A Large Ground-Based Observing Campaign of the Disintegrating Planet K2-22B

Total Page:16

File Type:pdf, Size:1020Kb

A Large Ground-Based Observing Campaign of the Disintegrating Planet K2-22B This is a repository copy of A large ground-based observing campaign of the disintegrating planet K2-22b. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/138580/ Version: Published Version Article: Colón, K.D., Zhou, G., Shporer, A. et al. (27 more authors) (2018) A large ground-based observing campaign of the disintegrating planet K2-22b. Astronomical Journal, 156 (5). 227. ISSN 0004-6256 https://doi.org/10.3847/1538-3881/aae31b © 2018 The American Astronomical Society. Reproduced in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The Astronomical Journal, 156:227 (11pp), 2018 November https://doi.org/10.3847/1538-3881/aae31b © 2018. The American Astronomical Society. All rights reserved. A Large Ground-based Observing Campaign of the Disintegrating Planet K2-22b Knicole D. Colón1 , George Zhou2 , Avi Shporer3 , Karen A. Collins2 , Allyson Bieryla2 , Néstor Espinoza4,5,6, Felipe Murgas7,8, Petchara Pattarakijwanich9 , Supachai Awiphan10, James D. Armstrong11, Jeremy Bailey12,13, Geert Barentsen14,15, Daniel Bayliss16 , Anurak Chakpor10, William D. Cochran17 , Vikram S. Dhillon7,18, Keith Horne19 , Michael Ireland20 , Lucyna Kedziora-Chudczer12,13 , John F. Kielkopf21, Siramas Komonjinda22,23, David W. Latham2 , Tom. R. Marsh16 , David E. Mkrtichian10, Enric Pallé7,8, David Ruffolo9 , Ramotholo Sefako24, Chris G. Tinney12,13 , Suwicha Wannawichian22, and Suraphong Yuma9 1 NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory (Code 667), Greenbelt, MD 20771, USA 2 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA 3 Massachusetts Institute of Technology, Cambridge, MA 02139, USA 4 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany 5 Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile 6 Millennium Institute of Astrophysics (MAS), Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile 7 Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife, Spain 8 Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38205 La Laguna, Tenerife, Spain 9 Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand 10 National Astronomical Research Institute of Thailand, 260 Moo 4, Donkaew, Mae Rim, Chiang Mai, 50180, Thailand 11 Institute for Astronomy, University of Hawaii, 34 Ohia Ku St., Pukalani, Maui, HI 96768, USA 12 School of Physics, University of New South Wales, Sydney, NSW 2052, Australia 13 Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW 2052, Australia 14 NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035, USA 15 Bay Area Environmental Research Institute, 625 2nd St. Ste 209, Petaluma, CA 94952, USA 16 Department of Physics, University of Warwick, Coventry CV4 7AL, UK 17 McDonald Observatory and Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA 18 Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK 19 SUPA Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK 20 Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT 2611, Australia 21 Department of Physics and Astronomy, University of Louisville, Louisville, KY 40292, USA 22 Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai, 50200, Thailand 23 Research Center in Physics and Astronomy, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai, 50200, Thailand 24 South African Astronomical Observatory, P.O. Box 9, Observatory, Cape Town 7935, South Africa Received 2018 April 9; revised 2018 September 14; accepted 2018 September 18; published 2018 October 26 Abstract We present 45 ground-based photometric observations of the K2-22 system collected between 2016 December and 2017 May, which we use to investigate the evolution of the transit of the disintegrating planet K2-22b. Last observed in early 2015, in these new observations we recover the transit at multiple epochs and measure a typical depth of <1.5%. We find that the distribution of our measured transit depths is comparable to the range of depths measured in observations from 2014 and 2015. These new observations also support ongoing variability in the K2-22b transit shape and time, although the overall shallowness of the transit makes a detailed analysis of these transit parameters difficult. We find no strong evidence of wavelength-dependent transit depths for epochs where we have simultaneous coverage at multiple wavelengths, although our stacked Las Cumbres Observatory data collected over days-to-months timescales are suggestive of a deeper transit at blue wavelengths. We encourage continued high-precision photometric and spectroscopic monitoring of this system in order to further constrain the evolution timescale and to aid comparative studies with the other few known disintegrating planets. Key words: planets and satellites: detection – planets and satellites: individual (K2-22 b) – techniques: photometric Supporting material: machine-readable tables 1. Introduction intrinsically rare or have a short enough survival lifetime that ( Exoplanet surveys have yielded many surprises over the we are lucky to catch any in the act of disintegrating van years. The discovery of “disintegrating” exoplanets was one Lieshout & Rappaport 2017). such surprise. These are planets that appear to have tails of Because such objects are rare, the systems named above dusty material that produce asymmetric transit shapes. At have been under intense study so as to better understand their present, there are only three such planets known around main- formation and evolution. In particular, observations over long sequence stars: KIC 12557548b (Rappaport et al. 2012), KOI- timescales can be used to determine the rate at which the transit 2700b (Rappaport et al. 2014), and K2-22b (Sanchis-Ojeda depth evolves over time. In addition, multi-wavelength et al. 2015). The first two were discovered in NASA’s Kepler observations can provide constraints on the properties of the prime mission, while the latter was discovered in Campaign 1 grains that are present in the dust tails. For example, several of NASA’s K2 mission (Howell et al. 2014). Given that Kepler such studies have been done for WD 1145+017 (Vanderburg and K2 have observed a combined total of several hundred et al. 2015; Vanderburg & Rappaport 2018), which is a white thousand stars, this suggests that such objects are either dwarf star that has disintegrating planetesimals in orbit around 1 The Astronomical Journal, 156:227 (11pp), 2018 November Colón et al. it and is perhaps the most well-studied “disintegrating” system telescopes ranging in size from 0.5 to 10.4 m and spanning to date (e.g., Alonso et al. 2016; Gänsicke et al. 2016; Zhou optical to near-infrared wavelengths. In Section 3, we present et al. 2016; Croll et al. 2017; Hallakoun et al. 2017; Redfield our analysis and modeling of the light curves, and we describe et al. 2017; Vanderburg & Rappaport 2018; Xu et al. 2018). and discuss our findings in Sections 4 and 5. However, because this system consists of debris orbiting a post-main-sequence star, it is arguably in a different class than 2. Observations and Data Analysis the other three disintegrating planets known. The planetary companion KIC 12557548b, which orbits a In the following sections, we describe the observations of highly spotted K-dwarf star with a period of ∼16 hr, displays K2-22 performed with nine different facilities located around variable transit depths ranging from <0.2% to 1.3% within Kepler the world. The time-series photometry from each observatory is data obtained between 2009 and 2013 (e.g., Rappaport et al. presented in Figure 1 and Table 1, and a summary of the 2012). It was later observed in 2013 and 2014 to have weaker observations is given in Table 2. transits overall than seen in the Kepler data (e.g., Schlawin et al. 2016). Studies have found evidence for a correlation between the 2.1. Anglo-Australian Telescope (AAT) variability of the transit depth and the stellar rotation period Near-infrared light curves of K2-22 were obtained using the (∼23 days; Kawahara et al. 2013; Croll et al. 2015). These studies IRIS2 camera on the 3.9 m AAT (Tinney et al. 2004), located at suggest that either the activity corresponding to enhanced Siding Spring Observatory (SSO) in Australia. IRIS2 is a ultraviolet and/orX-rayradiationinturncausesincreasedmass- 1K×1K camera utilizing a HAWAII-1 HgCdTe detector, read loss and therefore increased variability in the transit depth, or the out over four quadrants in the double-read mode, achieving a − apparent changes in transit depth occur as a dust tail passes over field of view of 7 7×7 7, at a pixel scale of 0 4486 pixel 1. star spots. In addition, while simultaneous Kepler and near- Observations were obtained on UT 2017 March 15 (transit infrared observations of KIC 12557548b revealed no significant epoch=2669) and UT 2017 March 16 (transit epoch=2671) difference in transit depth with wavelength (Crolletal.2014), with IRIS2 in the Ks band, at 30 s exposure time. These evidence for a color dependence of the transit depth between g′ observations were scheduled to accompany simultaneous and z′ was later found by Bochinski et al.
Recommended publications
  • NHBSS 047 2K Mustow Lotic
    NAT. NAT. HIST. BULL. SIAM Soc. 47:225-252 ,1999 LOTIC MACROINVERTEBRA TE ASSEMBLAGES IN NORTHERN THAILAND: ALTITUDINAL AND LONGITUD I1河 AL DISTRIBUTION AND THE EFFECTS OF POLLUTION Stephen Stephen E. Mustow 1 ABSTRACT distribution 百le distribution and composition of invertebrate faunas was studied in upland ,lowland and and urban sites in the north basin of the River Ping in Th ailand. Th e princip a1 physico ・ chemical chemical features of 23 sites were measu 問 d 佃 d the invertebrates in se ぉ onal net-sweeps , bottom bottom kick and dredge samples identified to fam i1 y leve l. Canonic a1 correspondence an a1 ysis was was used to assess relationships between environmen ta1 and biological data. Taxon accretion was was studied at two sites in order to determine the sampling effo 民間:quired to ∞u巴ct representa ・ tive tive kick-samples. Accretion rates were within the range recorded in temperate rivers. Di 釘'er- ences ences in the fauna amongst 血e 23 sites were explained by temperaωre ,conductivity ,pH ,and current current velocity. Reductions in diversity at severely pollu 旬 d sites were sm a1 ler 伽 n in simi ・ larly larly impacted sites in temperate regions. INTRODUCTION Th e ecology of aquatic invertebrates in Asia as a whole is poorly understood (RUNDLE ET AL. , 1993; DUOGEON ,1995) , not least in Th ailand for which few studies are reported in in the literature. Th e most detailed studies in Th ailand have been of a reservoir in 白e central central region (JUNK ,1975 , 1977) and of a rice field in the Northeast (HECKMAN , 1979).
    [Show full text]
  • A Global Overview of Protected Areas on the World Heritage List of Particular Importance for Biodiversity
    A GLOBAL OVERVIEW OF PROTECTED AREAS ON THE WORLD HERITAGE LIST OF PARTICULAR IMPORTANCE FOR BIODIVERSITY A contribution to the Global Theme Study of World Heritage Natural Sites Text and Tables compiled by Gemma Smith and Janina Jakubowska Maps compiled by Ian May UNEP World Conservation Monitoring Centre Cambridge, UK November 2000 Disclaimer: The contents of this report and associated maps do not necessarily reflect the views or policies of UNEP-WCMC or contributory organisations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP-WCMC or contributory organisations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. TABLE OF CONTENTS EXECUTIVE SUMMARY INTRODUCTION 1.0 OVERVIEW......................................................................................................................................................1 2.0 ISSUES TO CONSIDER....................................................................................................................................1 3.0 WHAT IS BIODIVERSITY?..............................................................................................................................2 4.0 ASSESSMENT METHODOLOGY......................................................................................................................3 5.0 CURRENT WORLD HERITAGE SITES............................................................................................................4
    [Show full text]
  • Proceedings of the Ctfs-Aa International Field Biology Course 2005
    ^^^Sij**jiit o PROCEEDINGS OF THE CTFS-AA INTERNATIONAL FIELD BIOLOGY COURSE 2005 KHAO CHONG, THAILAND 15 June-14 July 2005 Edited by Rhett D. Harrison Center for Tropical Forest Science - Arnold Arboretum Asia Program National Parks, Wildlife and Plant Conservation Department, Thailand Preface Preface The CTFS-AA International Field Biology Course is an annual, graduate-level field course in tropical forest biology run by the Center for Tropical Forest Science - Arnold Arboretum Asia Program (CTFS- AA; www.ctfs-aa.org) in collaboration with institutional partners in South and Southeast Asia. The CTFS-AA International Field Biology Course 2005 was held at Khao Chong Wildlife Extension and Conservation Center, Thailand from 15 June to 14 July and hosted by the National Parks, Wildlife and Plant Conservation Department, Thailand. It was the fifth such course organised by CTFS-AA. Last year's the course was held at Lambir Hills National Park, Sarawak and in 2001 and 2003 the courses were held at Pasoh Forest Reserve, Peninsular Malaysia. The next year's course will be announced soon The aim of these courses is to provide high level training in the biology of forests in South and Southeast Asia. The courses are aimed at upper-level undergraduate and graduate students from the region, who are at the start of their thesis research or professional careers in forest biology. During the course topics in forest biology are taught by a wide range of experts in tropical forest science. There is a strong emphasis on the development of independent research projects during the course. Students are also exposed to different ecosystem types, as well as forest related industries, through course excursions.
    [Show full text]
  • Synthesis Report on Ten ASEAN Countries Disaster Risks Assessment
    Synthesis Report on Ten ASEAN Countries Disaster Risks Assessment ASEAN Disaster Risk Management Initiative December 2010 Preface The countries of the Association of Southeast (Vietnam) droughts, September 2009 cyclone Asian Nations (ASEAN), which comprises Brunei, Ketsana (known as Ondoy in the Philippines), Cambodia, Indonesia, Laos, Malaysia, Myanmar, catastrophic flood of October 2008, and January Philippines, Singapore, Thailand, and Vietnam, is 2007 flood (Vietnam), September 1997 forest-fire geographically located in one of the most disaster (Indonesia) and many others. Climate change is prone regions of the world. The ASEAN region expected to exacerbate disasters associated with sits between several tectonic plates causing hydro-meteorological hazards. earthquakes, volcanic eruptions and tsunamis. The region is also located in between two great Often these disasters transcend national borders oceans namely the Pacific and the Indian oceans and overwhelm the capacities of individual causing seasonal typhoons and in some areas, countries to manage them. Most countries in tsunamis. The countries of the region have a the region have limited financial resources and history of devastating disasters that have caused physical resilience. Furthermore, the level of economic and human losses across the region. preparedness and prevention varies from country Almost all types of natural hazards are present, to country and regional cooperation does not including typhoons (strong tropical cyclones), exist to the extent necessary. Because of this high floods, earthquakes, tsunamis, volcanic eruptions, vulnerability and the relatively small size of most landslides, forest-fires, and epidemics that of the ASEAN countries, it will be more efficient threaten life and property, and droughts that leave and economically prudent for the countries to serious lingering effects.
    [Show full text]
  • Chapter 6 South-East Asia
    Chapter 6 South-East Asia South-East Asia is the least compact among the extremity of North-East Asia. The contiguous ar- regions of the Asian continent. Out of its total eas constituting the continental interior include land surface, estimated at four million sq.km., the the highlands of Myanmar, Thailand, Laos, and mainland mass has a share of only 40 per cent. northern Vietnam. The relief pattern is that of a The rest is accounted for by several thousand is- longitudinal ridge and furrow in Myanmar and lands of the Indonesian and Philippine archipela- an undulating plateau eastwards. These are re- goes. Thus, it is composed basically of insular lated to their structural difference: the former and continental components. Nevertheless the being a zone of tertiary folds and the latter of orographic features on both these landforms are block-faulted massifs of greater antiquity. interrelated. This is due to the focal location of the region where the two great axes, one of lati- The basin of the Irrawady (Elephant River), tudinal Cretaceo-Tertiary folding and the other forming the heartland of Myanmar, is ringed by of the longitudinal circum-Pacific series, converge. mountains on three sides. The western rampart, This interface has given a distinctive alignment linking Patkai, Chin, and Arakan, has been dealt to the major relief of the region as a whole. In with in the South Asian context. The northern brief, the basic geological structures that deter- ramparts, Kumon, Kachin, and Namkiu of the mine the trend of the mountains are (a) north- Tertiary fold, all trend north-south parallel to the south and north-east in the mainland interior, (b) Hengduan Range and are the highest in South- east-west along the Indonesian islands, and (c) East Asia; and this includes Hkakabo Raz north-south across the Philippines.
    [Show full text]
  • 1988 Aedes (Finlaya)
    Mosquito Systematics Vol. 20(l) 1988 Aedes (Finlaya) reinerti, a New Species from Northern Thailand Related to Aedes (Finlaya) formosensis Yamada (Diptera: Culicidae) Rampa Rattanarithikul’ and Bruce A. Harrison2 ABSTRACT. The adults, larva, pupa, male and female genitalia are described and illustrated for Aedes (Finlaya) reinerti, a new species from northern Thailand, and are compared with a related species, Aedes (Finlaya) formosensis. The bionomics and distribution of the new species are discussed. Lectotypes are designated for Aedes formosensis and Finlaya khasiana. INTRODUCTION. In June-July, 1978 the Department of Medical Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand, conducted mosquito taxonomic surveys on the tallest mountain in Thailand, Doi Inthanon in Chiang Mai Province. During this trip specimens of an Aedes (Finlaya) species were collected and reared which were initially determined as Ae. (Fin.) formosensis Yamada 1921, originally described from Formosa (Taiwan). Later, characters were noted on several stages of these spec- imens which made us suspect that they represented an undescribed species or a previously described species that was currently considered a synonym of Ae. f ormosensis. An examination of specimens at AFRIMS collected in Chiang Mai in the 1960s revealed additional specimens with the same distinctive characters, and in 1982-83 the junior author found additional specimens from the 1960s housed in the Smithsonian collections at the National Museum of Natural History (USNM). There are 2 synonyms listed under Ae. formosensis in Knight and Stone (1977), i.e., Aedes pallirostris Edwards, 1922 and Finlaya khasiana Barraud, 1923. The latter was synonymized under Ae. formosensis by Barraud (1934), while Knight (1968) synonymized the former with Ae.
    [Show full text]
  • Lepidoptera: Saturniidae) 127-143 Nachr
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Nachrichten des Entomologischen Vereins Apollo Jahr/Year: 2010 Band/Volume: 31 Autor(en)/Author(s): Naumann Stefan, Nässig Wolfgang A. Artikel/Article: Two species in Saturnia (Rinaca) zuleika Hope, 1843 (Lepidoptera: Saturniidae) 127-143 Nachr. entomol. Ver. Apollo, N. F. 31 (3): 127–143 (2010) 127 Two species in Saturnia (Rinaca) zuleika Hope, 1843 (Lepidoptera: Saturniidae) 1 2 Stefan Naumann and Wolfgang A. Nässig Dr. Stefan Naumann, Hochkirchstrasse 71, D­10829 Berlin, Germany; [email protected] Dr. Wolfgang A. Nässig, Entomologie II, Forschungsinstitut Senckenberg, Senckenberganlage 25, D­60325 Frankfurt am Main, Germany; wolfgang.naessig@ senckenberg.de Abstract: The type locality for Saturnia zuleika Hope, different populations in the group, but only hesitated to 1843 as reported in the original description (“Silhet”) is describe them at the species level. We also uncovered a evident ly erroneous; the same probably being the case for misidentified type lo ca li ty, which might also have been Salassa lola (West wood, 1847). Based on the illustration in the ori gin al de scrip tion and possible syntype material, the responsible for the hesi ta tion of earlier authors. taxon was apparently describ ed from Himalayan material Saturnia zuleika was described by Hope (1843: 132, pl. (prob ab ly from the Dar ji ling area) bearing wrong locality XI, fig. 5) stating that it came from “Silhet”. Hope’s new data. The populations from all extra­Hi ma lay an localities belong to a different spe cies, Saturnia (Ri na ca) lesoudieri species was illustrated; this drawing is reproduced here Le Moult, 1933.
    [Show full text]
  • Tourism, Biodiversity, and Culture: Toward a Sustainable Ecotourism Strategy
    1996 (April - December) | Links to explore Ecotourism in the Himalayas: The Nepalese Experience by Elizabeth Kalbfuss Yak-packing in Nepal (Photo: Elizabeth Kalbfuss) NAMCHE BAZAR: For centuries, this hillside village — the gateway to the Mount Everest region — has been renowned as a market centre. Even today, a few traders still travel across the snowpeaks from as far away as Tibet and surrounding hills to barter salt and yak meat for rice, millet and other goods from the south. But lodge owners from across the region also travel to the Saturday market to pick up supplies for the tourist trade: peanut butter, Mars and Snickers candy bars, and rolls and rolls of toilet paper. More than 20 years of intensive tourism have had a significant impact on both the way of life of Sherpa communities and the environment they depend on. "I remember in 1970 when we first saw trekkers here and everybody went out to see the white people," says Anu Sherpa, who has lived in Namche Bazar all his life. At that time, he was an 11-year old boy with one year of schooling who dressed in clothes made from yak wool and wore buffalo-skin shoes. Now he owns and runs the Himalayan Lodge Restaurant and Bar, complete with roof-top satellite dish. While his wife likes to watch movies on one channel, he cheers for the Australian cricket team on the sports channel. Tourism Boom All of Namche is a boom town. At least half a dozen new trekking lodges were under construction this spring: stone houses with wooden beams obtained from outside the protected forests of the park.
    [Show full text]
  • MIN MAX AFGHANISTAN Kabul -25.5 40 Kandahar
    MIN MAX AFGHANISTAN Kabul -25.5 40 Kandahar -12.1 46.5 Jalalabad -7.8 48.8* * dubious,likely taken with not proper instruments Mazar al Sharif -24 48.1 Ghazni -33.5 37 Zaranj -13.2 49.6* * a dubious 51.0C was likely taken with not proper instruments Farah -11.9 49.8 Shahrak -52.2 ALBANIA Tirana -10.4 42.2 Durres -9 39.5 Shkoder -13 42.8 Cerrik -9.4 43.2 Kucova 43.9 Kallmet 45.3* * unofficial, questioned Kukes -22 42.5 Sheqeras -26.8 Moscopole -27.5* * unofficial, dubious Bize -34.7* * unofficial, dubious ALGERIA Algiers Airport -4 47.5 Oran -3 45.8 In Salah -3.3 50.6 Ouargla -6.7 50.4 Batna -20 43.8 Constantine -10 45.5 Tamanrasset -7 41.6 ANDORRA Andorra La Vella -16 38.5* * dubious Hidroelectrica -16 36 Engolaster Lake -21 33 Ransol -23 36 Grau Roig -27.3 Port d'Envalira -34* * unofficial, dubious ANGOLA Luanda 12 36.9 Bie (Silva Porto) -5* 31.7* * suspicious, likely taken under not proper conditions Mavinga -3.9 Bicuari Nat.Park -4.1 Namibe 3 40.3 Espinheira 40.6 Cabinda 12 34.4 ANTIGUA AND BARBUDA Saint John's 15.6 33.8 Bird Airport 16 34.9 Codrington (Barbuda)17.2 35* * suspicious ARGENTINA Buenos Aires Obser.-5.4* 43.3 * -6.4C was also recorded in June 1830 Ezeiza Airport -7.8 44.3 Cordoba -10.3 45 * a 45.6C in 1917 was likely taken with not proper instruments Bahia Blanca -11.8 43.8 Mar del Plata -9.3 41.6 Mendoza -9.2 44.4 Rosario -11.1 42.4* * an old record of 43.9C was likely taken with not proper instruments Santiago del Estero -10 46.5* * a temperature of 47.0C was also recorded in the observatory Catamarca -9 47* * a temperature
    [Show full text]
  • Název Prezentace
    10. Tourist attractions in the Asia Předmět: The Tourist Attractions in the Czech Republic and in the World Geography of Cyprus Cyprus is an island country in the Eastern Mediterranean and the third largest and third most populous island in the Mediterranean. Cyprus is located south of Turkey, west of Syria and Lebanon, northwest of Israel, north of Egypt, and southeast of Greece. A very narrow band of mountains (the Kyrenia) slices across the northern edge of Cyprus. That low range of mountains reaches a maximum of 1,024 m in elevation. In the south and western portions of the island the Troodos Mountains dominate. The highest point on Cyprus, located in the center of the Troodos range, is Mount Olympus at 1,952 m. Rivers are seasonal and only flow after heavy rain, and under those conditions the Pedieos is the longest river in Cyprus. It rises in the Troodos Mountains, flowing northeast through the capital city of Nicosia. It then steers east, meeting the sea at Famagusta Bay. The river has a total length of approximately 100 km. Cyprus has over 100 dams and reservoirs, and all are the island's principal source of water for both agricultural and domestic use. The main tourist attractions in Cyprus There's no shortage of ancient sites in Cyprus but Kourion is the pick of the bunch. Romantically situated across a coastal cliff with tumbling views of the countryside and Mediterranean below, it's a magical place. The entire site is vast, but the most famous section is the theater and the House of Eustolios, which holds a clutch of fine, well-preserved mosaics.
    [Show full text]
  • High-Speed Photometry of the Disintegrating Planetesimals at Wd1145+017: Evidence for Rapid Dynamical Evolution B
    The Astrophysical Journal Letters, 818:L7 (6pp), 2016 February 10 doi:10.3847/2041-8205/818/1/L7 © 2016. The American Astronomical Society. All rights reserved. HIGH-SPEED PHOTOMETRY OF THE DISINTEGRATING PLANETESIMALS AT WD1145+017: EVIDENCE FOR RAPID DYNAMICAL EVOLUTION B. T. Gänsicke1, A. Aungwerojwit2, T. R. Marsh1, V. S. Dhillon3,4, D. I. Sahman3, Dimitri Veras1, J. Farihi5, P. Chote1, R. Ashley1, S. Arjyotha6, S. Rattanasoon7, S. P. Littlefair3, D. Pollacco1, and M. R. Burleigh8 1 Department of Physics, University of Warwick, Coventry CV4 7AL, UK; [email protected] 2 Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand 3 Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK 4 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Santa Cruz de Tenerife, Spain 5 Department of Physics and Astronomy, University College London, London WC1E 6BT, UK 6 Program of Physics, Faculty of Science and Technology, Chiang Rai Rajabhat University, Chiang Rai, 57100, Thailand 7 National Astronomical Research Institute of Thailand, 191 Siriphanich Bldg., Huay Kaew Road, Suthep, Muang, Chiang Mai 50200, Thailand 8 Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK Received 2015 December 30; accepted 2016 January 9; published 2016 February 3 ABSTRACT We obtained high-speed photometry of the disintegrating planetesimals orbiting the white dwarf WD 1145+017, spanning a period of four weeks. The light curves show a dramatic evolution of the system since the first observations obtained about seven months ago. Multiple transit events are detected in every light curve, which have varying durations (;3–12 minutes) and depths (;10%–60%).
    [Show full text]
  • Except Philippines) and Australian Region (Coleoptera: Hydrophilidae: Acidocerinae)
    Koleopterologische Rundschau 89 151–316 Wien, September 2019 Taxonomic revision of Agraphydrus RÉGIMBART, 1903 III. Southeast Asia (except Philippines) and Australian Region (Coleoptera: Hydrophilidae: Acidocerinae) A. KOMAREK Abstract The species of Agraphydrus RÉGIMBART, 1903 from Australia, Brunei, Indonesia, Laos, Malaysia, Myanmar, Papua New Guinea, Thailand, and Vietnam are revised. Agraphydrus biprojectus MINOSHIMA, KOMAREK & ÔHARA, 2015, A. coronarius MINOSHIMA, KOMAREK & ÔHARA, 2015, A. geminus (ORCHYMONT, 1932), A. jaechi (HANSEN, 1999), A. malayanus (HEBAUER, 2000), A. orientalis (ORCHYMONT, 1932), A. regularis (HANSEN, 1999), A. siamensis (HANSEN, 1999), and A. thaiensis MINOSHIMA, KOMAREK & ÔHARA, 2015 are redescribed. Sixty new species are described: A. anacaenoides, A. angulatus, A. bacchusi, A. balkeorum, A. borneensis, A. brevipenis, A. burmensis, A. carinatulus, A. cervus, A. clarus, A. delineatus, A. engkari, A. excisus, A. exiguus, A. floresinus, A. hamatus, A. helicopter, A. hendrichi, A. heterochromatus, A. hortensis, A. imitans, A. infuscatus, A. jankodadai, A. kathapa, A. laocaiensis, A. latus, A. lunaris, A. maehongsonensis, A. manfredjaechi, A. mazzoldii, A. microphthalmus, A. mirabilis, A. muluensis, A. musculus, A. namthaensis, A. nemo- rosus, A. nigroflavus, A. obesus, A. orbicularis, A. pallidus, A. papuanus, A. penangensis, A. piceus, A. raucus, A. reticulatus, A. rhomboideus, A. sarawakensis, A. schoedli, A. scintillans, A. shaverdoae, A. skalei, A. spadix, A. spinosus, A. stramineus, A. sucineus, A. sundaicus, A. tamdao, A. tristis, A. tu- lipa, A. vietnamensis. Agraphydrus superans (HEBAUER, 2000) is synonymized with A. jaechi. The genus Agraphydrus is recorded from Brunei for the first time. Agraphydrus activus KOMAREK & HEBAUER, 2018 is recorded from Thailand for the first time, A. coomani (ORCHYMONT, 1927) is recorded from Brunei, Indonesia, Laos, Myanmar, and Thailand for the first time, A.
    [Show full text]