Massachusetts Estuaries Project

Total Page:16

File Type:pdf, Size:1020Kb

Massachusetts Estuaries Project Massachusetts Estuaries Project Linked Watershed-Embayment Model to Determine Critical Nitrogen Loading Thresholds for the Apponagansett Bay Estuary, Dartmouth, MA University of Massachusetts Dartmouth Massachusetts Department of School of Marine Science and Technology Environmental Protection DRAFT REPORT – JUNE 2015 Massachusetts Estuaries Project Linked Watershed-Embayment Model to Determine Critical Nitrogen Loading Thresholds for the Apponagansett Bay Estuary, Dartmouth, MA DRAFT REPORT – JUNE 2015 Brian Howes Tony Millham Ed Eichner Roland Samimy David Schlezinger John Ramsey Trey Ruthven Contributors: US Geological Survey Don Walters and John Masterson Applied Coastal Research and Engineering, Inc. Elizabeth Hunt and Sean Kelley Massachusetts Department of Environmental Protection Charles Costello and Brian Dudley SMAST Coastal Systems Program Jennifer Benson, Michael Bartlett, Sara Sampieri, and Elizabeth White Lloyd Center for the Environment Mark Mello MAE, Inc. Maisy McDarby Stanovich ACKNOWLEDGMENTS The Massachusetts Estuaries Project Technical Team would like to acknowledge the contributions of the many individuals who have worked tirelessly for the restoration and protection of the critical coastal resources of the Slocum's and Little River Estuaries and supported the application of the Linked Watershed-Embayment Model to Determine Critical Nitrogen Loading Thresholds for these systems. Without these stewards and their efforts, this project would not have been possible. First and foremost we would like to recognize and applaud the significant time and effort in data collection and discussion spent by members of the Coalition for Buzzards Bay's BayWatcher, Water Quality Monitoring Program. These individuals gave of their time to consistent and sound nutrient related water quality from this system for over a decade. These data were enhanced by short-term intensive water quality monitoring efforts by the Lloyd Center Staff and interns participating in the Turn the Tide Project. These multiple efforts have resulted in a solid water quality database for this estuary, without which the present analysis would not have been possible. Of particular note has been the effort of the Coalition for Buzzards Bay's Monitoring Coordinator, Tony Williams, who has spent countless hours ensuring a scientifically defensible monitoring program and reviewing data and information with MEP Technical Team members. The present MEP Technical Report was developed as part of the on-going partnership project to restore the Town of Dartmouth's estuaries, known as Turn-The-Tide. This program is a partnership between the Town of Dartmouth, the Coalition for Buzzards Bay, the Lloyd Center for the Environment and the Coastal Systems Program at the School for Marine Science and Technology - University of Massachusetts Dartmouth. The goal is to restore water quality and living resources in Dartmouth's three major estuarine systems. Much of the present effort was conducted under this partnership, which greatly enhanced information and data transfers with the Town and its Departments. The Town of Dartmouth and its citizens have expended "extra" effort in the stewardship of these critical coastal systems and are to be commended. Departments and staff from the Town of Dartmouth have provided essential insights toward this effort, particularly the Department of Public Works and its commissioners who oversaw the Turn-The-Tide Project and specifically the help provided by David Hickox; Water and Sewer Division, Steve Sullivan; Animal Control, Sandra Gosselin and Wendy Henderson Board of Health. The technical team would like to specifically acknowledge the efforts of Mike O'Reilly, Dartmouth's Environmental Affairs Coordinator, who worked tirelessly as the Town interface with the Turn-The-Tide Project and was key in facilitating the overall effort. Other individuals of particular note include Mark Rasmussen, Executive Director CBB and Darcy McMahon Director of the Lloyd Center, who helped to guide and disseminate the information from the Turn-The-Tide effort. In addition to local contributions, technical, policy and regulatory support has been freely and graciously provided by Bill Napolitano and Karen Porter from SRPEDD; MaryJo Feurbach and Art Clark of the USEPA; and our MassDEP colleagues: Rick Dunn, Dave DeLorenzo and Geri Lambert. We are also thankful for the long hours in the field and laboratory spent by the technical staff, interns and students within the Coastal Systems Program at SMAST-UMD. Support for this project was provided by the Town of Dartmouth through the Turn the Tide Project, private donations from citizens of the Town of Dartmouth, the MassDEP, and the USEPA. This Nutrient Threshold Technical Report to be used by the Town of Dartmouth in the restoration of this key estuarine system is dedicated to Don Tucker former Director of the Lloyd Center, who helped to establish the Turn the Tide partnership project but passed away suddenly before its completion. PROPER CITATION Howes B.L., N.P. Millham, S.W. Kelley, J. S. Ramsey, R.I. Samimy, D.R. Schlezinger, E.M. Eichner (2007). Linked Watershed-Embayment Model to Determine Critical Nitrogen Loading Thresholds for the Apponagansett Bay Estuary, Dartmouth, Massachusetts. SMAST/DEP Massachusetts Estuaries Project, Massachusetts Department of Environmental Protection. Boston, MA. © [2015] University of Massachusetts & Massachusetts Department of Environmental Protection All Rights Reserved No permission required for non-commercial use MASSACHUSETTS ESTUARIES PROJECT TABLE OF CONTENTS I. INTRODUCTION ....................................................................................................................... 1 I.1 THE MASSACHUSETTS ESTUARIES PROJECT APPROACH ........................................ 4 I.2 SITE DESCRIPTION ............................................................................................................ 7 I.3 WATER QUALITY MODELING ......................................................................................... 14 I.4 REPORT DESCRIPTION .................................................................................................. 14 II. PREVIOUS STUDIES RELATED TO NITROGEN MANAGEMENT ..................................... 16 III. DELINEATION OF WATERSHEDS ..................................................................................... 35 III.1 BACKGROUND ............................................................................................................... 35 III.2 WATERSHED DELINEATION APPROACH ................................................................... 35 IV. WATERSHED NITROGEN LOADING TO EMBAYMENT: LAND USE, STREAM INPUTS, AND SEDIMENT NITROGEN RECYCLING .................................................... 39 IV.1 WATERSHED LAND USE BASED NITROGEN LOADING ANALYSIS ......................... 39 IV.1.1 Land Use, Water Use, and Sewered Properties Database Preparation .................. 41 IV.1.2 Nitrogen Loading Input Factors ................................................................................ 44 IV.1.3 Calculating Nitrogen Loads ...................................................................................... 51 IV.2 ATTENUATION OF NITROGEN IN SURFACE WATER TRANSPORT ......................... 59 IV.2.1 Background and Purpose ......................................................................................... 59 IV.2.2 Surface water Discharge and Attenuation of Watershed Nitrogen: Stream Discharge from Buttonwood Brook to the head of Apponagansett Bay ................... 63 IV.2.3 Surface water Discharge and Attenuation of Watershed Nitrogen: Stream Discharge Apponagansett Brook (aka. Vincent Brook) to head of Apponagansett Bay .................................................................................................. 67 IV.3 BENTHIC REGENERATION OF NITROGEN IN BOTTOM SEDIMENTS ...................... 70 IV.3.1 Sediment-Watercolumn Exchange of Nitrogen ........................................................ 70 IV.3.2 Method for determining sediment-watercolumn nitrogen exchange ......................... 71 IV.3.3 Rates of Summer Nitrogen Regeneration from Sediments ...................................... 73 V. HYDRODYNAMIC MODELING ............................................................................................ 78 V.1 INTRODUCTION.............................................................................................................. 78 V.2 FIELD DATA COLLECTION AND ANALYSIS ................................................................. 80 V.2.1. Bathymetry ................................................................................................................ 80 V.2.2 Tide Data Collection and Analysis ............................................................................. 82 V.3 HYDRODYNAMIC MODELING ....................................................................................... 89 V.3.1 Model Theory ............................................................................................................ 89 V.3.2 Model Setup .............................................................................................................. 89 V.3.2.1 Grid Generation .................................................................................................. 90 V.3.2.2 Boundary Condition Specification ....................................................................... 90 V.3.3 Calibration ................................................................................................................
Recommended publications
  • Activity Budget and Spatial Location of Captive Western Lowland Gorillas (Gorilla Gorilla)
    0 1 35 2 3 Activity budget and spatial location of captive Western lowland gorillas (Gorilla gorilla) Amanda Cheang and Gary Wigman Factors which affect the behavior of captive western lowland gorillas (Gorilla gorilla) has been a subject of concern. There have been attempts at making the exhibit of captive gorillas more naturalistic, but zoos still differ from the natural environment with regards to space restriction and structures available. This study investigated the effect of exhibit structure type and the gorillas’ movement and interaction on the activity budget and spatial location of the four captive western lowland gorillas in the Memphis Zoo. Scan sampling was conducted to record the behavior and locations of the gorillas in the exhibit. Any social interaction, initiation of movement and following, and aggression were recorded using behavioral sampling. All four gorillas spent a larger percentage of scans out in the exhibit than in the indoor enclosure. The most common behavior for the four gorillas was resting. The females differed in the percent of initiation of movement (from 13.9% to 47.2%, not including the male). Two female gorillas were found to have a difference in the frequency of time spent in the open area versus in areas close to walls, structures and trees, spending more time in the latter. When looking at the location used for resting, two gorillas spent a larger percentage of scans resting in areas close to walls, structures and trees than in the open. The other two gorillas had no difference in the location used for resting. The results of this study provide insight into the effect of exhibit structures on the spatial location and activity of captive gorillas in an exhibit.
    [Show full text]
  • 2020 Cape Cod Water Health Report and Action Plan Association to Preserve Cape Cod Website
    State of the Waters: Cape Cod : 2020 Cape Cod Water Health Report, Action Plan and Atlas of Water Restoration Needs and Solutions State of the Waters: Cape Cod 2020 Cape Cod Water Health Report and Action Plan Association to Preserve Cape Cod Website: https://capecodwaters.org July 28, 2020 Prepared by: Andrew Gottlieb, Jo Ann Muramoto, Ph.D., Jordanne Feldman, Kristin Andres, Don Keeran and Kevin Johnson 1. Introduction The State of the Waters: Cape Cod is an annual assessment of the Cape’s water quality, designed to help you understand the water quality problems that we face and the actions that are needed to address these problems. The Association to Preserve Cape Cod (APCC) launched this project in 2019 in order to answer the question: “How healthy are Cape Cod’s waters?” This website is the place to find out about the Cape’s water quality and what can be done to address water pollution and achieve clean water. For this multi-year project, APCC collected existing data on water quality on Cape Cod for the purpose of determining the health of Cape Cod’s waters. APCC evaluated water quality in coastal waters (saltwater), freshwater ponds and lakes, and public drinking water supplies. APCC used existing methods to score water quality and used the scores to distinguish between degraded surface waters where immediate action is needed to improve water quality vs. surface waters with acceptable quality where ongoing protection is needed to avoid any decline in quality. The results are summarized in this annual water health report. To guide public action, APCC prepared a Water Action Plan that contains recommendations for changes in policies, actions, and regulations to improve and protect our waters.
    [Show full text]
  • The Acushnet River Restoration Project: Restoring Diadromous Populations to a Superfund Site in Southeastern Massachusetts
    Massachusetts Division of Marine Fisheries Technical Report TR-56 The Acushnet River Restoration Project: Restoring Diadromous Populations to a Superfund Site in Southeastern Massachusetts J.J. Sheppard1, S. Block2, H.L Becker3, and D. Quinn4 1Massachusetts Division of Marine Fisheries South Shore Field Station 1213 Purchase Street, 3rd Floor New Bedford, MA 02740 2National Oceanic and Atmospheric Administration Restoration Center 55 Great Republic Drive Gloucester, MA 01930 3EA Engineering, Science, and Technology, Inc 221 Sun Valley Boulevard, Suite D Lincoln, NE 68528 4DQ Engineering 11 Hickory Lane Walpole, MA 02081 Commonwealth of Massachusetts Executive Office of Energy and Environmental Affairs Department of Fish and Game Massachusetts Division of Marine Fisheries Technical Report Technical March 2014 Massachusetts Division of Marine Fisheries Technical Report Series Managing Editor: Michael P. Armstrong Technical and Copy Editor: Elaine Brewer The Massachusetts Division of Marine Fisheries Technical Reports present information and data pertinent to the management, biology and commercial and recreational fisheries of anadromous, estuarine, and marine organisms of the Commonwealth of Massachusetts and adjacent waters. The series presents information in a timely fashion that is of limited scope or is useful to a smaller, specific audience and therefore may not be appropriate for national or international journals. Included in this series are data summaries, reports of monitoring programs, and results of studies that are directed at specific management problems. All Reports in the series are available for download in PDF format at: http://www.mass.gov/eea/agencies/dfg/dmf/publications/technical.html or hard copies may be obtained from the Annisquam River Marine Fisheries Station, 30 Emerson Ave., Gloucester, MA 01930 USA (978-282-0308).
    [Show full text]
  • A Survey of Anadromous Fish Passage in Coastal Massachusetts
    Massachusetts Division of Marine Fisheries Technical Report TR-16 A Survey of Anadromous Fish Passage in Coastal Massachusetts Part 2. Cape Cod and the Islands K. E. Reback, P. D. Brady, K. D. McLaughlin, and C. G. Milliken Massachusetts Division of Marine Fisheries Department of Fish and Game Executive Office of Environmental Affairs Commonwealth of Massachusetts Technical Report Technical May 2004 Massachusetts Division of Marine Fisheries Technical Report TR-16 A Survey of Anadromous Fish Passage in Coastal Massachusetts Part 2. Cape Cod and the Islands Kenneth E. Reback, Phillips D. Brady, Katherine D. McLauglin, and Cheryl G. Milliken Massachusetts Division of Marine Fisheries Southshore Field Station 50A Portside Drive Pocasset, MA May 2004 Massachusetts Division of Marine Fisheries Paul Diodati, Director Department of Fish and Game Dave Peters, Commissioner Executive Office of Environmental Affairs Ellen Roy-Herztfelder, Secretary Commonwealth of Massachusetts Mitt Romney, Governor TABLE OF CONTENTS Part 2: Cape Cod and the Islands Acknowledgements . iii Abstract . iv Introduction . 1 Materials and Methods . 1 Life Histories . 2 Management . 4 Cape Cod Watersheds . 6 Map of Towns and Streams . 6 Stream Survey . 8 Cape Cod Recommendations . 106 Martha’s Vineyard Watersheds . 107 Map of Towns and Streams . 107 Stream Survey . 108 Martha’s Vineyard Recommendations . 125 Nantucket Watersheds . 126 Map of Streams . 126 Stream Survey . 127 Nantucket Recommendations . 132 General Recommendations . 133 Alphabetical Index of Streams . 134 Alphabetical Index of Towns . .. 136 Appendix 1: List of Anadromous Species in MA . 138 Appendix 2: State River Herring Regulations . 139 Appendix 3: Fishway Designs and Examples . 140 Appendix 4: Abbreviations Used . 148 ii Acknowledgements The authors wish to thank the following people for their assistance in carrying out this survey and for sharing their knowledge of the anadromous fish resources of the Commonwealth: Brian Creedon, Tracy Curley, Jack Dixon, George Funnell, Steve Kennedy, Paul Montague, Don St.
    [Show full text]
  • BBP8911 Technical Resource Manual
    TECHNICAL RESOURCE MANUAL: A REFERENCE FOR BUZZARDS BAY COWUNITIES AUGUST 1987 Credits Compiled, with additional text, by Susan R. Moor and William S. Napolitano Stephen C. Smith, Executive Director Thomas A. Pisaturo, Comprehensive Planning Manager Tracy Cabral, Secretary Anne Duf resne, Secretary , - This report was prepared by the Southeastern Regional Planning and Economic Development District (SRPEDD), with funding from the U.S. Environmental Protection Agency Buzzards Bay Project. u This report represents the technical results of an investigation funded by the Buzzards Bay Project. The results and conclusions contained herein are those of the author(s). These conclusions have been reviewed by competent outside reviewers and found to be reasonable and legitimate based on the available data. The Management Committee of the Buzzards Bay Project accepts this report as technically sound and complete. The conclusions do not necessarily represent the recommendations of the Buzzards Bay Project. Final recommendations for resource management actions will be based upon the results of this and other investigations. Environmental Protection ~gency Thomas Bigford National Oceanic and Atmospheric Administration Steve Bliven Massachusetts Office of Coastal Zone Management Leigh Bridges Massachusetts Division of Marine Fisheries Jack Clarke Cape Cod Planning and Economic Development Commission Richard De,laney Massachusetts Office of Coastal Zone Management Meriel Hardin Massachusetts Department of Environmental Quality Engineering Dr. Russell Isaac Massachusetts Division of Water Pollution Control Dr. Susan Peterson President, Coalition for Buzzards Bay Dr. Don Phelps Environmental Protection Agency Ted Pratt Chairman, Buzzards Bay Citizens Advisory Committee Stephen Smith Southeast Regional Planning and Economic Development District BNC~Tripp Massachusetts Executive Office of Environmental Affairs This report represents the technical results of an investigation funded by the Buzzards Bay Project.
    [Show full text]
  • TOWN of MASHPEE BLUE PAGES a Citizens’ Guide to Protecting Cape Cod Waters
    TOWN OF MASHPEE BLUE PAGES A Citizens’ Guide to Protecting Cape Cod Waters Shannon Cushing, Grade 11 Acknowledgements Acknowledgements This information is reprinted from the Island Blue Pages, courtesy of the Martha’s Vineyard Shellfish Group and the WampanoagThis information Tribe ofis Aquinnah.reprinted from For the a complete Island Blue version Pages of, courtesy the Island of theBlue Martha’s Pages, visit Vineyard the website Shellfish www.islandbluepages.org Group and the . or contactWampanoag tbe Martha’s Tribe Vineyardof Aquinnah. Shellfish For a Groupcomplete at 508version-693-0391. of the TheIsland Island Blue BluePages Pages, visit isthe an website adaptation, www.islandbluepages.org with permission, of the. or Pugetcontact Soundbook tbe Martha’s, a game Vineyard plan for Shellfish maintaining Group the at health508-693-0391. of our sister The Island estuary Blue on Pagesthe West is an Coast. adaptation, To learn with more permission, about the of the Puget Soundbook, a game plan for maintaining the health of our sister estuary on the West Coast. To learn more about the original project and the inspiration for the Blue Pages, visit www.forsea.org/pugetsoundbook/ original project and the inspiration for the Blue Pages, visit www.forsea.org/pugetsoundbook/ Thanks to Jim Kolb and Diane Bressler, the creators of the Puget Soundbook, which continues to inspire us with its words and Thanks to Jim Kolb and Diane Bressler, the creators of the Puget Soundbook, which continues to inspire us with its words and illustrations. illustrations. The Town of Mashpee, with permission, undertook the task of adapting the Orleans Blue Pages to reflect conditions specific to The Town of Mashpee, with permission, undertook the task of adapting the Orleans Blue Pages to reflect conditions specific to Mashpee.
    [Show full text]
  • Bristol County, Massachusetts (All Jurisdictions)
    VOLUME 2 OF 4 BRISTOL COUNTY, MASSACHUSETTS (ALL JURISDICTIONS) Bristol County COMMUNITY NAME COMMUNITY NUMBER ACUSHNET, TOWN OF 250048 ATTLEBORO, CITY OF 250049 BERKLEY, TOWN OF 250050 DARTMOUTH, TOWN OF 250051 DIGHTON, TOWN OF 250052 EASTON, TOWN OF 250053 FAIRHAVEN, TOWN OF 250054 FALL RIVER, CITY OF 250055 FREETOWN, TOWN OF 250056 MANSFIELD, TOWN OF 250057 NEW BEDFORD, CITY OF 255216 NORTH ATTLEBOROUGH, TOWN OF 250059 NORTON, TOWN OF 250060 RAYNHAM, TOWN OF 250061 REHOBOTH, TOWN OF 250062 SEEKONK, TOWN OF 250063 SOMERSET, TOWN OF 255220 SWANSEA, TOWN OF 255221 TAUTON, CITY OF 250066 WESTPORT, TOWN OF 255224 REVISED JULY 16, 2014 FLOOD INSURANCE STUDY NUMBER 25005CV002B NOTICE TO FLOOD INSURANCE STUDY USERS Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) may not contain all data available within the repository. It is advisable to contact the community repository for any additional data. Selected Flood Insurance Rate Map panels for the community contain information that was previously shown separately on the corresponding Flood Boundary and Floodway Map panels (e.g., floodways, cross sections). In addition, former flood hazard zone designations have been changed as follows: Old Zone New Zone A1 through A30 AE V1 through V30 VE (shaded) B X C X Part or all of this Flood Insurance Study may be revised and republished at any time. In addition, part of this Flood Insurance Study may be revised by the Letter of Map Revision process, which does not involve republication or redistribution of the Flood Insurance Study.
    [Show full text]
  • E. Fisheries and Wildlife
    E. Fisheries and Wildlife Until recent decades, the vast majority of Mashpee’s territory was the domain not of man, but of beast. Our woods were only occasionally broken by a roadway, or a few homes, or a farmer’s fields. The hunting was good. Our clear lakes were famous for their fishing. Our streams flowed clean to pristine coastal bays teeming with fish and shellfish that helped feed and support many families. Much has changed with the explosive development of the last fifty years, and much of our wildlife has disappeared along with the natural habitat that supported it. However, much remains for our enjoyment and safekeeping. In this section we will look at Mashpee’s fish and shellfish, its mammals, birds and insects, important wildlife movement corridors and those species living in our town which are among the last of their kind. 1. Finfish Mashpee hosts four types of fin fisheries: fresh water ponds, rivers and streams, estuaries and coastal ponds and the open ocean. Our four large ponds provide some of the best fishing in the state. 203-acre Ashumet Pond, 317- acre Johns Pond and 729-acre Mashpee-Wakeby Pond are all cold water fisheries stocked with brown, brook and rainbow trout. In the last century, such famous anglers as Daniel Webster, President Grover Cleveland and the famous actor Joseph Jefferson looked forward to their fishing expeditions to Mashpee, while local residents looked forward to the income provided serving as guides to those and other wealthy gentlemen. Ashumet and Johns Ponds are also noted for their smallmouth bass, while Mashpee-Wakeby provides not only the smallmouth, but also chain pickerel, white perch and yellow perch.
    [Show full text]
  • Massachusetts Estuaries Project
    Massachusetts Estuaries Project Linked Watershed-Embayment Model to Determine Critical Nitrogen Loading Thresholds for the Slocum’s and Little River Estuaries, Dartmouth, MA University of Massachusetts Dartmouth Massachusetts Department of School of Marine Science and Technology Environmental Protection FINAL REPORT – December 2008 Massachusetts Estuaries Project Linked Watershed-Embayment Model to Determine Critical Nitrogen Loading Thresholds for the Slocum’s and Little River Estuaries, Dartmouth, MA FINAL REPORT – December 2008 Brian Howes Tony Millham Roland Samimy David Schlezinger John Ramsey Trey Ruthven Ed Eichner Contributors: US Geological Survey Don Walters and John Masterson Applied Coastal Research and Engineering, Inc. Elizabeth Hunt and Sean W. Kelley Massachusetts Department of Environmental Protection Charles Costello and Brian Dudley SMAST Coastal Systems Program Jennifer Benson, Michael Bartlett, Sara Sampieri, and Elizabeth White Lloyd Center for the Environment Mark Mello Cape Cod Commission Xiaotong Wu © [2007] University of Massachusetts All Rights Reserved ACKNOWLEDGMENTS The Massachusetts Estuaries Project Technical Team would like to acknowledge the contributions of the many individuals who have worked tirelessly for the restoration and protection of the critical coastal resources of the Slocum's and Little River Estuaries and supported the application of the Linked Watershed-Embayment Model to Determine Critical Nitrogen Loading Thresholds for these systems. Without these stewards and their efforts, this project would not have been possible. First and foremost we would like to recognize and applaud the significant time and effort in data collection and discussion spent by members of the Coalition for Buzzards Bay's BayWatcher, Water Quality Monitoring Program. These individuals gave of their time to consistent and sound nutrient related water quality from this system for over a decade.
    [Show full text]
  • Woods Hole Oceanographic Institution 2019 Summer Student Fellows Research Projects
    Woods Hole Oceanographic Institution 2019 Summer Student Fellows Research Projects Ashley Arroyo, University of Massachusetts Rising Temperatures, Falling Isopycnals and Decreasing AOU: The Story of Abyssal Property Change at 24°S in the Atlantic (2009-2018) Advisors: Alison Macdonald and Sachiko Yoshida, Physical Oceanography Melissa Baldino, Duke University Quantifying ecosystem structure and services provided by tropical seaweed farms Advisor: Hauke Kite-Powell, Marine Policy Center Samuel Bartusek, Princeton University The role of coastal ocean surface fluxes during landfalling Atmospheric Rivers Advisors: Hyodae Seo and Caroline Ummenhofer, Physical Oceanography Laura Blum, Middlebury College Microbial drivers of nitrogen metabolism: Searching Tara Oceans metagenomes Advisors: Harriet Alexander and Maria Pachiadaki, Biology Gregory Burgess, United States Naval Academy Got Ice? A Statistical Approach to Marking Sea Ice and Atmospheric Conditions with a Low- Powered Imaging Sonar Advisor: Richard Camilli, Applied Ocean Physics and Engineering Mary Burnam, University of Georgia Investigation of Ocean Flows using Remotely Sensed (Drone) Videos of the Sea Surface Analyzed using Particle Image Velocimetry (PIV) Advisors: Britt Raubenheimer and Steve Elgar, Applied Ocean Physics and Engineering Siyuan-Sean Chen, University of Bristol Insights into Cycling of 231Pa and 230Th in Benthic Nepheloid Layers of the Western North Atlantic Ocean Advisor: Olivier Marchal, Geology and Geophysics Solomon Chen, University of Hawai'i at Manoa PhRePhOx:
    [Show full text]
  • The History of the Mashpee National Wildlife Refuge
    HOW WE GOT HERE: The History of the Mashpee National Wildlife Refuge By the Friends of the Mashpee National Wildlife Refuge The Mashpee National Wildlife Refuge encompasses nearly 6,000 acres that protects important natural areas and a great diversity of wildlife habitat. Established in 1995, this unique refuge is owned by federal, state, town, and private conservation groups who share a common goal of conserving nature for the continued benefit of wildlife and people. PREFACE National Wildlife Refuges are valuable assets in a variety • Located in the towns of Mashpee and Falmouth, of ways. They provide a window into past cultures and with 6000 acres, it is the Cape’s second largest open, untouched landscapes while preserving these resources accessible conservation land, behind only the National well into the future, furthering the continuum. Refuges Seashore. sustain necessary wildlife habitats and resources critical in their seasonal needs for foraging, raising young, • It was named after the Mashpee Wampanoag Tribe, and avoiding predators to live yet another day. These “the people of the first light.” preserved landscapes purify water and air providing yet another valuable service. Likewise, for humans, refuges • It is unique within the National Wildlife Refuge offer solitude in our daily lives and, as the name implies, System in that it is the ONLY refuge that is managed are a great place to view wildlife too. cooperatively by eight conservation landowners and the Friends organization: a consortium of federal, state, I grew up in Minnesota, where we often headed to a tribal, private, & nonprofit. It’s the model for future local refuge in the spring to witness one of the most refuges.
    [Show full text]
  • The North American Wetlands Conservation Act: Working for Massachusetts
    The North American Wetlands Conservation Act: Working for Massachusetts The North American Wetlands Conservation Act (NAWCA) is an incentive-based, landowner- friendly program that fosters the development of public-private partnerships to protect North America’s migratory bird habitat. NAWCA Positively Impacts the Economy and Creates Jobs The Great Marsh NAWCA benefits the national economy by translating $411 million in federal appropriations into nearly $3.5 billion in additional economic activity in the United States. These expenditures have created, on average, nearly 7,500 new jobs annually in the United States, generating over $200 million in worker earnings each year. NAWCA Effectively Leverages Private Sector Funds Since enactment, NAWCA grants have leveraged more than $3.2 billion in matching funds to deliver a total of over $4.2 billion in on-the-ground conservation. NAWCA requires a 1:1 match, but federal funds are often tripled or quadrupled by partners at the local level. NAWCA Expands Recreational Opportunities For People Photo courtesy of the U.S. Fish and Wildlife Service The abundance of wildlife including many species of water- fowl, migratory birds, fish, and mammals supported by wet- The Great Marsh is the largest salt marsh in New lands translates into multi-billion dollar activities for Americans England and is internationally recognized as important who enjoy hunting, fishing, wildlife viewing, and photography. breeding ground and habitat for waterfowl, waterbirds, shorebirds, and many more. The area also offers NAWCA Benefits Hundreds Of Wildlife Species recreational opportunities throughout the North Shore. NAWCA helps fulfill the mission of the North American Wa- terfowl Management Plan by providing migratory birds with To secure and restore 563 acres of wetlands in the essential habitat needs.
    [Show full text]