SENTENARYO NG TEORYANG GENERAL RELATIVITY March 14, 2016 (1 - 3 Pm), NIP Auditorium, up Diliman Program Emcees: Ms

Total Page:16

File Type:pdf, Size:1020Kb

SENTENARYO NG TEORYANG GENERAL RELATIVITY March 14, 2016 (1 - 3 Pm), NIP Auditorium, up Diliman Program Emcees: Ms SENTENARYO NG TEORYANG GENERAL RELATIVITY March 14, 2016 (1 - 3 pm), NIP Auditorium, UP Diliman Program Emcees: Ms. Cherrie Olaya and Mr. Nestor Bareza National Anthem Welcome Remarks Academician William G. Padolina (NAST) Presentation 1 Einstein: Science, Image, and Impact (Dr. Perry Esguerra) Presentation 2 Einstein and the Music of the Spheres (Dr. Ian Vega) Intermission NIP Resonance Choir Presentation 3 From Einstein’s Universe to the Multiverse (Dr. Reina Reyes) Open Forum* *Moderators: Dr. May Lim and Dr. Nathaniel Hermosa II Closing Remarks Dr. Jose Maria P. Balmaceda (UP College of Science) (Refreshments will be served at the NIP Veranda) What’s Inside? Organizing Committee Messages p.1 Extended Abstracts 8 Dr. Percival Almoro (Chair) Einstein chronology 18 Dr. Perry Esguerra Einstein quotations 19 Dr. Ian Vega Dr. Caesar Saloma (Convenor) Outside Front Cover Outside Back Cover Inside Back Cover Einstein in Vienna, 1921 Depiction of gravitational waves Galaxies By: F. Schmutzer generated by binary neutron stars. By: Hubble Ultra Deep Field (Wikimedia Commons) By: R. Hurt/Caltech-JPL (http://hyperphysics.phy-astr.gsu. (http://www.jpl.nasa.gov/im- edu/hbase/astro/deepfield.html) ages/universe/20131106/pul- sar20131106-full.jpg) Acknowledgements Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) 1 2 Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) 3 4 Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) http://www.npr.org/sections/thetwo-way/2016/02/11/466286219/in-milestone- scientists-detect-waves-in-space-time-as-black-holes-collide https://www.youtube.com/watch?v=B4XzLDM3Py8 https://soundcloud.com/emily-lakdawalla Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) 5 6 Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) 7 Einstein: Science, Image, and Impact By Perry Esguerra ‘WHY is it that nobodY for photoluminescence, the ory of relativity. The result understands ME AND photoelectric effect, and the was a deeper understanding everYbodY LIKES ME?’ generation of cathode rays by of space and time that had Albert Einstein, quoted in the New York Times, 12 March 1944 photoionization. Einstein was repercussions on all of phys- awarded the 1921 Nobel Prize ics. Special relativity had in Physics for his explanation predictions that are counter- More than sixty years af- of the photoelectric effect. intuitive – e.g. time dilation, ter his last scientific paper, In “A New Determination of length contraction, relativity Einstein remains a figure of Molecular Dimensions”, Ein- of simultaneity, mass-energy fascination in the scienc- stein presented a method for equivalence- but the theory es and beyond. Einstein is determining the size of atoms was eventually accepted be- best known for the theories and molecules at a time when cause these predictions were of special and general rel- their very existence was con- verified experimentally. Spe- ativity but he contributed troversial. He showed that the cial relativity was, however, much more to the physics of sizes of atoms and molecules limited because it only relat- the 20th century. Einstein’s can be inferred from the dif- ed observations in reference scholarly career lasted for fif- fusion and the viscosity of frames that are in uniform ty-five years. His scientific dilute solutions. In “On the motion with respect to each reputation, however, rests on Movement of Small Particles other. the work he did in the first Suspended in Stationary Liq- twenty-five of these years. uids Required by the Molec- Einstein believed that a the- ular-Kinetic Theory of Heat” ory of relativity should also In 1905 Einstein produced – more often known as the apply to reference frames breakthrough work in three Brownian motion paper -Ein- that are in non-uniform mo- distinct areas of physics: stein continued his quest for tion relative to each other. on the quantum nature of the verification of the atomic His first steps towards a gen- light; on the size and the ef- theory. eral theory of relativity were fects of atoms; and on the made in 1907, through his special theory of relativi- The last two of Einstein’s great discovery of a simple version ty. The photon hypothesis papers of 1905 dealt with of the equivalence principle. enabled Einstein to account Special Relativity. Einstein From 1911 to October 1915, for the distribution of radia- described his theory of rel- Einstein formulated sever- tion emitted by a black body, ativity as a resolution of the al flawed versions of general and to propose explanations conflict between Maxwell’s relativity. Writing deprecat- for three experimental ob- electromagnetic theory and ingly about himself, Einstein servations – the Stokes rule the Newtonian / Galilean the- wrote in a letter to Ehrenfest 8 Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) “Einstein [referring to him- tum physics suggests that gen- ticles – a basis for theoretical self] has it easy. Every year eral relativity may not be the descriptions of superfluids he retracts what he wrote in final word on gravity. and superconductors. With the preceding year; now the Einstein also developed the Podolsky and Rosen, he pre- sorry business falls to me of first quantum theory of spe- sented what is now known as justifying my latest retrac- cific heats, thereby resolving the EPR paradox – a quan- tion”. a paradox in classical physics tum mechanical thought ex- that specific heats were often periment that has triggered In November 1915, Einstein smaller than can be explained debates on the interpretation finally presented the defin- by classical theory. With Brill- of quantum mechanics. itive formulation of gener- ouin and Keller, he developed al relativity to the Prussian a method for studying the He spent the last thirty years Academy of Sciences in a pa- quantum mechanical coun- of his life working on an un- per on the “Field Equations terparts of classical systems. successful search for a uni- of Gravitation”. In March He developed a theory for de- fied field theory. Einstein 1916, Einstein published a scribing how atoms emit and also tinkered with a device to synopsis of the General The- absorb light, a foundation for measure small voltage differ- ory of Relativity in Annalen the physics of lasers. With ences. With de Haas, he con- der Physik; in this paper Ein- Bose, he formulated the quan- ducted experiments on the stein concludes with a brief tum statistics of bosonic par- rotation of magnets. He had section on the three new predictions: the gravitation- al red shift, the gravitation- al bending of light, and the precession of the perihelion of Mercury. The prediction about the gravitational bend- ing of light was confirmed by Arthur Eddington during the solar eclipse of 29 May 29, 1919. Other predictions of general relativity that were later confirmed include grav- itational lensing, the gravita- tional redshift of light, gravi- tational time delay, existence of black holes, and gravita- tional waves. Today general relativity is a cornerstone for cosmology and astrophysics. But the un- Photo of Albert Einstein and Charlie Chaplin at the Los Angeles pre- resolved issue of reconciling miere of the film City Lights. April 1931 (https://commons.wikimedia. org/wiki/File:Albert_Einstein_and_Charlie_Chaplin_-_1931.jpg) general relativity and quan- Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) 9 approximately fifty patents, science, philosophy, religion, High School Curriculum, and including a patent for a re- and politics remain rele- General Physics 1, a specialized frigerator and a hearing aid. vant today; partly because subject under the STEM strand. made-up quotations sound He has been teaching Physics 10 (Physics and Astronomy for By 1919, Einstein’s genius more credible when they can Pedestrians), since 2002 and is was already widely recog- be attributed to Einstein; and the Faculty Adviser of the UP nized in scientific circles. , most importantly, because Astronomical Society. He has The University of Geneva Einstein’s scientific work still also taught introductory phys- awarded him his first hon- plays a significant role in the ics courses, and physics courses orary doctorate in 1909. cutting-edge scientific re- at the advance undergraduate, Einstein received nomina- search of our time. and graduate levels. He helped tions for the Nobel physics train many Philippine teams in prize in every year but About the Speaker sent to the International Olym- two from 1910 to 1922. It piad of Astronomy and Astro- physics, the International Phys- was, however, the interna- ics Olympiad, and the Asian tional media coverage of Ed- Physics Olympiad. He was a dington’s 1919 observations judge and a member of the sci- confirming general relativi- entific review committee of the ty that made Einstein transi- Intel Philippine Science Fair / tion from a scientific star to a DepEd National Science and charismatic world figure and Technology Fair from 2000 to cultural icon. The press cov- 2015. erage turned Einstein into an icon of a “new physics” that Prof. Esguerra has published twenty papers in journals cov- was overturning established ered by the Thomson-Reuters/ notions of space, time, mat- Science Citation Index, in re- ose Perico “Perry” Esguerra is ter, and energy, and also into J search areas such as fraction- the Coordinator of the Theoret- a symbol of intellect at the al quantum mechanics, gen- ical Physics Group and a Profes- highest level. Later, the press eral relativity, random walks, sor of Physics in the National will also report on Einstein’s diffusion, Brownian motion, Institute of Physics in UP Dili- first-passage time problems, concerns on pacifism, the man. He was the President of statistical mechanics, nonlin- Jewish question, racial dis- the Samahang Pisika ng Pilipi- ear time-series analysis, and crimination, nuclear disar- nas from 2009 to 2010, and has self-gravitating systems.
Recommended publications
  • Relational Quantum Mechanics
    Relational Quantum Mechanics Matteo Smerlak† September 17, 2006 †Ecole normale sup´erieure de Lyon, F-69364 Lyon, EU E-mail: [email protected] Abstract In this internship report, we present Carlo Rovelli’s relational interpretation of quantum mechanics, focusing on its historical and conceptual roots. A critical analysis of the Einstein-Podolsky-Rosen argument is then put forward, which suggests that the phenomenon of ‘quantum non-locality’ is an artifact of the orthodox interpretation, and not a physical effect. A speculative discussion of the potential import of the relational view for quantum-logic is finally proposed. Figure 0.1: Composition X, W. Kandinski (1939) 1 Acknowledgements Beyond its strictly scientific value, this Master 1 internship has been rich of encounters. Let me express hereupon my gratitude to the great people I have met. First, and foremost, I want to thank Carlo Rovelli1 for his warm welcome in Marseille, and for the unexpected trust he showed me during these six months. Thanks to his rare openness, I have had the opportunity to humbly but truly take part in active research and, what is more, to glimpse the vivid landscape of scientific creativity. One more thing: I have an immense respect for Carlo’s plainness, unaltered in spite of his renown achievements in physics. I am very grateful to Antony Valentini2, who invited me, together with Frank Hellmann, to the Perimeter Institute for Theoretical Physics, in Canada. We spent there an incredible week, meeting world-class physicists such as Lee Smolin, Jeffrey Bub or John Baez, and enthusiastic postdocs such as Etera Livine or Simone Speziale.
    [Show full text]
  • The E.P.R. Paradox George Levesque
    Undergraduate Review Volume 3 Article 20 2007 The E.P.R. Paradox George Levesque Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Quantum Physics Commons Recommended Citation Levesque, George (2007). The E.P.R. Paradox. Undergraduate Review, 3, 123-130. Available at: http://vc.bridgew.edu/undergrad_rev/vol3/iss1/20 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2007 George Levesque The E.P.R. Paradox George Levesque George graduated from Bridgewater his paper intends to discuss the E.P.R. paradox and its implications State College with majors in Physics, for quantum mechanics. In order to do so, this paper will discuss the Mathematics, Criminal Justice, and features of intrinsic spin of a particle, the Stern-Gerlach experiment, Sociology. This piece is his Honors project the E.P.R. paradox itself and the views it portrays. In addition, we will for Electricity and Magnetism advised by consider where such a classical picture succeeds and, eventually, as we will see Dr. Edward Deveney. George ruminated Tin Bell’s inequality, fails in the strange world we live in – the world of quantum to help the reader formulate, and accept, mechanics. why quantum mechanics, though weird, is valid. Intrinsic Spin Intrinsic spin angular momentum is odd to describe by any normal terms. It is unlike, and often entirely unrelated to, the classical “orbital angular momentum.” But luckily we can describe the intrinsic spin by its relationship to the magnetic moment of the particle being considered.
    [Show full text]
  • 0045-Flyer-Einstein-En-2.Pdf
    FEATHERBEDDINGCOMPANYWEIN HOFJEREMIAHSTATUESYN AGOGEDREYFUSSMOOSCEMETERY MÜNSTERPLATZRELATIVI TYE=MC 2NOBELPRIZEHOMELAND PERSECUTIONAFFIDAVIT OFSUPPORTEMIGRATIONEINSTEIN STRASSELETTERSHOLOCAUSTRESCUE FAMILYGRANDMOTHERGRANDFAT HERBUCHAUPRINCETONBAHNHOF STRASSE20VOLKSHOCHSCHULEFOU NTAINGENIUSHUMANIST 01 Albert Einstein 6 7 Albert Einstein. More than just a name. Physicist. Genius. Science pop star. Philosopher and humanist. Thinker and guru. On a par with Copernicus, Galileo or Newton. And: Albert Einstein – from Ulm! The most famous scientist of our time was actually born on 14th March 1879 at Bahnhofstraße 20 in Ulm. Albert Einstein only lived in the city on the Danube for 15 months. His extended family – 18 of Einstein’s cousins lived in Ulm at one time or another – were a respected and deep-rooted part of the city’s society, however. This may explain Einstein’s enduring connection to the city of his birth, which he described as follows in a letter to the Ulmer Abend- post on 18th March 1929, shortly after his 50th birthday: “The birthplace is as much a unique part of your life as the ancestry of your biological mother. We owe part of our very being to our city of birth. So I look on Ulm with gratitude, as it combines noble artistic tradition with simple and healthy character.” 8 9 The “miracle year” 1905 – Einstein becomes the founder of the modern scientific world view Was Einstein a “physicist of the century”? There‘s no doubt of that. In his “miracle year” (annus mirabilis) of 1905 he pub- lished 4 groundbreaking works along- side his dissertation. Each of these was worthy of a Nobel Prize and turned him into a physicist of international standing: the theory of special relativity, the light quanta hypothesis (“photoelectric effect”), Thus, Albert Einstein became the found- for which he received the Nobel Prize in er of the modern scientific world view.
    [Show full text]
  • A Dissertation Submitted in Partial Satisfaction of the Requirements for the Degree Doctor of Philosophy
    UNIVERSITY OF CALIFORNIA, SAN DIEGO PUBLIC CATHOLICISM AND RELIGIOUS PLURALISM IN AMERICA: THE ADAPTATION OF A RELIGIOUS CULTURE TO THE CIRCUMSTANCE OF DIVERSITY, AND ITS IMPLICATIONS A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Sociology by Michael J. Agliardo, SJ Committee in charge: Professor Richard Madsen, Chair Professor John H. Evans Professor David Pellow Professor Joel Robbins Professor Gershon Shafir 2008 Copyright Michael J. Agliardo, SJ, 2008 All rights reserved. The Dissertation of Michael Joseph Agliardo is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2008 iii TABLE OF CONTENTS Signature Page ......................................................................................................................... iii Table of Contents......................................................................................................................iv List Abbreviations and Acronyms ............................................................................................vi List of Graphs ......................................................................................................................... vii Acknowledgments ................................................................................................................. viii Vita.............................................................................................................................................x
    [Show full text]
  • Theoretical Physics Group Decoherent Histories Approach: a Quantum Description of Closed Systems
    Theoretical Physics Group Department of Physics Decoherent Histories Approach: A Quantum Description of Closed Systems Author: Supervisor: Pak To Cheung Prof. Jonathan J. Halliwell CID: 01830314 A thesis submitted for the degree of MSc Quantum Fields and Fundamental Forces Contents 1 Introduction2 2 Mathematical Formalism9 2.1 General Idea...................................9 2.2 Operator Formulation............................. 10 2.3 Path Integral Formulation........................... 18 3 Interpretation 20 3.1 Decoherent Family............................... 20 3.1a. Logical Conclusions........................... 20 3.1b. Probabilities of Histories........................ 21 3.1c. Causality Paradox........................... 22 3.1d. Approximate Decoherence....................... 24 3.2 Incompatible Sets................................ 25 3.2a. Contradictory Conclusions....................... 25 3.2b. Logic................................... 28 3.2c. Single-Family Rule........................... 30 3.3 Quasiclassical Domains............................. 32 3.4 Many History Interpretation.......................... 34 3.5 Unknown Set Interpretation.......................... 36 4 Applications 36 4.1 EPR Paradox.................................. 36 4.2 Hydrodynamic Variables............................ 41 4.3 Arrival Time Problem............................. 43 4.4 Quantum Fields and Quantum Cosmology.................. 45 5 Summary 48 6 References 51 Appendices 56 A Boolean Algebra 56 B Derivation of Path Integral Method From Operator
    [Show full text]
  • On Relational Quantum Mechanics Oscar Acosta University of Texas at El Paso, [email protected]
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2010-01-01 On Relational Quantum Mechanics Oscar Acosta University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Philosophy of Science Commons, and the Quantum Physics Commons Recommended Citation Acosta, Oscar, "On Relational Quantum Mechanics" (2010). Open Access Theses & Dissertations. 2621. https://digitalcommons.utep.edu/open_etd/2621 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. ON RELATIONAL QUANTUM MECHANICS OSCAR ACOSTA Department of Philosophy Approved: ____________________ Juan Ferret, Ph.D., Chair ____________________ Vladik Kreinovich, Ph.D. ___________________ John McClure, Ph.D. _________________________ Patricia D. Witherspoon Ph. D Dean of the Graduate School Copyright © by Oscar Acosta 2010 ON RELATIONAL QUANTUM MECHANICS by Oscar Acosta THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARTS Department of Philosophy THE UNIVERSITY OF TEXAS AT EL PASO MAY 2010 Acknowledgments I would like to express my deep felt gratitude to my advisor and mentor Dr. Ferret for his never-ending patience, his constant motivation and for not giving up on me. I would also like to thank him for introducing me to the subject of philosophy of science and hiring me as his teaching assistant.
    [Show full text]
  • Path Integral Implementation of Relational Quantum Mechanics
    Path Integral Implementation of Relational Quantum Mechanics Jianhao M. Yang ( [email protected] ) Qualcomm (United States) Research Article Keywords: Relational Quantum mechanics, Path Integral, Entropy, Inuence Functional Posted Date: February 18th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-206217/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on April 21st, 2021. See the published version at https://doi.org/10.1038/s41598-021-88045-6. Path Integral Implementation of Relational Quantum Mechanics Jianhao M. Yang∗ Qualcomm, San Diego, CA 92121, USA (Dated: February 4, 2021) Relational formulation of quantum mechanics is based on the idea that relational properties among quantum systems, instead of the independent properties of a quantum system, are the most fundamental elements to construct quantum mechanics. In the recent works (J. M. Yang, Sci. Rep. 8:13305, 2018), basic relational quantum mechanics framework is formulated to derive quantum probability, Born’s Rule, Schr¨odinger Equations, and measurement theory. This paper gives a concrete implementation of the relational probability amplitude by extending the path integral formulation. The implementation not only clarifies the physical meaning of the relational probability amplitude, but also gives several important applications. For instance, the double slit experiment can be elegantly explained. A path integral representation of the reduced density matrix of the observed system can be derived. Such representation is shown valuable to describe the interaction history of the measured system and a series of measuring systems.
    [Show full text]
  • Bachelorarbeit
    Bachelorarbeit The EPR-Paradox, Nonlocality and the Question of Causality Ilvy Schultschik angestrebter akademischer Grad Bachelor of Science (BSc) Wien, 2014 Studienkennzahl lt. Studienblatt: 033 676 Studienrichtung lt. Studienblatt: Physik Betreuer: Univ. Prof. Dr. Reinhold A. Bertlmann Contents 1 Motivation and Mathematical framework 2 1.1 Entanglement - Separability . .2 1.2 Schmidt Decomposition . .3 2 The EPR-paradox 5 2.1 Introduction . .5 2.2 Preface . .5 2.3 EPR reasoning . .8 2.4 Bohr's reply . 11 3 Hidden Variables and no-go theorems 12 4 Nonlocality 14 4.1 Nonlocality and Quantum non-separability . 15 4.2 Teleportation . 17 5 The Bell theorem 19 5.1 Bell's Inequality . 19 5.2 Derivation . 19 5.3 Violation by quantum mechanics . 21 5.4 CHSH inequality . 22 5.5 Bell's theorem and further discussion . 24 5.6 Different assumptions . 26 6 Experimental realizations and loopholes 26 7 Causality 29 7.1 Causality in Special Relativity . 30 7.2 Causality and Quantum Mechanics . 33 7.3 Remarks and prospects . 34 8 Acknowledgment 35 1 1 Motivation and Mathematical framework In recent years, many physicists have taken the incompatibility between cer- tain notions of causality, reality, locality and the empirical data less and less as a philosophical discussion about interpretational ambiguities. Instead sci- entists started to regard this tension as a productive resource for new ideas about quantum entanglement, quantum computation, quantum cryptogra- phy and quantum information. This becomes especially apparent looking at the number of citations of the original EPR paper, which has risen enormously over recent years, and be- coming the starting point for many groundbreaking ideas.
    [Show full text]
  • Many Worlds Model Resolving the Einstein Podolsky Rosen Paradox Via a Direct Realism to Modal Realism Transition That Preserves Einstein Locality
    Many Worlds Model resolving the Einstein Podolsky Rosen paradox via a Direct Realism to Modal Realism Transition that preserves Einstein Locality Sascha Vongehr †,†† †Department of Philosophy, Nanjing University †† National Laboratory of Solid-State Microstructures, Thin-film and Nano-metals Laboratory, Nanjing University Hankou Lu 22, Nanjing 210093, P. R. China The violation of Bell inequalities by quantum physical experiments disproves all relativistic micro causal, classically real models, short Local Realistic Models (LRM). Non-locality, the infamous “spooky interaction at a distance” (A. Einstein), is already sufficiently ‘unreal’ to motivate modifying the “realistic” in “local realistic”. This has led to many worlds and finally many minds interpretations. We introduce a simple many world model that resolves the Einstein Podolsky Rosen paradox. The model starts out as a classical LRM, thus clarifying that the many worlds concept alone does not imply quantum physics. Some of the desired ‘non-locality’, e.g. anti-correlation at equal measurement angles, is already present, but Bell’s inequality can of course not be violated. A single and natural step turns this LRM into a quantum model predicting the correct probabilities. Intriguingly, the crucial step does obviously not modify locality but instead reality: What before could have still been a direct realism turns into modal realism. This supports the trend away from the focus on non-locality in quantum mechanics towards a mature structural realism that preserves micro causality. Keywords: Many Worlds Interpretation; Many Minds Interpretation; Einstein Podolsky Rosen Paradox; Everett Relativity; Modal Realism; Non-Locality PACS: 03.65. Ud 1 1 Introduction: Quantum Physics and Different Realisms ...............................................................
    [Show full text]
  • Chicago Physics One
    CHICAGO PHYSICS ONE 3:25 P.M. December 02, 1942 “All of us... knew that with the advent of the chain reaction, the world would never be the same again.” former UChicago physicist Samuel K. Allison Physics at the University of Chicago has a remarkable history. From Albert Michelson, appointed by our first president William Rainey Harper as the founding head of the physics department and subsequently the first American to win a Nobel Prize in the sciences, through the mid-20th century work led by Enrico Fermi, and onto the extraordinary work being done in the department today, the department has been a constant source of imagination, discovery, and scientific transformation. In both its research and its education at all levels, the Department of Physics instantiates the highest aspirations and values of the University of Chicago. Robert J. Zimmer President, University of Chicago Welcome to the inaugural issue of Chicago Physics! We are proud to present the first issue of Chicago Physics – an annual newsletter that we hope will keep you connected with the Department of Physics at the University of Chicago. This newsletter will introduce to you some of our students, postdocs and staff as well as new members of our faculty. We will share with you good news about successes and recognition and also convey the sad news about the passing of members of our community. You will learn about the ongoing research activities in the Department and about events that took place in the previous year. We hope that you will become involved in the upcoming events that will be announced.
    [Show full text]
  • APS News January 2019, Vol. 28, No. 1
    January 2019 • Vol. 28, No. 1 A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY Plasma physics and plants APS.ORG/APSNEWS Page 3 Highlights from 2018 Blending Paint with Physics The editors of Physics (physics. The experiments sparked a series By Leah Poffenberger aps.org) look back at their favorite of theoretical studies, each attempt- 2018 APS Division of Fluid stories of 2018, from groundbreak- ing to explain this unconventional Dynamics Meeting, Atlanta— ing research to a poem inspired by behavior (see physics.aps.org/ Five years ago, Roberto Zenit, a quantum physics. articles/v11/84). One prediction physics professor at the National Graphene: A New indicates that twisted graphene’s Autonomous University of Mexico, superconductivity might also be Superconductor later reported the first observation was studying biological flows when topological, a desirable property 2018’s splashiest condensed- of the Higgs boson decaying into art historian Sandra Zetina enlisted for quantum computation. matter-physics result came bottom quarks (see physics.aps.org/ him for a project: using fluid from two sheets of graphene. The Higgs Shows up with the articles/v11/91). This decay is the dynamics to uncover the secret Researchers in the USA and Japan Heaviest Quarks most likely fate of the Higgs boson, behind modern art techniques. reported finding superconductiv- After detecting the Higgs boson but it was extremely difficult to At this year’s Division of Fluid ity in stacked graphene bilayers in 2012, the next order of business see above the heavy background Dynamics meeting—his 20th— ids, a person who has developed in which one layer is twisted with was testing whether it behaves as of bottom quarks generated in a Zenit, an APS Fellow and member certain knowledge about the way respect to the other.
    [Show full text]
  • Albert Einstein - Wikipedia, the Free Encyclopedia Page 1 of 27
    Albert Einstein - Wikipedia, the free encyclopedia Page 1 of 27 Albert Einstein From Wikipedia, the free encyclopedia Albert Einstein ( /ælbərt a nsta n/; Albert Einstein German: [albt a nʃta n] ( listen); 14 March 1879 – 18 April 1955) was a German-born theoretical physicist who developed the theory of general relativity, effecting a revolution in physics. For this achievement, Einstein is often regarded as the father of modern physics.[2] He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect". [3] The latter was pivotal in establishing quantum theory within physics. Near the beginning of his career, Einstein thought that Newtonian mechanics was no longer enough to reconcile the laws of classical mechanics with the laws of the electromagnetic field. This led to the development of his special theory of relativity. He Albert Einstein in 1921 realized, however, that the principle of relativity could also be extended to gravitational fields, and with his Born 14 March 1879 subsequent theory of gravitation in 1916, he published Ulm, Kingdom of Württemberg, a paper on the general theory of relativity. He German Empire continued to deal with problems of statistical Died mechanics and quantum theory, which led to his 18 April 1955 (aged 76) explanations of particle theory and the motion of Princeton, New Jersey, United States molecules. He also investigated the thermal properties Residence Germany, Italy, Switzerland, United of light which laid the foundation of the photon theory States of light. In 1917, Einstein applied the general theory of relativity to model the structure of the universe as a Ethnicity Jewish [4] whole.
    [Show full text]