Ompf Downregulation Mediated by Sigma E Or Ompr Activation Confers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Download
VOLUME 7 NOMOR 2 DESEMBER 2020 ISSN 2548 – 611X JURNAL BIOTEKNOLOGI & BIOSAINS INDONESIA Homepage Jurnal: http://ejurnal.bppt.go.id/index.php/JBBI IN SILICO STUDY OF CEPHALOSPORIN DERIVATIVES TO INHIBIT THE ACTIONS OF Pseudomonas aeruginosa Studi In Silico Senyawa Turunan Sefalosporin dalam Menghambat Aktivitas Bakteri Pseudomonas aeruginosa Saly Amaliacahya Aprilian*, Firdayani, Susi Kusumaningrum Pusat Teknologi Farmasi dan Medika, BPPT, Gedung LAPTIAB 610-612 Kawasan Puspiptek, Setu, Tangerang Selatan, Banten 15314 *Email: [email protected] ABSTRAK Infeksi yang diakibatkan oleh bakteri gram-negatif, seperti Pseudomonas aeruginosa telah menyebar luas di seluruh dunia. Hal ini menjadi ancaman terhadap kesehatan masyarakat karena merupakan bakteri yang multi-drug resistance dan sulit diobati. Oleh karena itu, pentingnya pengembangan agen antimikroba untuk mengobati infeksi semakin meningkat dan salah satu yang saat ini banyak dikembangkan adalah senyawa turunan sefalosporin. Penelitian ini melakukan studi mengenai interaksi tiga dimensi (3D) antara antibiotik dari senyawa turunan Sefalosporin dengan penicillin-binding proteins (PBPs) pada P. aeruginosa. Tujuan dari penelitian ini adalah untuk mengklarifikasi bahwa agen antimikroba yang berasal dari senyawa turunan sefalosporin efektif untuk menghambat aktivitas bakteri P. aeruginosa. Struktur PBPs didapatkan dari Protein Data Bank (PDB ID: 5DF9). Sketsa struktur turunan sefalosporin digambar menggunakan Marvins Sketch. Kemudian, studi mengenai interaksi antara antibiotik dan PBPs dilakukan menggunakan program Mollegro Virtual Docker 6.0. Hasil yang didapatkan yaitu nilai rerank score terendah dari kelima generasi sefalosporin, di antaranya sefalotin (-116.306), sefotetan (-133.605), sefoperazon (-160.805), sefpirom (- 144.045), dan seftarolin fosamil (-146.398). Keywords: antibiotik, penicillin-binding proteins, P. aeruginosa, sefalosporin, studi interaksi ABSTRACT Infections caused by gram-negative bacteria, such as Pseudomonas aeruginosa, have been spreading worldwide. -
Antibiotic and Metal Resistance in Escherichia Coli Isolated from Pig Slaughterhouses in the United Kingdom
antibiotics Article Antibiotic and Metal Resistance in Escherichia coli Isolated from Pig Slaughterhouses in the United Kingdom Hongyan Yang 1,2,*, Shao-Hung Wei 2,3, Jon L. Hobman 2 and Christine E. R. Dodd 2 1 College of Life Sciences, Northeast Forestry University, Harbin 150040, China 2 School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK; [email protected] (S.-H.W.); [email protected] (J.L.H.); [email protected] (C.E.R.D.) 3 JHL Biotech, Zhubei City, Hsinchu County 302, Taiwan * Correspondence: [email protected] Received: 28 September 2020; Accepted: 27 October 2020; Published: 28 October 2020 Abstract: Antimicrobial resistance is currently an important concern, but there are few data on the co-presence of metal and antibiotic resistance in potentially pathogenic Escherichia coli entering the food chain from pork, which may threaten human health. We have examined the phenotypic and genotypic resistances to 18 antibiotics and 3 metals (mercury, silver, and copper) of E. coli from pig slaughterhouses in the United Kingdom. The results showed resistances to oxytetracycline, streptomycin, sulphonamide, ampicillin, chloramphenicol, trimethoprim–sulfamethoxazole, ceftiofur, amoxicillin–clavulanic acid, aztreonam, and nitrofurantoin. The top three resistances were oxytetracycline (64%), streptomycin (28%), and sulphonamide (16%). Two strains were resistant to six kinds of antibiotics. Three carried the blaTEM gene. Fifteen strains (18.75%) were resistant to 25 µg/mL mercury and five (6.25%) of these to 50 µg/mL; merA and merC genes were detected in 14 strains. Thirty-five strains (43.75%) showed resistance to silver, with 19 possessing silA, silB, and silE genes. -
AMEG Categorisation of Antibiotics
12 December 2019 EMA/CVMP/CHMP/682198/2017 Committee for Medicinal Products for Veterinary use (CVMP) Committee for Medicinal Products for Human Use (CHMP) Categorisation of antibiotics in the European Union Answer to the request from the European Commission for updating the scientific advice on the impact on public health and animal health of the use of antibiotics in animals Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 29 October 2018 Adopted by the CVMP for release for consultation 24 January 2019 Adopted by the CHMP for release for consultation 31 January 2019 Start of public consultation 5 February 2019 End of consultation (deadline for comments) 30 April 2019 Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 19 November 2019 Adopted by the CVMP 5 December 2019 Adopted by the CHMP 12 December 2019 Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Categorisation of antibiotics in the European Union Table of Contents 1. Summary assessment and recommendations .......................................... 3 2. Introduction ............................................................................................ 7 2.1. Background ........................................................................................................ -
Synergism of the Combination of Traditional Antibiotics and Novel Phenolic Compounds Against Escherichia Coli
pathogens Article Synergism of the Combination of Traditional Antibiotics and Novel Phenolic Compounds against Escherichia coli Md. Akil Hossain 1 , Hae-Chul Park 1, Sung-Won Park 1, Seung-Chun Park 2, Min-Goo Seo 3 , Moon Her 1 and JeongWoo Kang 1,* 1 Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; [email protected] (M.A.H.); [email protected] (H.-C.P.); [email protected] (S.-W.P.); [email protected] (M.H.) 2 Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu 41566, Korea; [email protected] 3 Division of Vectors and Parasitic Diseases, Korea Centers for Diseases Control and Prevention, Cheongju 28159, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-54-912-0564 Received: 31 August 2020; Accepted: 1 October 2020; Published: 3 October 2020 Abstract: Pathogenic Escherichia coli (E. coli)-associated infections are becoming difficult to treat because of the rapid emergence of antibiotic-resistant strains. Novel approaches are required to prevent the progression of resistance and to extend the lifespan of existing antibiotics. This study was designed to improve the effectiveness of traditional antibiotics against E. coli using a combination of the gallic acid (GA), hamamelitannin, epicatechin gallate, epigallocatechin, and epicatechin. The fractional inhibitory concentration index (FICI) of each of the phenolic compound-antibiotic combinations against E. coli was ascertained. Considering the clinical significance and FICI, two combinations (hamamelitannin-erythromycin and GA-ampicillin) were evaluated for their impact on certain virulence factors of E. coli. Finally, the effects of hamamelitannin and GA on Rattus norvegicus (IEC-6) cell viability were investigated. -
Computational Antibiotics Book
Andrew V DeLong, Jared C Harris, Brittany S Larcart, Chandler B Massey, Chelsie D Northcutt, Somuayiro N Nwokike, Oscar A Otieno, Harsh M Patel, Mehulkumar P Patel, Pratik Pravin Patel, Eugene I Rowell, Brandon M Rush, Marc-Edwin G Saint-Louis, Amy M Vardeman, Felicia N Woods, Giso Abadi, Thomas J. Manning Computational Antibiotics Valdosta State University is located in South Georgia. Computational Antibiotics Index • Computational Details and Website Access (p. 8) • Acknowledgements (p. 9) • Dedications (p. 11) • Antibiotic Historical Introduction (p. 13) Introduction to Antibiotic groups • Penicillin’s (p. 21) • Carbapenems (p. 22) • Oxazolidines (p. 23) • Rifamycin (p. 24) • Lincosamides (p. 25) • Quinolones (p. 26) • Polypeptides antibiotics (p. 27) • Glycopeptide Antibiotics (p. 28) • Sulfonamides (p. 29) • Lipoglycopeptides (p. 30) • First Generation Cephalosporins (p. 31) • Cephalosporin Third Generation (p. 32) • Fourth-Generation Cephalosporins (p. 33) • Fifth Generation Cephalosporin’s (p. 34) • Tetracycline antibiotics (p. 35) Computational Antibiotics Antibiotics Covered (in alphabetical order) Amikacin (p. 36) Cefempidone (p. 98) Ceftizoxime (p. 159) Amoxicillin (p. 38) Cefepime (p. 100) Ceftobiprole (p. 161) Ampicillin (p. 40) Cefetamet (p. 102) Ceftoxide (p. 163) Arsphenamine (p. 42) Cefetrizole (p. 104) Ceftriaxone (p. 165) Azithromycin (p.44) Cefivitril (p. 106) Cefuracetime (p. 167) Aziocillin (p. 46) Cefixime (p. 108) Cefuroxime (p. 169) Aztreonam (p.48) Cefmatilen ( p. 110) Cefuzonam (p. 171) Bacampicillin (p. 50) Cefmetazole (p. 112) Cefalexin (p. 173) Bacitracin (p. 52) Cefodizime (p. 114) Chloramphenicol (p.175) Balofloxacin (p. 54) Cefonicid (p. 116) Cilastatin (p. 177) Carbenicillin (p. 56) Cefoperazone (p. 118) Ciprofloxacin (p. 179) Cefacetrile (p. 58) Cefoselis (p. 120) Clarithromycin (p. 181) Cefaclor (p. -
Stability of Ceftiofur Sodium and Cefquinome Sulphate in Intravenous Solutions
Hindawi Publishing Corporation e Scientific World Journal Volume 2014, Article ID 583461, 8 pages http://dx.doi.org/10.1155/2014/583461 Research Article Stability of Ceftiofur Sodium and Cefquinome Sulphate in Intravenous Solutions Agnieszka DoBhaN, Anna JeliNska, and Marcelina Bwbenek Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan,´ Poland Correspondence should be addressed to Agnieszka Dołhan;´ agnieszka [email protected] Received 3 March 2014; Accepted 19 May 2014; Published 3 June 2014 Academic Editor: Sadhana J. Rajput Copyright © 2014 Agnieszka Dołhan´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Stability of ceftiofur sodium and cefquinome sulphate in intravenous solutions was studied. Chromatographic separation and quantitative determination were performed by using a high-performance liquid chromatography with UV-DAD detection. During the stability study, poly(vinylchloride) minibags were filled with a solution containing 5 mg of ceftiofur sodium or cefquinome sulphate and diluted to 0.2 mg/mL with suitable intravenous solution depending on the test conditions. The solutions for the study ∘ ∘ ∘ were protected from light and stored at room temperature (22 C), refrigerated (6 C), frozen (−20 C)for30days,andthenthawedat ∘ ∘ room temperature. A comparison of results obtained at 22 Cand6C for the same intravenous solutions showed that temperature as well as components of solutions and their concentration had an influence on the stability of ceftiofur sodium and cefquinome sulphate. It was found that ceftiofur sodium and cefquinome sulphate dissolved in intravenous solutions used in this study may be ∘ stored at room temperature and at 6 C for up to 48 h. -
Pharmaceutical Appendix to the Tariff Schedule 2
Harmonized Tariff Schedule of the United States (2006) – Supplement 1 (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2006) – Supplement 1 (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABACAVIR 136470-78-5 ACEXAMIC ACID 57-08-9 ABAFUNGIN 129639-79-8 ACICLOVIR 59277-89-3 ABAMECTIN 65195-55-3 ACIFRAN 72420-38-3 ABANOQUIL 90402-40-7 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABCIXIMAB 143653-53-6 ACITEMATE 101197-99-3 ABECARNIL 111841-85-1 ACITRETIN 55079-83-9 ABIRATERONE 154229-19-3 ACIVICIN 42228-92-2 ABITESARTAN 137882-98-5 ACLANTATE 39633-62-0 ABLUKAST 96566-25-5 ACLARUBICIN 57576-44-0 ABUNIDAZOLE 91017-58-2 ACLATONIUM NAPADISILATE 55077-30-0 ACADESINE 2627-69-2 ACODAZOLE 79152-85-5 ACAMPROSATE 77337-76-9 ACONIAZIDE 13410-86-1 ACAPRAZINE 55485-20-6 ACOXATRINE 748-44-7 ACARBOSE 56180-94-0 ACREOZAST 123548-56-1 ACEBROCHOL 514-50-1 ACRIDOREX 47487-22-9 ACEBURIC -
A Thesis Entitled an Oral Dosage Form of Ceftriaxone Sodium Using Enteric
A Thesis entitled An oral dosage form of ceftriaxone sodium using enteric coated sustained release calcium alginate beads by Darshan Lalwani Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences with Industrial Pharmacy Option _________________________________________ Jerry Nesamony, Ph.D., Committee Chair _________________________________________ Sai Hanuman Sagar Boddu, Ph.D, Committee Member _________________________________________ Youssef Sari, Ph.D., Committee Member _________________________________________ Patricia R. Komuniecki, PhD, Dean College of Graduate Studies The University of Toledo May 2015 Copyright 2015, Darshan Narendra Lalwani This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of An oral dosage form of ceftriaxone sodium using enteric coated sustained release calcium alginate beads by Darshan Lalwani Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences with Industrial Pharmacy option The University of Toledo May 2015 Purpose: Ceftriaxone (CTZ) is a broad spectrum semisynthetic, third generation cephalosporin antibiotic. It is an acid labile drug belonging to class III of biopharmaceutical classification system (BCS). It can be solvated quickly but suffers from the drawback of poor oral bioavailability owing to its limited permeability through -
The Susceptibility to Antibiotics of Some Bacterial Strains Isolated from Cow Milk with Mastitis
The Susceptibility to Antibiotics of Some Bacterial Strains Isolated from Cow Milk with Mastitis George Cosmin NADǍŞ1, Nicodim FIŢ1, Cosmina BOUARI1, Flore CHIRILǍ1, Sorin RĂPUNTEAN1, Vasile RUS1 1University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine 3-5 Mănăştur Street, 400372, Cluj-Napoca, Romania * corresponding author e-mail: [email protected] Bulletin UASVM Veterinary Medicine 71(2) / 2014, Print ISSN 1843-5270; Electronic ISSN 1843-5378 doi:10.15835/buasvmcn-vm: 10697 Abstract Recent increased resistance to antibiotics of bacterial strains isolated from cow milk with mastitis represented a strong motivation for a study that would indicate the most eficient antibiotic for treatment. This study evaluated a total number of 31 samples collected from cows suffering from mastitis. Each sample was initially processed by the smear preparation method and Gram staining. Streaking methods were performed on both blood agar and glucose agar. The isolated pathogens were than tested regarding their sensitivity using Kirby Bauer disk diffusion test to the following antibiotics: Amoxicillin and clavulanic acid, Cefquinome, Enroloxacin, Florfenicol, Gentamicin, Linco-spectin and Mastidiscs. The results demonstrated that single pathogens were involved in mastitis etiology in most of the cases, with rare associations. Staphylococci and streptococci strains were most frequently isolated, in 8 samples each, followed by E. coli with 4 strains and Klebsiella, Bacillus cereus and Corynebacterium in 1 sample. Regarding overall sensitivity, Amoxicillin and clavulanic acid was the most eficient antibiotic with an average of the inhibition area of 22.13 mm, followed by Mastidiscs (21.57 mm), Enroloxacin (21.17 mm), Linco-spectin (18.71 mm), Cefquinome (18.33), Florfenicol (17.76 mm) and Gentamicin (16.57). -
Higher Prevalence of Extended-Spectrum Cephalosporin
antibiotics Article Higher Prevalence of Extended-Spectrum Cephalosporin-Resistant Enterobacterales in Dogs Attended for Enteric Viruses in Brazil Before and After Treatment with Cephalosporins Marília Salgado-Caxito 1,2,* , Andrea I. Moreno-Switt 2,3, Antonio Carlos Paes 1, Carlos Shiva 4 , Jose M. Munita 2,5 , Lina Rivas 2,5 and Julio A. Benavides 2,6,7,* 1 Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, Sao Paulo State University, Botucatu 18618000, Brazil; [email protected] 2 Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile; [email protected] (A.I.M.-S.); [email protected] (J.M.M.); [email protected] (L.R.) 3 Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago 8940000, Chile 4 Faculty of Veterinary Medicine and Zootechnics, Universidad Cayetano Heredia of Peru, Lima 15102, Peru; [email protected] 5 Genomics and Resistant Microbes Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile 6 Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile 7 Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile Citation: Salgado-Caxito, M.l.; * Correspondence: [email protected] (M.S.-C.); [email protected] (J.A.B.) Moreno-Switt, A.I; Paes, A.C.; Shiva, C.; Munita, J.M; Rivas, L.; Abstract: The extensive use of antibiotics is a leading cause for the emergence and spread of antimicro- Benavides, J.A Higher Prevalence of Extended-Spectrum Cephalosporin- bial resistance (AMR) among dogs. -
New Livestock Antibiotic Rules for California
New Livestock Antibiotic Rules for California alifornia Senate Bill 27 was signed by Governor Brown on October 10, 2015 with an • MIADs may not be administered for purposes of Cimplementation date of January 1, 2018. It set promoting weight gain or improving feed effi ciency. aggressive, groundbreaking standards for antimicrobial drug use in California livestock and was supported by the • Livestock owners, including apiculturists, backyard poul- try owners, small livestock herd or fl ock owners, or hobby CVMA. farmers may only purchase and administer MIADs with a prescription from a California licensed veterinarian with a As of January 1, all medically important antimicrobial valid VCPR, unless intended to be fed to livestock which drugs (MIADs) used in livestock may only be obtained requires a veterinary feed directive. through a veterinary prescription or a veterinary feed directive pursuant to a valid veterinarian-client-patient • Feed stores will no longer sell MIADs over the counter relationship (VCPR). In order for a VCPR to be valid, and feed mills will no longer add MIADs to feed without the client must authorize the veterinarian to assume a veterinary feed directive (VFD) (the latter commenced responsibility for making medical judgments regarding in 2017 pursuant to federal regulations). the health of the animal and the veterinarian must assume this responsibility. The veterinarian must then have Many livestock owners are not accustomed to having a suffi cient knowledge of the animal(s) to initiate at least a veterinarian and have been purchasing MIADs at the feed general or preliminary diagnosis. This can only be done store. This is no longer an option and they may ask where through an in-person physical exam of the animal(s) or by they can get their prescription fi lled. -
Concept Paper
Concept Paper: Potential Approach for Ranking of Antimicrobial Drugs According to Their Importance in Human Medicine: A Risk Management Tool for Antimicrobial New Animal Drugs Introduction This concept paper discusses a potential approach to considering the human medical importance of antimicrobial drugs when assessing and managing antimicrobial resistance risks associated with the use of antimicrobial drugs in animals. In 2003, FDA established a list ranking antimicrobial drugs according to their relative importance in human medicine primarily for the purpose of supporting a qualitative risk assessment process outlined in agency guidance. It was envisioned by the Agency at the time the current medical importance rankings list was published that it would periodically reassess the rankings to align with contemporary science and current human clinical practices. To that end, this paper describes a potential revised process for ranking antimicrobial drugs according to their relative importance in human medicine, potential revised criteria to determine the medical importance rankings, and the list of antimicrobial drug medical importance rankings that would result if those criteria were to be used. Disclaimer: This concept paper is for discussion purposes only. The intent of this concept paper is to obtain public comment and early input on a potential approach to consider the human medical importance of antimicrobial drugs when assessing and managing antimicrobial resistance risks associated with the use of antimicrobial drugs in animals. This concept paper does not contain recommendations and does not constitute draft or final guidance by the Food and Drug Administration. It should not be used for any purpose other than to facilitate public comment.