Zootaxa: Description of Haploblepharus Kistnasamyi, a New

Total Page:16

File Type:pdf, Size:1020Kb

Zootaxa: Description of Haploblepharus Kistnasamyi, a New Zootaxa 1318: 41–58 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1318 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Description of Haploblepharus kistnasamyi, a new catshark (Chondrichthyes: Scyliorhinidae) from South Africa BRETT A. HUMAN1 & LEONARD J. V. COMPAGNO2 Shark Research Centre, South African Museum, Iziko - Museums of Cape Town, PO Box 61 Cape Town 8000, South Africa 1current address: 27 Southern Ave, West Beach SA 5024, Australia. Abstract A new species of catshark, Haploblepharus kistnasamyi sp. nov. (Class Chondrichthyes, Order Carcharhiniformes, Family Scyliorhinidae) is described from kwaZulu-Natal, South Africa. The type series includes the holotype, RUSI 39835, and two paratypes, RUSI 6075 and RUSI 6077. This species was previously recognised as a variant of H. edwardsii (Schinz 1822), which occurs along the southern coast of South Africa. The colour pattern of H. kistnasamyi is superficially similar to H. edwardsii although distinct; however H. kistnasamyi is distinguished from all other Haploblepharus in having a stockier build compared to its congeners, a less depressed head and trunk, and a compressed caudal peduncle. Key words: Haploblepharus kistnasamyi sp. nov., Scyliorhinidae, Carcharhiniformes, taxonomy, South Africa Introduction The genus Haploblepharus Garman 1913 is a little known group of small to medium-sized catsharks (family Scyliorhinidae Gill 1862) endemic to southern Africa and ranging along the coasts of Namibia and South Africa. Three species of Haploblepharus are currently recognised (Human, 2003, in prep.), H. edwardsii (Schinz 1822), H. pictus (Müller & Henle 1838), and H. fuscus Smith 1950. Species identification of this group has been historically problematic and stems from the use of colour patterns and poor morphological characters in species identification keys. Under the name of H. edwardsii, Bass et al. (1975) illustrated a female Haploblepharus specimen taken from kwaZulu-Natal, South Africa, that they referred to Accepted by M. de Carvalho: 15 Aug. 2006; published: 21 Sept. 2006 41.
Recommended publications
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • Discovery of a New Mode of Oviparous Reproduction in Sharks and Its Evolutionary Implications Kazuhiro Nakaya1, William T
    www.nature.com/scientificreports OPEN Discovery of a new mode of oviparous reproduction in sharks and its evolutionary implications Kazuhiro Nakaya1, William T. White2 & Hsuan‑Ching Ho3,4* Two modes of oviparity are known in cartilaginous fshes, (1) single oviparity where one egg case is retained in an oviduct for a short period and then deposited, quickly followed by another egg case, and (2) multiple oviparity where multiple egg cases are retained in an oviduct for a substantial period and deposited later when the embryo has developed to a large size in each case. Sarawak swellshark Cephaloscyllium sarawakensis of the family Scyliorhinidae from the South China Sea performs a new mode of oviparity, which is named “sustained single oviparity”, characterized by a lengthy retention of a single egg case in an oviduct until the embryo attains a sizable length. The resulting fecundity of the Sarawak swellshark within a season is quite low, but this disadvantage is balanced by smaller body, larger neonates and quicker maturation. The Sarawak swellshark is further uniquely characterized by having glassy transparent egg cases, and this is correlated with a vivid polka‑dot pattern of the embryos. Five modes of lecithotrophic (yolk-dependent) reproduction, i.e. short single oviparity, sustained single oviparity, multiple oviparity, yolk‑sac viviparity of single pregnancy and yolk‑sac viviparity of multiple pregnancy were discussed from an evolutionary point of view. Te reproductive strategies of the Chondrichthyes (cartilaginous fshes) are far more diverse than those of the other animal groups. Reproduction in chondrichthyan fshes is divided into two main modes, oviparity (egg laying) and viviparity (live bearing).
    [Show full text]
  • Natural Mortality of Puffadder Shysharks Due to Cape Fur Seals and Black-Backed Kelp Gulls at Seal Island, South Africa
    Journal of Fish Biology (2004) 64, 711–716 doi:10.1046/j.1095-8649.2003.00339.x,availableonlineathttp://www.blackwell-synergy.com Natural mortality of puffadder shysharks due to Cape fur seals and black-backed kelp gulls at Seal Island, South Africa R. A. MARTIN ReefQuest Centre for Shark Research, P. O. Box 48 561, 595 Burrard Street, Vancouver, BC V7X 1A3, Canada (Received 31 March 2003, Accepted 12 December 2003) Natural mortality of puffadder shysharks Haploblepharus edwardsii due to two species of marine tetrapod, the Cape fur seal Arctocephalus pusillus pusillus and the black-backed kelp gull Larus dominicanis vetula, is reported. These data constitute the first multiple observations of natural mortality of any cartilaginous fish due to object play or kleptoparasitism by marine tetrapods. Evidence of range extension of the puffadder shyshark to False Bay, South Africa is presented. # 2004 The Fisheries Society of the British Isles Key words: Haploblepharus edwardsii; kleptoparasitism; natural mortality; object play; puffadder shyshark; range extension. INTRODUCTION The puffadder shyshark Haploblepharus edwardsii (Voigt) is a regionally abun- dant, small (total length, LT ¼ 60 cm), bottom-dwelling catshark (Scyliorhini- dae) endemic to South Africa (Compagno et al., 1989). Its range extends from Natal (30400 E; 28400 S) to Cape Agulhas (20000 E; 34520 S) (Compagno et al., 1989). The IUCN status of this species is ‘lower risk, near threatened’, based on its limited range lying wholly within heavily fished and potentially degraded inshore waters (Compagno & Krose, 2000). Natural mortality in the puffadder shyshark due to object play or kleptopara- sitism by two species of marine tetrapod, the Cape fur seal Arctocephalus pusillus pusillus and the black-backed kelp gull Larus dominicanis vetula, was investigated in the present study.
    [Show full text]
  • And Their Functional, Ecological, and Evolutionary Implications
    DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Spring 6-14-2019 Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications Phillip C. Sternes DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Sternes, Phillip C., "Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications" (2019). College of Science and Health Theses and Dissertations. 327. https://via.library.depaul.edu/csh_etd/327 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master of Science June 2019 By Phillip C. Sternes Department of Biological Sciences College of Science and Health DePaul University Chicago, Illinois Table of Contents Table of Contents.............................................................................................................................ii List of Tables..................................................................................................................................iv
    [Show full text]
  • Parasites of Cartilaginous Fishes (Chondrichthyes) in South Africa – a Neglected Field of Marine Science
    Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2019, 66: 002 doi: 10.14411/fp.2019.002 http://folia.paru.cas.cz Research article Parasites of cartilaginous fishes (Chondrichthyes) in South Africa – a neglected field of marine science Bjoern C. Schaeffner and Nico J. Smit Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa Abstract: Southern Africa is considered one of the world’s ‘hotspots’ for the diversity of cartilaginous fishes (Chondrichthyes), with currently 204 reported species. Although numerous literature records and treatises on chondrichthyan fishes are available, a paucity of information exists on the biodiversity of their parasites. Chondrichthyan fishes are parasitised by several groups of protozoan and metazoan organisms that live either permanently or temporarily on and within their hosts. Reports of parasites infecting elasmobranchs and holocephalans in South Africa are sparse and information on most parasitic groups is fragmentary or entirely lacking. Parasitic copepods constitute the best-studied group with currently 70 described species (excluding undescribed species or nomina nuda) from chondrichthyans. Given the large number of chondrichthyan species present in southern Africa, it is expected that only a mere fraction of the parasite diversity has been discovered to date and numerous species await discovery and description. This review summarises information on all groups of parasites of chondrichthyan hosts and demonstrates the current knowledge of chondrichthyan parasites in South Africa. Checklists are provided displaying the host-parasite and parasite-host data known to date. Keywords: Elasmobranchii, Holocephali, diversity, host-parasite list, parasite-host list The biogeographical realm of Temperate Southern Af- pagno et al.
    [Show full text]
  • FAMILY Scyliorhinidae Gill, 1862 - Catsharks
    Distributions and Habitats: Scyliorhinidae FAMILY Scyliorhinidae Gill, 1862 - catsharks GENUS Atelomycterus Garman, 1913 - catsharks Species Atelomycterus baliensis White et al., 2005 - Bali catshark Distribution: Indonesia. Habitat: marine. Species Atelomycterus erdmanni Fahmi & White, 2015 - Nudi Retreat catshark Distribution: Sulawesi, Indonesia. Habitat: marine. Species Atelomycterus fasciatus Compagno & Stevens, 1993 - banded sand catshark Distribution: Northwestern Australia. Habitat: marine. Species Atelomycterus macleayi Whitley, 1939 - Australian marbled catshark Distribution: Northern Australia. Habitat: marine. Species Atelomycterus marmoratus (Bennett, 1830) - coral catshark Distribution: Indo-West Pacific, continental; Pakistan and India thorugh the East Indies and north to China and south to Papua New Guinea. Habitat: marine. Species Atelomycterus marnkalha Jacobsen & Bennett, 2007 - Eastern banded catshark Distribution: Eastern Queensland to northern Australia to southern Papua New Guinea. Habitat: marine. GENUS Aulohalaelurus Fowler, 1934 - catsharks Species Aulohalaelurus kanakorum Séret, 1990 - New Caledonia catshark Distribution: Southwestern Pacific: New Caledonia. Habitat: marine. Species Aulohalaelurus labiosus (Waite, 1905) - Australian blackspotted catshark Distribution: Australia: Western Australia. Habitat: marine. GENUS Bythaelurus Compagno, 1988 - catsharks Species Bythaelurus alcockii (Garman, 1913) - Arabian catshark Distribution: Western Indian Ocean: Arabian Sea. Habitat: marine. Species Bythaelurus bachi
    [Show full text]
  • Species Delineation in the Southern African Endemic Catshark Genus Haploblepharus
    Species delineation in the southern African endemic catshark genus Haploblepharus by Michaela van Staden Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in the Faculty of Natural Science at Stellenbosch University Supervisor: Dr A.E. Bester-van der Merwe Co-supervisor: Dr C. Rhode Department of Genetics December 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2018 Copyright © 2018 Stellenbosch University All rights reserved i | Page Stellenbosch University https://scholar.sun.ac.za Summary Accurate species identification is paramount for the effective implementation of conservation and management plans. Species identification in the genus Haploblepharus has historically been problematic due to the high degree of morphological conservatism between congeners, further complicated by the possibility of interspecific hybridisation. The research presented in this thesis addresses crucial knowledge gaps on species delineation in southern African endemic scyliorhinids by developing and applying molecular markers to assess species divergence in a morphologically conserved and threatened genus. Firstly, this study investigated the apparent lack of mitochondrial DNA sequence divergence previously reported among Haploblepharus species, using newly assembled mitochondrial genomes for Haploblepharus edwardsii, Haploblepharus pictus, Halaelurus natalensis and Poroderma pantherinum.
    [Show full text]
  • Movements Patterns and Population Dynamics Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by South East Academic Libraries System (SEALS) M O V E M E NT PA T T E RNS A ND POPU L A T I O N D Y N A M I CS O F F O UR C A TSH AR KS E ND E M I C T O SO U T H A F RI C A Submitted in fulfilment of the requirements for the degree of M AST E R O F SC I E N C E at R H O D ES UNI V E RSI T Y by JESSI C A ESC O B A R-PO RR AS December 2009 Escobar-Porras, J. 2009 A BST R A C T Sharks are particularly vulnerable to over-exploitation. Although catsharks are an important component of the near-shore marine biodiversity in South Africa and most of the species are endemic, little is known about their movement patterns, home range and population size. With an increasing number of recreational fishers this information is crucial for their conservation. The aims of this study were threefold. Firstly, to identify and analyze existing data sources on movement patterns and population dynamics for four catshark species: pyjama (Poroderma africanum), leopard (P. pantherinum), puffadder (Haploblepharus edwarsii) and brown (H. fuscus). This highlighted a number of shortcomings with existing data sets, largely because these studies had diverse objectives and were not aimed solely at catsharks. Secondly, a dedicated study was carried out for a limited area, testing a number of methods for data collection, and where appropriate the data was analyzed to determine movement patterns and population numbers.
    [Show full text]
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichtyes: Elasmobranchii, Holocephali)
    www.shark-references.com Version 14.10.2011 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichtyes: Elasmobranchii, Holocephali) Species descriptions published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany ISSN: 2195-6499 - 1 - please inform me about missing papers E-Mail: [email protected] www.shark-references.com Version 14.10.2011 Abstract: This collection is the result of research in numerous journals, books and online publications. It contains the citations of papers about the first description of sharks, rays and chimaeras (Chondrichtyes: Elasmobranchii, Holocephali) until 2011. Notice: This paper is intended to be consulted for advice and information. This information has been compiled to the best of my abilities based on current knowledge and practice, however, please note that possible errors cannot be altogether/entirely excluded. Citation: Pollerspöck, J. (2011), Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichtyes: Elasmobranchii, Holocephali) - Species descriptions -, www.shark-references.com, World Wide Web electronic publication, Version 10/2011; ISSN: 2195-6499 © Edited By: Jürgen Pollerspöck, Benediktinerring 34, D-94569 Stephansposching; Germany Please support www.shark-references.com Please send me missing, not listed references! Send me publications that are not incorporated so far (marked in red lettering)! - 2 - please inform me about missing papers E-Mail: [email protected] www.shark-references.com
    [Show full text]
  • SHARKS Click for Previous Page for Previous Click
    SHARKS click for previous page FAO Sheets Fishing Area 51 TECHNICAL TERMS AND PRINCIPAL MEASUREMENT USED (Straight-line distances) precaudal terminal pit lobe first dorsal second dorsal eye with nictitating fin spine fin fin lower eyelid upper inderdorsal space keel lobe snout spiracle sub- terminal inserction inner margin notch of fin of free inner rear tip caudal corner caudal fin peduncle nos- labial anal fin tril folds rear pelvic fin lower mouth gill margin clasper lobe slits (male sex organ) pectoral lenght of fin pectoral fin head trunk tail total length length of (caudal fin depressed (preoral) gill to body axis) snout slits apex anterior margin posterior height width of margin origin of fin mouth free rear tip insertion internasal space base labial fold labial groove length of or furrow inner margin dorsal fin underside of head - 2 - FAO Sheets SHARKS Fishing Area 51 GENERAL REMARKS Sharks include a variety of usually cylindrical, elongated, or moderately depressed fishes which differ from the closely related rays or batoids in having lateral gill openings (or gill slits) and pectoral fins not fused to the sides of the head over the gill openings. The greatly depressed angel sharks (Family Squatinidae) might he mistaken for rays at first sight; they have large, broad, raylike pectoral fins that extend as triangular lobes alongside the gill openings, but are not connected to the head above them. Sharks have eyes on the dorsal surface or sides of the head and spiracles (when present) on its dorsal or dorsolateral surfaces. The tail and caudal fin are always well developed and serve to propel the animal by lateral undulations; the pectoral fins are not used for propulsion through the water but aid in stabilizing and steering the shark.
    [Show full text]
  • Fishes of the Indian Ocean and the Red Sea Sharks
    Sharks Les requins Contrary to other fishes, sharks, rays, skates and ghost sharks have a cartilaginous skeleton. As these species evolved, following a phase of bony development, nature went back to using cartilage which makes their bodies both lighter in weight and supple. Their evolution lasted 400 million years, and very quickly, morphological and physiological adaptations gave these predators a real edge. Over this time period, all sorts of shapes were tried out, and the best of them selected. Thus, Carcharocles megalodon, which was “too gigantic” at 15 m and weighing about 25 t, disappeared three million years ago. Sharks have a range of distribution covering every sea, every biotope and every possible prey. There are over 300 species of sharks and many books have been devoted to them. Intensive fisheries, which are now rampant in every ocean of the globe, are threatening many species of shark with overfishing, or even extinction, for those which are the most sought-after or the most vulnerable. Indeed, sharks’ reproduction strategy relies on having offspring which are well adapted to marine life, right from birth, but in very small numbers compared with those of bony fishes. Thus, the natural rate of renewal of these populations cannot compensate for the excessive fishing pressure. Furthermore, some barbaric fishing practices, like that called “finning”, which consists in cutting off the sharks’ fins before throwing them back in the water still alive, thus dooming them to a terrible and certain death, still exist today in many too many fisheries. It is therefore important to realise that these exceptional creatures, which in the great majority of cases are simply trying to feed and not to deliberately harm humans, are in great danger and must absolutely be protected.
    [Show full text]
  • Jawless Fishes
    click for previous page Guide to Species 69 JAWLESS FISHES he hagfishes and their relatives, the lampreys (Order Petromyzontiformes, not found in Namibia), are Tdifferent from all other living fishes because they lack true jaws. Their internal skeleton is cartilaginous, and they lack true teeth and true vertebrae. These jawless fishes are included in the Superclass Agnatha and are commonly referred to as cyclostomes. All other living fishes (sharks, rays, chimeras, and bony fishes) possess true jaws derived from gill arches and are placed in the Superclass Gnathostomata. Cyclostomes are considered primitive compared to other vertebrates that possess jaws. Hagfishes are easily recognized from their eel-like body form, apparent lack of eyes (they are small and covered with skin), lack of paired fins, a single nostril surrounded by 2 pairs of barbels, and a mouth with horny teeth and a barbel on each side. They are of no commercial interest but can be a nuisance to fisher- men; when caught on hooks they profusely secrete a slime that acts as a fish repellent. The hagfishes comprise a single family, with 2 species reported from Namibia. Order MYXINIFORMES - Hagfishes 6 pairs of gill openings on ventral Eptatretus hexatrema (Müller, 1834) slime pores surface MYXINIDAE FAO names: En - Sixgill hagfish; Fr - Myxine à six trous; Sp - Pez moco de seis agallas. Local names: Seskief-slymslang (Ak). Size: To 80 cm. Fisheries: Incidentally caught by baited traps, baited hooks, and occasionally caught in bot- tom trawls. Habitat and biology: Commonly burrows in muddy bottoms at depths from 20 to 400 m. Feeds mostly by scavenging on dead or dis- abled fish.
    [Show full text]