  • Andrew File System (AFS) Google File System February 5, 2004
    Advanced Topics in Computer Systems, CS262B Prof Eric A. Brewer Andrew File System (AFS) Google File System February 5, 2004 I. AFS Goal: large-scale campus wide file system (5000 nodes) o must be scalable, limit work of core servers o good performance o meet FS consistency requirements (?) o managable system admin (despite scale) 400 users in the “prototype” -- a great reality check (makes the conclusions meaningful) o most applications work w/o relinking or recompiling Clients: o user-level process, Venus, that handles local caching, + FS interposition to catch all requests o interaction with servers only on file open/close (implies whole-file caching) o always check cache copy on open() (in prototype) Vice (servers): o Server core is trusted; called “Vice” o servers have one process per active client o shared data among processes only via file system (!) o lock process serializes and manages all lock/unlock requests o read-only replication of namespace (centralized updates with slow propagation) o prototype supported about 20 active clients per server, goal was >50 Revised client cache: o keep data cache on disk, metadata cache in memory o still whole file caching, changes written back only on close o directory updates are write through, but cached locally for reads o instead of check on open(), assume valid unless you get an invalidation callback (server must invalidate all copies before committing an update) o allows name translation to be local (since you can now avoid round-trip for each step of the path) Revised servers: 1 o move
    [Show full text]
  • A Survey of Distributed File Systems
    A Survey of Distributed File Systems M. Satyanarayanan Department of Computer Science Carnegie Mellon University February 1989 Abstract Abstract This paper is a survey of the current state of the art in the design and implementation of distributed file systems. It consists of four major parts: an overview of background material, case studies of a number of contemporary file systems, identification of key design techniques, and an examination of current research issues. The systems surveyed are Sun NFS, Apollo Domain, Andrew, IBM AIX DS, AT&T RFS, and Sprite. The coverage of background material includes a taxonomy of file system issues, a brief history of distributed file systems, and a summary of empirical research on file properties. A comprehensive bibliography forms an important of the paper. Copyright (C) 1988,1989 M. Satyanarayanan The author was supported in the writing of this paper by the National Science Foundation (Contract No. CCR-8657907), Defense Advanced Research Projects Agency (Order No. 4976, Contract F33615-84-K-1520) and the IBM Corporation (Faculty Development Award). The views and conclusions in this document are those of the author and do not represent the official policies of the funding agencies or Carnegie Mellon University. 1 1. Introduction The sharing of data in distributed systems is already common and will become pervasive as these systems grow in scale and importance. Each user in a distributed system is potentially a creator as well as a consumer of data. A user may wish to make his actions contingent upon information from a remote site, or may wish to update remote information.
    [Show full text]
  • The Influence of Scale on Distributed File System Design
    IEEE TRANSAmIONS ON SOFIWARE ENGINEERING, VOL. 18, NO. I, JANUARY lY92 The Influence of Scale on Distributed File System Design Mahadev Satyanarayanan, Member, IEEE Abstract- Scale should be recognized as a primary factor into autonomous or semi-autonomous organizations for man- influencing the architecture and implementation of distributed agement purposes. Hence a distributed system that has many systems. This paper uses Andrew and Coda, distributed file users or nodes will also span many organizations. Regardless systems built at Carnegie Mellon University, to validate this proposition. Performance, operability, and security are dominant of the specific metric of scale, the designs of distributed considerations in the design of these systems. Availability is a systems that scale well are fundamentally different from less further consideration in the design of Coda. Client caching, scalable designs. bulk data transfer, token-based mutual authentication, and hi- In this paper we describe the lessons we have learned erarchical organization of the protection domain have emerged about scalability from the Andrew File System and the Codu as mechanisms that enhance scalability. The separation of con- cerns made possible by functional specialization has also proved File System. These systems are particularly appropriate for valuable in scaling. Heterogeneity is an important by-product our discussion, because they have been designed for growth of growth, but the mechanisms available to cope with it are to thousands of nodes and users. We focus on distributed rudimentary. Physical separation of clients and servers turns out file systems, because they are the most widely used kind of to be a critical requirement for scalability.
    [Show full text]
  • Distributed File Systems
    Please note: Please start working your research project (proposal will be due on Feb. 19 in class) Each group needs to turn in a printed version of their proposal and intermediate report. Also, before class each group needs to email me a DOC version. Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005 Remote Procedure Call (1): at-least-once or at-most-once semantics client: "stub" instead of "proxy" (same function, different names) behaves like a local procedure, marshal arguments, communicate the request server: dispatcher "stub": unmarshal arguments, communicate the results back Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005 Remote Procedure Call (2) client process server process Request Reply client stub server stub procedure procedure client service program Communication Communication procedure module module dispatcher Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005 Sun RPC (1): Designed for client-server communication in the SUN NFS (network file system) Supplied as a part of SUN and other UNIX operating systems Over either UDP or TCP Provides an interface definition language (IDL) initially XDR is for data representation, extended to be IDL less modern than CORBA IDL and Java program numbers (obtained from a central authority) instead of interface names procedure numbers (used as a procedure identifier) instead of procedure names only a single input parameter is allowed (then we have to use a ?) Offers an interface compiler (rpcgen) for C language, which generates the following: client stub server main procedure, dispatcher, and server stub XDR marshalling, unmarshaling Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn.
    [Show full text]
  • Design and Evolution of the Apache Hadoop File System(HDFS)
    Design and Evolution of the Apache Hadoop File System(HDFS) Dhruba Borthakur Engineer@Facebook Committer@Apache HDFS SDC, Sept 19 2011 2011 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved. Outline Introduction Yet another file-system, why? Goals of Hadoop Distributed File System (HDFS) Architecture Overview Rational for Design Decisions 2011 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved. Who Am I? Apache Hadoop FileSystem (HDFS) Committer and PMC Member Core contributor since Hadoop’s infancy Facebook (Hadoop, Hive, Scribe) Yahoo! (Hadoop in Yahoo Search) Veritas (San Point Direct, Veritas File System) IBM Transarc (Andrew File System) Univ of Wisconsin Computer Science Alumni (Condor Project) 2011 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved. Hadoop, Why? Need to process Multi Petabyte Datasets Data may not have strict schema Expensive to build reliability in each application. Failure is expected, rather than exceptional. Elasticity, # of nodes in a cluster is never constant. Need common infrastructure Efficient, reliable, Open Source Apache License 2011 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved. Goals of HDFS Very Large Distributed File System 10K nodes, 1 billion files, 100 PB Assumes Commodity Hardware Files are replicated to handle hardware failure Detect failures and recovers from them Optimized for Batch Processing Data locations exposed so that computations can move to where data resides Provides very high aggregate bandwidth User Space, runs on heterogeneous OS 2011 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved. Commodity Hardware Typically in 2 level architecture – Nodes are commodity PCs – 20-40 nodes/rack – Uplink from rack is 4 gigabit – Rack-internal is 1 gigabit 2011 Storage Developer Conference.
    [Show full text]
  • Andrew File System (AFS)
    Andrew File System ♦ Andrew File System (AFS) 8 started as a joint effort of Carnegie Mellon University and IBM 8 today basis for DCE/DFS: the distributed file system included in the Open Software Foundations’s Distributed Computing Environment 8 some UNIX file system usage observations, as pertaining to caching – infrequently updated shared files and local user files will remain valid for long periods of time (the latter because they are being updated on owners workstations) – allocate large local disk cache, e.g., 100 MByte, that can provide a large enough working set for all files of one user such that the file is still in this cache when used next time – assumptions about typical file accesses (based on empirical evidence) iusually small files, less than 10 Kbytes ireads much more common than writes (appr. 6:1) iusually sequential access, random access not frequently found iuser-locality: most files are used by only one user iburstiness of file references: once file has been used, it will be used in the nearer future with high probability Distributed Systems - Fall 2001 V - 39 © Stefan Leue 2002 tele Andrew File System ♦ Andrew File System (AFS) 8 design decisions for AFS – whole-file serving: entire contents of directories and files transfered from server to client (AFS-3: in chunks of 64 Kbytes) – whole file caching: when file transfered to client it will be stored on that client’s local disk Distributed Systems - Fall 2001 V - 40 © Stefan Leue 2002 tele Andrew File System ♦ AFS architecture: Venus, network and Vice Workstations
    [Show full text]
  • Using the Andrew File System with BSD
    Using the Andrew File System with BSD H. Meiland May 4, 2006 Abstract Since the beginning of networks, one of the basic idea’s has been sharing of files; even though with the Internet as advanced as today, simple platform independent file sharing is not common. Why is the closest thing we use WebDAV, a ’neat trick over http’, instead of a real protocol? In this paper the Andrew File System will be described which has been (and is) the file sharing core of many universities and companies world- wide. Also the reason for it’s relative unawareness in the community will be answered, and it’s actual features and performance in comparison with alternative network filesystems. Finally some information will be given on how to use it with our favorite OS: BSD. 1 History • 1984 Carnegie Mellon University, first release • 1989 TransArc Corporation formed by part of original team members • 1994 TransArc purchased by IBM • 1997 Start of Arla development at stacken.kth.se • 2000 IBM releases AFS in opensource (IBM License) • 2000 http://www.OpenAFS.org • 2006 good support for lot’s of platforms, many new features etc. 1 2 Overview 2.1 User point of view 2.1.1 Global namespace While discussing global filesystem, it is easy to dive into a organization, and explain wonderfull features like having replicas of often accessed data in branch-offices, and moving home-directories to local fileservers when mov- ing employees between departments. An essential feature of AFS is often overlooked: a common root as accesspoint of all AFS stored data.
    [Show full text]
  • The Andrew File System (AFS)
    50 The Andrew File System (AFS) The Andrew File System was introduced at Carnegie-Mellon University (CMU) 1 in the 1980’s [H+88]. Led by the well-known Professor M. Satya- narayanan of Carnegie-Mellon University (“Satya” for short), the main goal of this project was simple: scale. Specifically, how can one design a distributed file system such that a server can support as many clients as possible? Interestingly, there are numerous aspects of design and implementa- tion that affect scalability. Most important is the design of the protocol be- tween clients and servers. In NFS, for example, the protocol forces clients to check with the server periodically to determine if cached contents have changed; because each check uses server resources (including CPU and network bandwidth), frequent checks like this will limit the number of clients a server can respond to and thus limit scalability. AFS also differs from NFS in that from the beginning, reasonable user- visible behavior was a first-class concern. In NFS, cache consistency is hard to describe because it depends directly on low-level implementa- tion details, including client-side cache timeout intervals. In AFS, cache consistency is simple and readily understood: when the file is opened, a client will generally receive the latest consistent copy from the server. 50.1 AFS Version 1 We will discuss two versions of AFS [H+88, S+85]. The first version (which we will call AFSv1, but actually the original system was called the ITC distributed file system [S+85]) had some of the basic design in place, but didn’t scale as desired, which led to a re-design and the final protocol (which we will call AFSv2, or just AFS) [H+88].
    [Show full text]
  • Distributed File Systems
    CS 425 / ECE 428 Distributed Systems Fall 2020 Indranil Gupta (Indy) Lecture 25: Distributed File Systems All slides © IG Jokes for this Topic • Why did NFS like boxing, but AFS did not show up for the fight? Because NFS can do blocks, but AFS is an optimistic person who only sends callback promises. • Did you know why written exams not use too big a page size (larger than letter/A4 size)? Because it can result in false sharing. 2 File System • Contains files and directories (folders) • Higher level of abstraction – Prevents users and processes from dealing with disk blocks and memory blocks 3 File Contents • Typical File Header Block 0 Block 1 … Block N-1 File contents are in here • Timestamps: creation, read, write, header • File type, e.g., .c, .java • Ownership, e.g., edison • Access Control List: who can access this file and in what mode • Reference Count: Number of directories containing this file • May be > 1 (hard linking of files) 4 • When 0, can delete file What about Directories? • They’re just files! • With their “data” containing – The meta-information about files the directory contains – Pointers (on disk) to those files 5 Unix File System: Opening and Closing Files • Uses notion of file descriptors – Handle for a process to access a file • Each process: Needs to open a file before reading/writing file – OS creates an internal datastructure for a file descriptor, returns handle • filedes=open(name, mode) – mode = access mode, e.g., r, w, x • filedes=creat(name, mode) – Create the file, return the file descriptor • close(filedes)
    [Show full text]
  • A Distributed File System for Distributed Conferencing System
    A DISTRIBUTED FILE SYSTEM FOR DISTRIBUTED CONFERENCING SYSTEM By PHILIP S. YEAGER A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2003 Copyright 2003 by Philip S. Yeager ACKNOWLEDGMENTS I would like to thank Dr. Richard Newman for his help and guidance with this project. I would like to express my gratitude to Dr. Jonathan C.L. Liu and Dr. Beverly Sanders for serving on my committee. I would like to thank Dr. Joseph Wilson for serving as a substitute at my defense. I would also like to thank Vijay Manian and the other DCS group members for their advice and contributions. I thank my parents and friends for their encouragement and support. Finally, I would like to thank Candice Williams for everything she has done. Without these people this work would not have been possible. iii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ................................................................................................. iii LIST OF FIGURES ......................................................................................................... viii ABSTRACT....................................................................................................................... ix CHAPTER 1 INTRODUCTION ........................................................................................................1 1.1 Introduction........................................................................................................1
    [Show full text]
  • Of File Systems and Storage Models
    Chapter 4 Of File Systems and Storage Models Disks are always full. It is futile to try to get more disk space. Data expands to fill any void. –Parkinson’sLawasappliedto disks 4.1 Introduction This chapter deals primarily with how we store data. Virtually all computer systems require some way to store data permanently; even so-called “diskless” systems do require access to certain files in order to boot, run and be useful. Albeit stored remotely (or in memory), these bits reside on some sort of storage system. Most frequently, data is stored on local hard disks, but over the last few years more and more of our files have moved “into the cloud”, where di↵erent providers o↵er easy access to large amounts of storage over the network. We have more and more computers depending on access to remote systems, shifting our traditional view of what constitutes a storage device. 74 CHAPTER 4. OF FILE SYSTEMS AND STORAGE MODELS 75 As system administrators, we are responsible for all kinds of devices: we build systems running entirely without local storage just as we maintain the massive enterprise storage arrays that enable decentralized data replication and archival. We manage large numbers of computers with their own hard drives, using a variety of technologies to maximize throughput before the data even gets onto a network. In order to be able to optimize our systems on this level, it is important for us to understand the principal concepts of how data is stored, the di↵erent storage models and disk interfaces.Itisimportanttobeawareofcertain physical properties of our storage media, and the impact they, as well as certain historic limitations, have on how we utilize disks.
    [Show full text]
  • The Evolution of File Systems
    The Evolution of File Systems Thomas Rivera, Hitachi Data Systems Craig Harmer, April 2011 SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individuals may use this material in presentations and literature under the following conditions: Any slide or slides used must be reproduced without modification The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations. This presentation is a project of the SNIA Education Committee. Neither the Author nor the Presenter is an attorney and nothing in this presentation is intended to be nor should be construed as legal advice or opinion. If you need legal advice or legal opinion please contact an attorney. The information presented herein represents the Author's personal opinion and current understanding of the issues involved. The Author, the Presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information. NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK. The Evolution of File Systems 2 © 2012 Storage Networking Industry Association. All Rights Reserved. 2 Abstract The File Systems Evolution Over time additional file systems appeared focusing on specialized requirements such as: data sharing, remote file access, distributed file access, parallel files access, HPC, archiving, security, etc. Due to the dramatic growth of unstructured data, files as the basic units for data containers are morphing into file objects, providing more semantics and feature- rich capabilities for content processing This presentation will: Categorize and explain the basic principles of currently available file system architectures (e.g.
    [Show full text]