THE CHEMICAL REVOLUTION and PHARMACY: a DISCIPLINARY PERSPECTIVE Jonathan Simon

Total Page:16

File Type:pdf, Size:1020Kb

THE CHEMICAL REVOLUTION and PHARMACY: a DISCIPLINARY PERSPECTIVE Jonathan Simon THE CHEMICAL REVOLUTION AND PHARMACY: A DISCIPLINARY PERSPECTIVE Jonathan Simon To cite this version: Jonathan Simon. THE CHEMICAL REVOLUTION AND PHARMACY: A DISCIPLINARY PER- SPECTIVE. Ambix, Maney Publishing, 1998. hal-01867749 HAL Id: hal-01867749 https://hal.univ-lorraine.fr/hal-01867749 Submitted on 4 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE CHEMICAL REVOLUTION AND PHARMACY: A DISCIPLINARY PERSPECTIVE. By Jonathan Simon, Université de Lorraine. This article was published in Ambix, March 1998 Vol. 45, no. 1: pp. 1-13. INTRODUCTION. What was the chemical revolution? This question lies at the heart of the historiography of eighteenth-century chemistry and animates the present paper. The orthodox response has placed Lavoisier at the center of an intellectual transformation, characterising him as both the author of the revolution and the founder of modern chemistry. For those who want to focus the credit on Lavoisier, the chemical revolution consists in his supplanting Stahl's phlogiston theory with the substantially correct oxygenic view of combustion. With this 'paradigm shift', the story goes, Lavoisier took a vital step forward in the development of modern chemical theory. The twin advantages of this view of the chemical revolution are philosophical and pedagogical, or, in other words, such a revolution is both easily thought and easily taught. Indeed, the most widely disseminated version of this intellectual revolution is that found in Thomas Kuhn's The Structure of Scientific Revolutions, a philosophical treatise written by a historian of science. Furthermore, Kuhn learned this version of the chemical revolution from James Bryant Conant whose most fully developed presentation on the subject was intended specifically to educate humanities students in the sciences.1 Here, I want to approach the question from a disciplinary perspective, focussing on the relationship between chemistry and pharmacy in order to see what new insights this might provide concerning the nature of the chemical revolution. Although many pharmacists feature prominently in the history of chemistry, pharmacy itself occupies at best a marginal position in this discipline and as a corollary has an even less significant presence in general histories of science. From the point of view of a twentieth-century scientist, this might seem natural; after all, the history of chemistry should be about chemistry, and pharmacy is not chemistry. Although I do not intend to argue the case fully here, I believe that this way of 1 thinking, which conceives of chemistry and pharmacy as distinct disciplines, was first clearly formulated in the eighteenth century and only became pervasive during the nineteenth.2 Instead, what I do want to argue here is that the rejection of chemistry's former associations, if not identity, with pharmacy forms an important feature of the new chemistry developed by Lavoisier and his disciples. Moreover, I contend that this disciplinary perspective should be integrated into our view of the chemical revolution, thereby moving historians of chemistry beyond the restrictive confines of disembodied intellectual history.3 Overall, I would argue that it makes more sense to conceive of the chemical revolution as a multi-facetted transformative process rather than as a single intellectual event.4 First, such a view allows us to begin to comprehend the origins of the immensely successful nineteenth-century chemistry, a science built on an expanding institutional base and a growing self-assurance in its ability to intervene usefully in the various chemical arts and industries. Furthermore, the social and institutional dimensions encompassed by this approach should facilitate the historian's task of situating a changing population of chemists as they took advantage of the new disciplinary opportunities that developed in France at the end of the eighteenth century. Therefore, in exploring the growth of chemistry as an independent discipline, it is important to take into account not only the evidence of reconceptualization displayed in the contemporary texts but also the more substantial institutional context that affected the working lives of the various groups of chemists, an area too often neglected in the history of science. In this paper, I will be concentrating my analysis on the textual tradition that charts the disciplinary split between chemistry and pharmacy, but this should not be taken as a measure of its importance compared to the dramatic institutional developments in French chemistry at the end of the eighteenth century. 1. SEVENTEENTH-CENTURY FRENCH CHEMISTRY. If we concentrate solely on chemistry texts written in France towards the end of the eighteenth century, the intimacy of the relationship between pharmacy and chemistry is not particularly striking. Pharmacy, when mentioned at all, is usually given a marginal position in the texts, and is fully subjugated to philosophical chemistry conceived of as an 2 independent, albeit practical science. Nowhere is this clearer than in the works of Lavoisier himself, which I will discuss more fully in what follows. If we turn back to French chemistry in the seventeenth century, however, we find a science whose dominant purpose was the preparation of medicaments. At this time, chemistry was considered an inseparable part of pharmacy. Moreover, France produced a distinguished series of chemistry textbooks, whose authors built on one another's work to establish a major European scientific tradition. Their names are well known to historians of chemistry: Lefebvre (1615-1669), Glaser, and probably the best-known, Nicolas Lemery (1645-1715). All these men wrote treatises on chemistry, but it is enough to look through these works to see that their principal goal was to instruct pharmacists in how to prepare the medicaments that were needed to fill the physicians' prescriptions. The texts were written summaries of courses that the authors offered in person, serving to supplement the deficiencies of a pharmacist's education as an apprentice, or simply to refresh his memory. Lemery first published his Cours de chymie (Course of Chymistry) in 1675, and, according to Fontenelle, it 'sold like a Work of Gallantry or Satire. The Editions followed each other almost yearly, without counting the great number of counterfeit Editions, honorable & pernicious for the Author'.5 Prior to Macquer's publications in the middle of the eighteenth century, Lemery's remained the French textbook in chemistry. What has earned Lemery a particular place in the history of chemistry, however, is his application of corpuscular theory, as he explicitly introduced the mechanistic explanations of Descartes and Gassendi into the realm of chemistry. Too often historians dwell on this aspect of Lemery's work and give the impression of a theoretical chemist producing a corpus similar to that of Robert Boyle. The Course of Chymistry was not, however, a text that dealt primarily in what we could interpret as the theory of chemistry. Lemery's celebrated corpuscular speculations played a secondary role to the practical preparations that provided useful medicines. The full title of the work; A Chemistry Course containing the way in which to perform the operations that are in use in Medicine, by means of an easy method, with the reasoning about each operation, for the instruction of those who want to apply themselves to this science, shows that Lemery had made no attempt to disguise the fact that the work was firmly in the 3 pharmaceutical tradition.6 The principal aim of the course is manifest in the text as well as the title; it was to give the reader information on how to prepare certain 'mixts' - mineral, vegetable and animal - and how to use them in the treatment of illnesses. The preparation of the red precipitate of mercury is quite typical of the book's contents. Red precipitate. Take eight ounces of Mercury revived out of Cinnabar, dissolve it in a sufficient quantity of Spirit of Niter, which is nine or ten ounces; pour the dissolution into a viol or Matrass with a short Neck, set it on Sand, and evaporate all the moisture over a gentle heat, until there remains a white Mass; then drive the fire by little and little to the third Degree, and keep it in this condition till all your matter is turned Red, then take it off the fire, let the Viol cool, and break it to get your Precipitate, which weighs nine ounces.7 Although the technology and terminology would have to be updated, this would pass for a practical preparation of mercuric oxide in an introductory twentieth-century inorganic chemistry textbook.8 To leave the entry at this, however, would be to miss the point of the exercise. For Lemery, the preparation of the red precipitate of mercury found its justification in its medical use. It is a good Escarotick, it eats proud flesh; it is used for the laying open of Chancres mixt with burnt Alom, ãgyptiacum, and the common Suppurative. Some do give it inwardly to four grains for to raise a Flux, but this is a dangerous undertaking, unless that Rectified Spirit of Wine be burnt two or three times upon it.9 Setting to one side the corpuscular explications of how certain of the reactions proceed, Lemery's Course of Chymistry was at base a recipe book for those who wanted to prepare medicines in order to treat the sick. In the posthumous eighteenth-century editions, ThÚodore Baron added a useful index allowing the reader to look up the preparations according to the disease to be treated.
Recommended publications
  • A Revolution That Never Happened
    Studies in History and Philosophy of Science 49 (2015) 80e90 Contents lists available at ScienceDirect Studies in History and Philosophy of Science journal homepage: www.elsevier.com/locate/shpsa A Revolution that never happened Ursula Klein Max Planck Institute for the History of Science, Germany article info abstract Article history: If we define scientific revolutions as changes of scientists’ ontologies, types of causal explanation, and Available online 19 December 2014 paradigmatic types of methods and instruments, Antoine-Laurent Lavoisier’s contribution to chemistry did not amount to a scientific revolution. Contrary to the received view that Lavoisier initiated a Keywords: “chemical revolution,” which is accepted by Chang and Kusch, I argue that Lavoisier shared with the Chemical revolution; phlogistonists their “flat ontology” of chemical substance, established decades before the 1770s, their Ontology of substances; types of explaining chemical transformation, and their quantitative methods. Based on my historical Elements; reconstruction, I criticize Chang’s argument that the late eighteenth-century phlogistic systems and Mixts; ’ Chemical compounds; Lavoisier s system belonged to two different theoretical traditions. As a consequence, I also question ’ ’ Affinity Chang s argument that the acceptance of Lavoisier s system can be explained in terms of dominance of “compositionism” over “principlism.” Ó 2014 Elsevier Ltd. All rights reserved. When citing this paper, please use the full journal title Studies in History and Philosophy of Science 1. Introduction following the path to Lavoisier’s system, I will compare the phlo- gistic and the antiphlogistic system from a broader historical and As is well known, Thomas Kuhn highlighted Lavoisier’s “chem- philosophical perspective.
    [Show full text]
  • Styles of Experimental Reasoning in Early Modern Chemistry
    Styles of Experimental Reasoning in Early Modern Chemistry By Victor Dan Boantza A thesis submitted in conformity with requirements for the degree of Doctor of Philosophy Institute for the History and Philosophy of Science and Technology University of Toronto © Copyright by Victor Dan Boantza 2009 Styles of Experimental Reasoning in Early Modern Chemistry Victor Dan Boantza Doctor of Philosophy Institute for the History and Philosophy of Science and Technology University of Toronto 2009 Abstract The science of chemistry has undergone two major transformative changes during the early modern period, both closely related to two of the most revolutionary episodes in the history of Western science. The dissertation consists of a historical-analytical comparative exploration of early modern chemical thought and practice based on two series of interconnected case studies related, respectively, to the seventeenth-century Scientific Revolution and the eighteenth-century Chemical Revolution. Although rarely considered together in the context of the history of chemistry, during both Revolutions, similar forces combined to generate crises in chemical knowledge and practice, to use a well-known Kuhnian notion. Differences in nature and historical evolution notwithstanding, both instances featured attempts at quantification and physicalist reductions of chemistry: during the 1660s-1680s Boyle advanced a reconciliation of chymical experimental knowledge with the budding mechanical philosophy, predicated upon the physically governed laws of matter and motion; during the last third of the eighteenth-century, Lavoisier (et al.) submitted chemical phenomena to the ‘rule of the balance’, as a part of an all-encompassing experimentalist, theoretical and linguistic reformation anchored in the conservation of weight principle.
    [Show full text]
  • Chemical Knowledge in the Early Modern World'.', Osiris., 29 (1)
    Durham Research Online Deposited in DRO: 25 March 2015 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Eddy, Matthew Daniel and Mauskopf, Seymour H. and Newman, William R. (2014) 'An introduction to 'Chemical knowledge in the early modern world'.', Osiris., 29 (1). pp. 1-15. Further information on publisher's website: http://dx.doi.org/10.1086/678110 Publisher's copyright statement: c 2014 by The History of Science Society. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk An Introduction to Chemical Knowledge in the Early Modern World by Matthew Daniel Eddy, Seymour H. Mauskopf, and William R. Newman THE SCOPE OF EARLY MODERN CHEMICAL KNOWLEDGE The essays in this volume collectively cover the development of chemistry in the “early modern world,” that is to say, from the ifteenth century through the eighteenth century.
    [Show full text]
  • Scientific Rationality: Phlogiston As a Case Study
    Scientific Rationality: Phlogiston as a Case Study Jonathon Hricko∗ Penultimate Draft | Please cite the published version, which appears in Tzu-Wei Hung & Timothy Lane (Eds.). (2017). Rationality: Constraints and Contexts. Elsevier Academic Press, London. Abstract: I argue that it was rational for chemists to eliminate phlogiston, but that it also would have been rational for them to retain it. I do so on the grounds that a number of prominent phlogiston theorists identified phlogiston with hydrogen in the late eighteenth century, and this identification became fairly well-entrenched by the early nineteenth century. In light of this identi- fication, I critically evaluate Hasok Chang's argument that chemists should have retained phlogiston, and that doing so would have benefited science. I argue that these benefits would have been unlikely, and I go on to consider some more likely benefits and harms of retaining phlogiston. I conclude that there is a sense in which scientific rationality concerns what is permissible, as opposed to what is required, so that retention and elimination may, at least sometimes, both be rationally permissible options. Keywords: Scientific Rationality, Chemical Revolution, Phlogiston, Hydro- gen, Humphry Davy 1 Introduction The Chemical Revolution, to a first approximation, was an event that took place in the late eighteenth century, and involved chemists embracing Antoine ∗Education Center for Humanities and Social Sciences, National Yang-Ming University, email: jonathon [dot] hricko [at] gmail [dot] com. 1 Lavoisier's oxygen theory and abandoning phlogiston-based explanations of various phenomena. The phenomena in question included combustion and the transformation of metals into oxides. For some time, chemists explained these phenomena by appealing to a substance they called phlogiston, which they posited as a component of inflammable substances and metals.
    [Show full text]
  • Philosophy and the Chemical Revolution After Kant
    This material has been published in The Cambridge Companion to German Idealism edited by K.Ameriks. This version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. © Michela Massimi Philosophy and the Chemical Revolution after Kant Michela Massimi 1. Introduction The term Naturphilosophie denotes a philosophical movement that developed in post- Kantian Germany at the end of the eighteenth century. Fichte and Schelling belonged to this intellectual movement, which had strong cultural links both with Romanticism (including Goethe, Novalis, and Hölderlin) and post-Kantian Idealism. As with any hybrid and transient cultural movement, it is difficult to define Naturphilosophie in terms of a specific manifesto or well-defined cultural program. The term came to denote a fairly broad range of philosophical ideas, whose seeds can be traced back, in various ways, to Kant’s philosophy of nature. Yet, Naturphilosophen gave a completely new twist to Kant’s philosophy of nature, a twist that eventually paved the way to Idealism. The secondary literature on Naturphilosophie has emphasized the role that the movement played for the exact sciences of the early nineteenth century. In a seminal paper (1959/1977, 66-104) on the discovery of energy conservation Thomas Kuhn gave Naturphilosophie(and, in particular, F. W. J. Schelling, credit for stressing the philosophical importance of conversion and transformation processes. These ideas played an important role in the nineteenth-century discovery (carried out independently by Mayer, Joule, and Helmholtz) of the interconvertibility of thermal energy into mechanical work, as well of electricity into magnetism (by Ørsted and Faraday).
    [Show full text]
  • The Fifth Chemical Revolution
    Found Chem DOI 10.1007/s10698-017-9280-9 The fifth chemical revolution: 1973–1999 Jose´ A. Chamizo1 Ó Springer Science+Business Media Dordrecht 2017 Abstract A new chronology is introduced to address the history of chemistry, with edu- cational purposes, particularly for the end of the twentieth century and here identified as the fifth chemical revolution. Each revolution are considered in terms of the Kuhnian notion of ‘exemplar,’ rather than ‘paradigm.’ This approach enables the incorporation of instruments, as well as concepts and the rise of new subdisciplines into the revolutionary process and provides a more adequate representation of such periods of development and consolidation. The fifth revolution developed from 1973 to 1999 and is characterized by a deep transformation in the very heart of chemistry. That is to say, the size and type of objects (substances), the way in which they must be done and the time in which they are transformed. In one way or another, chemistry’ limits had been set out. Keywords History of chemistry Á Chemical revolutions Á Chemistry education Á Exemplars Á Instruments and subdisciplines Introduction In spite of the impressive growth and qualitative change of science over the last half century, however, historians of science still largely turn their attention to earlier periods. Thus a paradoxical temporal imbalance is created: one the one hand, the great majority of historians of science are still working on the small percentage of scientific activity A preliminary version of this paper was presented at the ISPC London 2014. & Jose´ A. Chamizo [email protected] 1 Facultad de Quı´mica, Universidad Nacional Auto´noma de Me´xico, Me´xico, DF, Me´xico 123 J.
    [Show full text]
  • Ontological Tensions in 16Th and 17Th Century Chemistry: Between Mechanism and Vitalism
    Ontological Tensions in 16th and 17th Century Chemistry: Between Mechanism and Vitalism Marina Paola Banchetti-Robino Florida Atlantic University Introduction The 16th and 17th centuries marked a period of transition between the vitalistic ontology that had dominated Renaissance natural philosophy and the early modern mechanistic paradigm that was endorsed by Cartesian natural philosophers, among others. However, even with the dawning of the 18th century Chemical Revolution, chemistry remained resistant to the mechanical philosophy. What one discovers, when examining the chemical philosophies of the 16th and 17th centuries, is that these transitional philosophies involved quite complex and nuanced ontologies that cannot be easily classified as either strictly vitalistic or strictly mechanistic. In fact, in many of the most important chemical theories of this period, vitalism coexisted quite comfortably with corpuscularian theories of matter. More than this, one also discovers that, to the extent that chemical philosophy resisted subsumption under the mechanical philosophy, it was not the supplanting of vitalism by mechanism that ushered in the Chemical Revolution. Rather, this revolution in chemistry was brought about by a naturalized and physicalistic, although non- mechanistic, interpretation of chemical qualities and operations. This paper will examine these ideas by focusing on a few of the more significant transitional chemical philosophies of the 16th and 17th centuries, in order to show how chemical philosophers at this time adhered to complicated ontologies that only slowly and gradually shifted from a vitalistic point of view to a naturalistic and physicalistic, albeit non-mechanistic, account of chemical qualities and operations. For the sake of brevity, I will restrict my discussion to the chemical philosophies of Sebastien Basso, Jan Bapstista van Helmont, and Robert Boyle.
    [Show full text]
  • The Chemical Revolution and the Nature of Matter
    Lecture 5: The Chemical Revolution and the Nature of Matter Astronomy 141 – Winter 2012 This lecture explores the chemical revolution that revealed the nature of matter. Trace the history of our recognition of the true nature of the chemical elements. Advances made possible by new experimental techniques. Periodic Table was an important organizing principle that gave further important insights. Spectroscopy reveals the internal structure of atoms, and gives us a powerful tool for measuring the universe. The elements that make up the Earth and life are common throughout the Universe. The ancient Greeks conceived of matter as composed of 4 elements: Earth, Air, Fire and Water Two main schools of thought: Atomists (Leucippus & Democritus) Elements made of indivisible tiny “atoms” Same matter in the heavens as on the Earth Aristotelians 4 Elements only found on the Earth Heavens were composed of Aether (“fifth essense”) In the Middle Ages, alchemists added new elements to the 5 classical elements. Paracelsus (15th century): Sulfur, Mercury, and Salt. Later additions of specific metals, like Gold, Silver, and Lead. Sought to transform one element into another (transmutation) Joseph Wright – The Alchemist (1771) Antoine Lavoisier (1743-1794) was the first quantitative chemist. Described 33 distinct chemical elements, including Hydrogen and Oxygen. These elements were immutable. Compounds were combinations of these elements. Performed detailed, quantitative experiments that mark the birth of modern Chemistry. David – Lavoisier and his wife (1788) Some of Lavoisier’s experimental apparatus John Dalton (1766-1844) introduced a new atomic theory to explain the elements. Each chemical element is composed of atoms of a single, unique type.
    [Show full text]
  • `` a View of the Past Through the Lens of the Present
    “ A view of the past through the lens of the present. ”, Bernadette Bensaude Vincent To cite this version: Bernadette Bensaude Vincent. “ A view of the past through the lens of the present. ”,: Concluding remarks. Osiris, University of Chicago Press, 2014, Chemical Knowledge in the Early Modern World, 29, pp.298-309. hal-01216560 HAL Id: hal-01216560 https://hal.archives-ouvertes.fr/hal-01216560 Submitted on 16 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Bernadette Bensaude Vincent Université Paris 1 & Institut Universitaire de France [email protected] « A view of the past through the lens of the present. Concluding remarks », in M.Eddy, S.Mauskopf, W. Newmann eds, Chemical Knowledge in the early Modern World, Osiris, vol 29 (2014) : 298-309. Following a decade of intense scholarship on the chemical revolution, over the past few years we have witnessed a striking revival of interest for early-eighteenth century chemistry. As Larry Holmes already pointed out in 1989, for many decades historians of chemistry have been mainly concerned with the emergence of modern science. As they were commenting and dissecting Lavoisier’s published works and manuscripts they tended to consider eighteenth century as the “stage on which the drama of the chemical revolution was performed”.1 For them, early modern chemistry was nothing but pre-Lavoisieran chemistry.
    [Show full text]
  • The Chemical Revolution: the New Chemistry of Airs and Rules of Chemical Combination
    The Chemical Revolution: The new chemistry of airs and rules of chemical combination Waseda University, SILS, History of Modern Physical Sciences The Phlogiston Theory, I Phlogiston was a theoretical substance that was used to explain certain processes of physical change such as combustion, respiration, rusting, etc. The theory proposed a light substance that is released during chemical processes involving heat (burning, respiration, calcination, etc). Here, light means the property of having levity: the opposite of heavy, not less heavy; that is around zero weight or negative weight. Phlogiston had no color, odor, taste or positive weight. How could it be detected? Chemical Revolution 1 / 47 The Phlogiston Theory, II Some examples of combustion: wood Ñ ash + phlogiston (to the air) charcoal Ñ phlogiston (to the air) + impurities The theory was developed by Becher and Stahl, but its most well-remembered proponent was Joseph Priestley. We are now confident that there is no such thing as phlogiston. That is, it was a theoretical substance whose properties were increasingly seen as strange, and the assumption of which became unnecessary in later theories. Nevertheless, we can think of the phlogiston theory as a sort of scientific paradigm. Chemical Revolution 2 / 47 Joseph Black (1728–1799) Born in Bordeaux to a entrepreneurial Scottish family. Studied medicine at Glasgow, were he was an assistant in a chemistry laboratory. Professor at Glasgow and then Edinburgh, in anatomy, chemistry and medicine. Practiced medicine. He was a bachelor, something of a ladies man, and friends with many of the most important Scottish intellectuals of the time – such as A.
    [Show full text]
  • BSHS Monographs Publishes Work of Lasting Scholarly Value That Might
    BSHS Monographs publishes work of lasting scholarly value that might not otherwise be made available, and aids the dissemination of innovative projects advancing scholarship or education in the field. 13. Chang, Hasok and Jackson, 06. Morris, PJT, and Russell, CA; Catherine (eds.). 2007. An Smith, JG (ed.). 1988. Archives of Element of Controversy: The Life the British Chemical Industry, of Chlorine in Science, Medicine, 1750‐1914: A Handlist. Technology and War. ISBN 0‐0906450‐06‐3. ISBN: 978‐0‐906450‐01‐7. 05. Rees, Graham. 1984. Francis 12. Thackray, John C. (ed.). 2003. Bacon's Natural Philosophy: A To See the Fellows Fight: Eye New Source. Witness Accounts of Meetings of ISBN 0‐906450‐04‐7. the Geological Society of London 04. Hunter, Michael. 1994. The and Its Club, 1822‐1868. 2003. Royal Society and Its Fellows, ISBN: 0‐906450‐14‐4. 1660‐1700. 2nd edition. 11. Field, JV and James, Frank ISBN 978‐0‐906450‐09‐3. AJL. 1997. Science in Art. 03. Wynne, Brian. 1982. ISBN 0‐906450‐13‐6. Rationality and Ritual: The 10. Lester, Joe and Bowler, Windscale Inquiry and Nuclear Peter. E. Ray Lankester and the Decisions in Britain. Making of Modern British ISBN 0‐906450‐02‐0 Biology. 1995. 02. Outram, Dorinda (ed.). 2009. ISBN 978‐0‐906450‐11‐6. The Letters of Georges Cuvier. 09. Crosland, Maurice. 1994. In reprint of 1980 edition. the Shadow of Lavoisier: ISBN 0‐906450‐05‐5. ISBN 0‐906450‐10‐1. 01. Jordanova, L. and Porter, Roy 08. Shortland, Michael (ed.). (eds.). 1997. Images of the Earth: 1993.
    [Show full text]
  • Phlogiston Theory and Chemical Revolutions
    Bull. Hist. Chem., VOLUME 30, Number 2 (2005) 63 PHLOGISTON THEORY AND CHEMICAL REVOLUTIONS Leslie V. Woodcock, University of Manchester, UK Introduction In the mid 18th century, unlike the present, there was no conflict between science and religion because in Joseph Priestley was born in 1733 near Birstall, County those days there was virtually no physical science. One of Yorkshire, in England. Above the door of his birth- could argue that history is best understood if taught back- place is the plaque (Fig. 1) that states sim- wards; this is especially true in under- ply “Joseph Priestley: discoverer of oxy- standing the history of science. Now, we gen was born on this site AD 1733. know essentially everything chemists need to know about atoms and molecules, Priestley is famous among scientists mass and energetics, to explain the sym- mainly for his discovery of oxygen, but bolism of chemical equations and the rea- he also achieved many other great “firsts” sons why chemical changes occur. His- in science. In this presentation, emphasis torians of science tend to start with al- will be placed on that aspect of his work chemy and work forward but then stop for which he became “infamous”. when science is no longer susceptible to Priestley adopted, developed, and ad- historical reinterpretation. One conse- vanced the theory of phlogiston to explain quence of this approach to the history of why materials react with oxygen. He con- science is that the credit for scientific ad- tinually had to refine the theory, but in vance is allocated by contemporaries in the end, he died ignominiously in the eyes Figure 1.
    [Show full text]