Higher Prevalence of Extended-Spectrum Cephalosporin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ompf Downregulation Mediated by Sigma E Or Ompr Activation Confers
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.16.444350; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 OmpF Downregulation Mediated by Sigma E or OmpR Activation Confers 2 Cefalexin Resistance in Escherichia coli in the Absence of Acquired β- 3 Lactamases. 4 5 Maryam ALZAYN1,2, Punyawee DULYAYANGKUL1, Naphat SATAPOOMIN1, 6 Kate J. HEESOM3, Matthew B. AVISON1* 7 8 1School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK 9 2Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman 10 University, Riyadh, Saudi Arabia 11 3University of Bristol Proteomics Facility, Bristol, UK 12 13 * Correspondence to: School of Cellular & Molecular Medicine, University of 14 Bristol, Bristol, United Kingdom. [email protected] 15 16 17 Running Title: OmpR and Sigma E mediated Cefalexin Resistance in E. coli 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.16.444350; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 19 Abstract 20 Cefalexin is a widely used 1st generation cephalosporin, and resistance in 21 Escherichia coli is caused by Extended-Spectrum (e.g. CTX-M) and AmpC β- 22 lactamase production and therefore frequently coincides with 3rd generation 23 cephalosporin resistance. -
Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org). -
Convenia, INN-Cefovecin Sodium
EMA/215997/2006 EMEA/V/C/000098 EPAR summary for the public CONVENIA cefovecin This document is a summary of the European Public Assessment Report. Its purpose is to explain how the assessment done by the Committee for Medicinal Products for Veterinary Use (CVMP) on the basis of the documentation provided, led to the recommendations on the conditions of use. This document cannot replace a face-to-face discussion with your veterinarian. If you need more information about your animal’s medical condition or treatment, contact your veterinarian. If you want more information on the basis of the CVMP recommendations, read the Scientific Discussion (also part of the EPAR). What is Convenia? Convenia contains cefovecin, an antibiotic which is given by injection (under the skin). It is used for dogs and cats. There are two vials in each pack of Convenia, one vial containing a powder, and one vial containing the diluent. The powder is dissolved in the diluent before use to make up a solution for injection. What is Convenia used for? Convenia is used to treat infections caused by certain specific bacteria (see the SPC for further details). It is generally given as a single injection, and the effect of the injection lasts for up to 14 days. Depending on the infection concerned, the injection can be repeated if necessary (up to three times). Convenia is used in dogs to treat skin and soft tissue infections; these are infections on the skin and in the layers just below the skin, such as wounds, abscesses and pyoderma (a skin infection with a rash and pustules). -
Antibiotic and Metal Resistance in Escherichia Coli Isolated from Pig Slaughterhouses in the United Kingdom
antibiotics Article Antibiotic and Metal Resistance in Escherichia coli Isolated from Pig Slaughterhouses in the United Kingdom Hongyan Yang 1,2,*, Shao-Hung Wei 2,3, Jon L. Hobman 2 and Christine E. R. Dodd 2 1 College of Life Sciences, Northeast Forestry University, Harbin 150040, China 2 School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK; [email protected] (S.-H.W.); [email protected] (J.L.H.); [email protected] (C.E.R.D.) 3 JHL Biotech, Zhubei City, Hsinchu County 302, Taiwan * Correspondence: [email protected] Received: 28 September 2020; Accepted: 27 October 2020; Published: 28 October 2020 Abstract: Antimicrobial resistance is currently an important concern, but there are few data on the co-presence of metal and antibiotic resistance in potentially pathogenic Escherichia coli entering the food chain from pork, which may threaten human health. We have examined the phenotypic and genotypic resistances to 18 antibiotics and 3 metals (mercury, silver, and copper) of E. coli from pig slaughterhouses in the United Kingdom. The results showed resistances to oxytetracycline, streptomycin, sulphonamide, ampicillin, chloramphenicol, trimethoprim–sulfamethoxazole, ceftiofur, amoxicillin–clavulanic acid, aztreonam, and nitrofurantoin. The top three resistances were oxytetracycline (64%), streptomycin (28%), and sulphonamide (16%). Two strains were resistant to six kinds of antibiotics. Three carried the blaTEM gene. Fifteen strains (18.75%) were resistant to 25 µg/mL mercury and five (6.25%) of these to 50 µg/mL; merA and merC genes were detected in 14 strains. Thirty-five strains (43.75%) showed resistance to silver, with 19 possessing silA, silB, and silE genes. -
AMEG Categorisation of Antibiotics
12 December 2019 EMA/CVMP/CHMP/682198/2017 Committee for Medicinal Products for Veterinary use (CVMP) Committee for Medicinal Products for Human Use (CHMP) Categorisation of antibiotics in the European Union Answer to the request from the European Commission for updating the scientific advice on the impact on public health and animal health of the use of antibiotics in animals Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 29 October 2018 Adopted by the CVMP for release for consultation 24 January 2019 Adopted by the CHMP for release for consultation 31 January 2019 Start of public consultation 5 February 2019 End of consultation (deadline for comments) 30 April 2019 Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 19 November 2019 Adopted by the CVMP 5 December 2019 Adopted by the CHMP 12 December 2019 Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Categorisation of antibiotics in the European Union Table of Contents 1. Summary assessment and recommendations .......................................... 3 2. Introduction ............................................................................................ 7 2.1. Background ........................................................................................................ -
Distribution of Bacterial 1,3-Galactosyltransferase Genes In
Distribution of Bacterial α1,3-Galactosyltransferase Genes in the Human Gut Microbiome Emmanuel Montassier, Gabriel Al-Ghalith, Camille Mathé, Quentin Le Bastard, Venceslas Douillard, Abel Garnier, Rémi Guimon, Bastien Raimondeau, Yann Touchefeu, Emilie Duchalais, et al. To cite this version: Emmanuel Montassier, Gabriel Al-Ghalith, Camille Mathé, Quentin Le Bastard, Venceslas Douillard, et al.. Distribution of Bacterial α1,3-Galactosyltransferase Genes in the Human Gut Microbiome. Frontiers in Immunology, Frontiers, 2020, 10, pp.3000. 10.3389/fimmu.2019.03000. inserm-02490517 HAL Id: inserm-02490517 https://www.hal.inserm.fr/inserm-02490517 Submitted on 25 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ORIGINAL RESEARCH published: 13 January 2020 doi: 10.3389/fimmu.2019.03000 Distribution of Bacterial α1,3-Galactosyltransferase Genes in the Human Gut Microbiome Emmanuel Montassier 1,2,3, Gabriel A. Al-Ghalith 4, Camille Mathé 5,6, Quentin Le Bastard 1,3, Venceslas Douillard 5,6,7, Abel Garnier 5,6,7, Rémi Guimon 5,6,7, Bastien Raimondeau 5,6, Yann Touchefeu 8,9, Emilie Duchalais 8,9, Nicolas Vince 5,6, Sophie Limou 5,6, Pierre-Antoine Gourraud 5,6,7, David A. -
Escherichia Fergusonii: a New Emerging Bacterial Disease of Farmed Nile Tilapia (Oreochromis Niloticus)
Global Veterinaria 14 (2): 268-273, 2015 ISSN 1992-6197 © IDOSI Publications, 2015 DOI: 10.5829/idosi.gv.2015.14.02.9379 Escherichia fergusonii: A New Emerging Bacterial Disease of Farmed Nile Tilapia (Oreochromis niloticus) A.Y. Gaafar, A.M. Younes, A.M. Kenawy, W.S. Soliman and Laila A. Mohamed Department of Hydrobiology, National Research Centre (NRC), El-Bohooth Street (Formerly El-Tahrir St.) Dokki, Gizza 12622, Egypt Abstract: Tilapia is one of the most important cultured freshwater fish in Egypt. In June (2013) an unidentified bacterial disease outbreak occurred in earthen ponds raised Nile tilapia (Oreochromis niloticus). The API 20E test identified the strain as sorbitol-negative and positive for ADH, ornithine decarboxylase and amygdalin and provided the code 5144113, corresponding to E. fergusonii. The clinical signs of diseased fish showed emaciation, focal reddening of the skin at the base of the fins, exophthalmia with inflammation of periorbital area. Postmortem lesions showed enlargement of gallbladder and spleen with discolored hepatopancreas and congested posterior kidney. Lethal Dose fifty (LD50 ) was performed for experimental infection studies. Histopathological examination of naturally as well as experimentally infected specimens revealed pathological lesions in the hepatopancreas, posterior kidney, spleen, myocardium, skin and gills. The lesions ranged from circulatory, degenerative changes and mononuclear cells infiltrations to necrotic changes in the corresponding organs. As a conclusion, this study was the first evidence that E. fergusonii can infect fish especially farmed tilapia, causing considerable mortality and morbidity, in heavily manured earthen ponds. E. fergusonii causes significant pathological lesions in tilapia that are comparable to other susceptible terrestrial animals. -
Synergism of the Combination of Traditional Antibiotics and Novel Phenolic Compounds Against Escherichia Coli
pathogens Article Synergism of the Combination of Traditional Antibiotics and Novel Phenolic Compounds against Escherichia coli Md. Akil Hossain 1 , Hae-Chul Park 1, Sung-Won Park 1, Seung-Chun Park 2, Min-Goo Seo 3 , Moon Her 1 and JeongWoo Kang 1,* 1 Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; [email protected] (M.A.H.); [email protected] (H.-C.P.); [email protected] (S.-W.P.); [email protected] (M.H.) 2 Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu 41566, Korea; [email protected] 3 Division of Vectors and Parasitic Diseases, Korea Centers for Diseases Control and Prevention, Cheongju 28159, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-54-912-0564 Received: 31 August 2020; Accepted: 1 October 2020; Published: 3 October 2020 Abstract: Pathogenic Escherichia coli (E. coli)-associated infections are becoming difficult to treat because of the rapid emergence of antibiotic-resistant strains. Novel approaches are required to prevent the progression of resistance and to extend the lifespan of existing antibiotics. This study was designed to improve the effectiveness of traditional antibiotics against E. coli using a combination of the gallic acid (GA), hamamelitannin, epicatechin gallate, epigallocatechin, and epicatechin. The fractional inhibitory concentration index (FICI) of each of the phenolic compound-antibiotic combinations against E. coli was ascertained. Considering the clinical significance and FICI, two combinations (hamamelitannin-erythromycin and GA-ampicillin) were evaluated for their impact on certain virulence factors of E. coli. Finally, the effects of hamamelitannin and GA on Rattus norvegicus (IEC-6) cell viability were investigated. -
Computational Antibiotics Book
Andrew V DeLong, Jared C Harris, Brittany S Larcart, Chandler B Massey, Chelsie D Northcutt, Somuayiro N Nwokike, Oscar A Otieno, Harsh M Patel, Mehulkumar P Patel, Pratik Pravin Patel, Eugene I Rowell, Brandon M Rush, Marc-Edwin G Saint-Louis, Amy M Vardeman, Felicia N Woods, Giso Abadi, Thomas J. Manning Computational Antibiotics Valdosta State University is located in South Georgia. Computational Antibiotics Index • Computational Details and Website Access (p. 8) • Acknowledgements (p. 9) • Dedications (p. 11) • Antibiotic Historical Introduction (p. 13) Introduction to Antibiotic groups • Penicillin’s (p. 21) • Carbapenems (p. 22) • Oxazolidines (p. 23) • Rifamycin (p. 24) • Lincosamides (p. 25) • Quinolones (p. 26) • Polypeptides antibiotics (p. 27) • Glycopeptide Antibiotics (p. 28) • Sulfonamides (p. 29) • Lipoglycopeptides (p. 30) • First Generation Cephalosporins (p. 31) • Cephalosporin Third Generation (p. 32) • Fourth-Generation Cephalosporins (p. 33) • Fifth Generation Cephalosporin’s (p. 34) • Tetracycline antibiotics (p. 35) Computational Antibiotics Antibiotics Covered (in alphabetical order) Amikacin (p. 36) Cefempidone (p. 98) Ceftizoxime (p. 159) Amoxicillin (p. 38) Cefepime (p. 100) Ceftobiprole (p. 161) Ampicillin (p. 40) Cefetamet (p. 102) Ceftoxide (p. 163) Arsphenamine (p. 42) Cefetrizole (p. 104) Ceftriaxone (p. 165) Azithromycin (p.44) Cefivitril (p. 106) Cefuracetime (p. 167) Aziocillin (p. 46) Cefixime (p. 108) Cefuroxime (p. 169) Aztreonam (p.48) Cefmatilen ( p. 110) Cefuzonam (p. 171) Bacampicillin (p. 50) Cefmetazole (p. 112) Cefalexin (p. 173) Bacitracin (p. 52) Cefodizime (p. 114) Chloramphenicol (p.175) Balofloxacin (p. 54) Cefonicid (p. 116) Cilastatin (p. 177) Carbenicillin (p. 56) Cefoperazone (p. 118) Ciprofloxacin (p. 179) Cefacetrile (p. 58) Cefoselis (p. 120) Clarithromycin (p. 181) Cefaclor (p. -
Staphylococcus Aureus Phage Lysate (SPL) Use for Control of Recurrent Eczematizing Pyoderma of Dogs with Atopic Dermatitis 2011 – by Dr
RECURRENT PYODERMA IN DOGS WITH ATOPIC DERMATITIS YOU CAN CONTROL IT! READ HOW Staphage Lysate (SPL)® CAN HELP. A STAPHYLOCOCCAL BIOLOGIC REDUCES PRURITUS AND RECURRENCES OF INFECTION WORKS IN DOGS WITH MRSP AND MRSA REDUCES THE OVERUSE OF ANTIBIOTICS WHICH OFTEN LEADS TO ANTIBIOTIC RESISTANT STAPHYLOCOCCUS ALL NATURAL - HAS NO PRESERVATIVES FOR LONG-TERM CONTROL THE ANSWER IS Staphage Lysate (SPL)® To order Staphage Lysate (SPL)® CALL - 800 .562 .5541 FAX - 610 .543 .6298 EMAIL - [email protected] Abstract from Masters Thesis - Staphylococcus Aureus Phage Lysate (SPL) use for control of recurrent eczematizing pyoderma of dogs with atopic dermatitis 2011 – By Dr. Suzana Evelyn Bahr Solomon – Pontifica Universidade Católica do Paraná, São José dos Pinhais, Paraná, Brazil Recurrent staphylococcal infections are The aim of this study was to evaluate whether frequent in dogs with atopic dermatitis. the use of Staphylococcus aureus Phage Several factors such as decrease of epidermal Lysate (Staphage Lysate (SPL)®), a bacterin barrier function, decrease in production of obtained from S. aureus used in vaccine antimicrobial peptides and increased protocol, can minimize the symptoms colonization and adherence of bacteria to of recurrent pyoderma and increase the keratinocytes seem to combine to make interval between episodes in atopic dogs. bacterial pyoderma refractory to treatment. Twelve dogs with a history of recurrent Systemic antibiotic therapy in the short-term is bacterial pyoderma received SPL® at effective for the treatment of episodes and with increasing intervals for twenty three weeks. pulse therapy, might contribute to long-term An efficacy rate of 83.33% for the control control. However, in addition to undesirable of pruritus and regression of lesions was side-effects, microbial resistance has become observed. -
Stability of Ceftiofur Sodium and Cefquinome Sulphate in Intravenous Solutions
Hindawi Publishing Corporation e Scientific World Journal Volume 2014, Article ID 583461, 8 pages http://dx.doi.org/10.1155/2014/583461 Research Article Stability of Ceftiofur Sodium and Cefquinome Sulphate in Intravenous Solutions Agnieszka DoBhaN, Anna JeliNska, and Marcelina Bwbenek Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan,´ Poland Correspondence should be addressed to Agnieszka Dołhan;´ agnieszka [email protected] Received 3 March 2014; Accepted 19 May 2014; Published 3 June 2014 Academic Editor: Sadhana J. Rajput Copyright © 2014 Agnieszka Dołhan´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Stability of ceftiofur sodium and cefquinome sulphate in intravenous solutions was studied. Chromatographic separation and quantitative determination were performed by using a high-performance liquid chromatography with UV-DAD detection. During the stability study, poly(vinylchloride) minibags were filled with a solution containing 5 mg of ceftiofur sodium or cefquinome sulphate and diluted to 0.2 mg/mL with suitable intravenous solution depending on the test conditions. The solutions for the study ∘ ∘ ∘ were protected from light and stored at room temperature (22 C), refrigerated (6 C), frozen (−20 C)for30days,andthenthawedat ∘ ∘ room temperature. A comparison of results obtained at 22 Cand6C for the same intravenous solutions showed that temperature as well as components of solutions and their concentration had an influence on the stability of ceftiofur sodium and cefquinome sulphate. It was found that ceftiofur sodium and cefquinome sulphate dissolved in intravenous solutions used in this study may be ∘ stored at room temperature and at 6 C for up to 48 h. -
A Thesis Entitled an Oral Dosage Form of Ceftriaxone Sodium Using Enteric
A Thesis entitled An oral dosage form of ceftriaxone sodium using enteric coated sustained release calcium alginate beads by Darshan Lalwani Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences with Industrial Pharmacy Option _________________________________________ Jerry Nesamony, Ph.D., Committee Chair _________________________________________ Sai Hanuman Sagar Boddu, Ph.D, Committee Member _________________________________________ Youssef Sari, Ph.D., Committee Member _________________________________________ Patricia R. Komuniecki, PhD, Dean College of Graduate Studies The University of Toledo May 2015 Copyright 2015, Darshan Narendra Lalwani This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of An oral dosage form of ceftriaxone sodium using enteric coated sustained release calcium alginate beads by Darshan Lalwani Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences with Industrial Pharmacy option The University of Toledo May 2015 Purpose: Ceftriaxone (CTZ) is a broad spectrum semisynthetic, third generation cephalosporin antibiotic. It is an acid labile drug belonging to class III of biopharmaceutical classification system (BCS). It can be solvated quickly but suffers from the drawback of poor oral bioavailability owing to its limited permeability through