Rotational Spectroscopy

Total Page:16

File Type:pdf, Size:1020Kb

Rotational Spectroscopy Applied Spectroscopy Rotational Spectroscopy Recommended Reading: 1. Banwell and McCash: Chapter 2 2. Atkins: Chapter 16, sections 4 - 8 Aims In this section you will be introduced to 1) Rotational Energy Levels (term values) for diatomic molecules and linear polyatomic molecules 2) The rigid rotor approximation 3) The effects of centrifugal distortion on the energy levels 4) The Principle Moments of Inertia of a molecule. 5) Definitions of symmetric , spherical and asymmetric top molecules. 6) Experimental methods for measuring the pure rotational spectrum of a molecule Microwave Spectroscopy - Rotation of Molecules Microwave Spectroscopy is concerned with transitions between rotational energy levels in molecules. Definition d Electric Dipole: p = q.d +q -q p H Most heteronuclear molecules possess Cl a permanent dipole moment -q +q e.g HCl, NO, CO, H2O... p Molecules can interact with electromagnetic radiation, absorbing or emitting a photon of frequency ω, if they possess an electric dipole moment p, oscillating at the same frequency Gross Selection Rule: A molecule has a rotational spectrum only if it has a permanent dipole moment. Rotating molecule _ _ + + t _ + _ + dipole momentp dipole Homonuclear molecules (e.g. O2, H2, Cl2, Br2…. do not have a permanent dipole moment and therefore do not have a microwave spectrum! General features of rotating systems m Linear velocity v angular velocity v = distance ω = radians O r time time v = ω × r Moment of Inertia I = mr2. A molecule can have three different moments of inertia IA, IB and IC about orthogonal axes a, b and c. 2 I = ∑miri i R Note how ri is defined, it is the perpendicular distance from axis of rotation ri Rigid Diatomic Rotors ro IB = Ic, and IA = 0. m1 m2 C = centre of gravity. C Express I in terms of m1, r1 r2 m2 and r0. r1 + r2 = r0 (1) m r m r 2 m1⋅m2 2 2 from 1⋅ 1 = 2 ⋅ 2 ( ) I = r0 = μ⋅r0 2 2 m1 + m2 I = m1⋅r1 + m2 ⋅r2 (3) Derive this expression NOTE: Units of I = kg.m2. μ = reduced or effective mass of the molecule Energy and Angular Momentum Angular momentum about axis a is JA = IAωA Energy of a body rotating about an axis ‘a’ with constant angular velocity 1 is E = Ia ω2 a 2 A A A body free to rotate about all three axes has a total rotational energy 1 1 1 E = I ω2 + I ω2 + I ω2 2 A A 2 B B 2 C C And a total angular momentum given by J2 J2 J2 J2 = A + B + C Recall that J is 2 2 2 a vector = (IAωA ) + (IBωB ) + (ICωC ) Energy Levels of a Rigid Diatomic Rotor For diatomic molecule IB = Ic = I and IA = 0 so: 2 2 2 1 2 1 2 JB Jc J E = IBωB + ICωC = + = 2 2 2IB 2Ic 2I Can find quantum energy levels using Correspondence Principle: 2 2 2 J(J+ 1)⋅h J → J(J+ 1)⋅ = 4π2 1. Rotational energy for a rigid diatomic rotor is quantised J(J+ 1)⋅h2 Units: Joules EJ = 8π2I J = 0, 1, 2, 3, … = rotational quantum number Energy Levels of a Rigid Diatomic Rotor 2. Rotational energy is usually expressed in units of cm-1. E Recall E = h ν = h ⋅ c ⋅ ~ν therefore ~ν = ε = then h⋅c 2 EJ h J(J+ 1) h -1 εJ = = = J(J+ 1) cm h⋅c 4π2 ⋅2I⋅hc 8π2Ic B - Rotational Constant, units cm-1 h ε = B⋅J(J+ 1) where B = = J 8π2Ic 4πIc εJ gives the allowed energy levels of the rigid rotor (in cm-1). B can be determined experimentally by spectroscopy Notation: Rotational Term F(J) The energy of a rotational state is normally reported as the Rotational Term, F(J), a wavenumber divided by hc "E F(J) ! !J = = B# J (J +1) hc Ritz Combination Principle The wavenumber of any spectral line is the difference between two terms. Two terms T1 and T2 combine to produce a spectral line of wavenumber. ΔE ~ν = T − T = 1 2 hc Energy Levels of a Rigid Diatomic Rotor εJ = B⋅J(J+1) J = 0, 1, 2, 3 ..... 6 42B F(J) (= ε ) J J 5 30B 4 20B 3 12B 2 6B 1 2B 0 0 Can we predict nature of a microwave rotational spectrum? Rotational Transitions in Rigid Diatomic Molecules Selection Rules: J = 1. A molecule has a rotational spectrum 5 only if it has a permanent dipole moment. 2. ΔJ = ± 1 +1 = adsorption of photon, -1 = emission of photon. 4 Transitions observed in absorption spectrum. 3 J = 0 è J = 1 2 ~ν = Δε = ε − ε = 2B − 0 = 2B cm-1 J J=1 J=0 1 J = 1è J = 2 0 6B ~ν Δε ε ε 6B 2B 4B cm-1 = J = J=2 − J=1 = − = 4B 8B 2B 10 B ~ -1 In general νJ→J+1 = 2B(J+ 1) cm Spacing between lines in spectrum = 2B cm-1 Rotational Spectra of Rigid Diatomic Molecules Line separation in the rotational spectrum of HCl is ≈ h B 21.2 cm-1 è B = 10.6 cm-1; I can be found from = 2 HCl 8π Ic m m Once I is known, then r (the bond 1⋅ 2 2 2 HCl HCl I = r0 = µ ⋅r0 length) can be determined from m1 + m2 Need to know mH and mCl, but these are known and tabulated. Summary so far: 1. Microwave spectroscopy is concerned with transitions between rotational energy levels of molecules 2. General features of rotational systems: I, ω, μ I m r2 m1⋅m2 2 2 = ∑ i i I = r0 = μ⋅r0 i m1 + m2 3. Energy Levels of a rigid diatomic rotor h F(J) ≡ ε = B⋅ J(J+ 1) B = J 8π2Ic J = 0, 1, 2, ….; B = rotational constant, units cm-1 4. Selection rules: (1) permanent dipole moment, (2) ΔJ = ± 1 only 5. Spacing between lines of in rotational spectra of rigid diatomic molecules is constant and equal to 2B cm-1. Why is Rotational Spectroscopy important? 1. bond lengths From pure rotational 2. atomic masses spectra of molecules we 3. isotopic abundances can obtain: 4. temperature Important in Astrophysics: Temperature and composition of interstellar medium Diatomic molecules found in interstellar gas: H2, OH, SO, SiO, SiS, NO, NS, HCl, PN, NH, CH+, CH, CN, CO, CS, C2. S.Taylor, D. Williams, Chemistry in Britain, 1993 pg 680 - 683 Population of Rotational Energy Levels NJ+1 # "E & # ! J hc& Boltzmann distribution: = exp% ! ( = exp% ! ( NJ=0 $ kT ' $ kT ' Orientation of the angular momentum L is quantised. This results in a (2J+1) degeneracy of the energy level PopulationJ $ #E ' $ BJ (J +1)hc' ! (2J +1)exp& " ) = (2J +1)exp& " ) PopulationJ=0 % kT ( % kT ( Spectral Line Intensity ∝ Population Example: Rotational Spectrum of HCl ro m1 m2 C r1 r2 B = 10.6 cm-1, T = 300K Maximum Value of J At what value of J will the intensity be a maximum, at a given temperature? We can find the value of Jmax by finding the value of J that maximises the population: $ #E ' $ BJ (J +1)hc' Population ! (2J +1)exp& " ) = (2J +1)exp " % kT ( %& kT () Differentiate w.r.t. J and set equal to zero for a maximum. This gives kT 1 J = − max 2hcB 2 must round this value to the nearest integer (J can only be an integer) Bond lengths and Rotational Constants of some Diatomic Molecules Note effect of r0 and m on the rotational constant B. I ∝ r0 and m and B ∝ 1 / I Effect of Isotope Substitution From spectra we can obtain: bond length or atomic weights and Isotopic Abundances Effect of Isotope Substitution on Spectra For 12C16O B’ = 1.92118 cm-1. 13C16O B’’ = 1. 83669 cm-1. h 2 B B' h 8π I''c I'' µ'' = 2 = = = = 1.046001 8π Ic B'' 8π2I'c h I' µ' Atomic weight 12C = 12.0000, 16O = 15.9994 13C = 13.0007, 12C16O J = 5 13C16O 4 3 2 1 0 Non-Rigid Rotor For a non-rigid rotor the bond-length increases as the angular velocity increases Centrifugal Distortion h 1 B B decreases as J = 2 B ∝ 8π Ic r2 increases For a non-rigid rotor 2 2 εJ = B⋅ J(J+ 1) − D⋅ J (J+ 1) D - Centrifugal Distortion constant (stiffness constant) units: cm-1. Like B, D depends on the molecule rigid rotor non-rigid rotor 2 2 εJ = B⋅J(J+1) εJ = B⋅ J(J+ 1) − D⋅ J (J+ 1) J = 5 4 3 2 1 0 cm-1 2B 4B 6B 8B 10 B 12 B Non-Rigid Rotor 2 2 εJ = B⋅ J(J+ 1) − D⋅ J (J+ 1) ~ 3 ν = εJ+1 − εJ = 2B⋅(J+ 1) − 4 D⋅(J+ 1) The rigid rotor selection rules still apply, i.e. ΔJ = ±1 Typical values: B ~ 1 - 10 cm -1 and D ~ 10-3 – 10-2 cm-1. 4B3 D can be related to the D = ~2 vibrational frequency of the molecule νvib Summary 1. Population of energy levels: Boltzmann Distribution degeneracy of rotational states 2. Efect of bond length and mass on rotational constant of diatomic molecule 3. Efect of isotopic substitution atomic weights and isotopic abundances 4. Non-rigid rotor D - centrifugal distortion constant .
Recommended publications
  • Vibrational-Rotational Spectroscopy ( )
    Vibrational-Rotational Spectroscopy Vibrational-Rotational Spectrum of Heteronuclear Diatomic Absorption of mid-infrared light (~300-4000 cm-1): • Molecules can change vibrational and rotational states • Typically at room temperature, only ground vibrational state populated but several rotational levels may be populated. • Treating as harmonic oscillator and rigid rotor: subject to selection rules ∆v = ±1 and ∆J = ±1 EEEfield=∆ vib +∆ rot =ω =−EEfi = EvJEvJ()′,, ′ −( ′′ ′′ ) ω 11 vvvBJJvvBJJ==00()′′′′′′′′′ +++−++()11() () + 2πc 22 At room temperature, typically v=0′′ and ∆v = +1: ′ ′ ′′ ′′ vv=+0 BJJ() +−11 JJ( +) Now, since higher lying rotational levels can be populated, we can have: ∆=+J 1 JJ′′′=+1 vv= ++21 BJ( ′′ ) R − branch 0 P− branch ∆=−J 1 JJ′′′=−1 vv=−0 2 BJ′′ J’=4 J’=3 J’=1 v’=1 J’=0 P branch Q branch J’’=3 12B J’’=2 6B J’’=1 2B v’’=0 J’’=0 EJ” =0 2B 2B 4B 2B 2B 2B -6B -4B -2B +2B +4B +8B ν ν 0 By measuring absorption splittings, we can get B . From that, the bond length! In polyatomics, we can also have a Q branch, where ∆J0= and all transitions lie at ν=ν0 . This transition is allowed for perpendicular bands: ∂µ ∂q ⊥ to molecular symmetry axis. Intensity of Vibrational-Rotational Transitions There is generally no thermal population in upper (final) state (v’,J’) so intensity should scale as population of lower J state (J”). ∆=NNvJNvJ(,′ ′′′′′′′ ) − (, ) ≈ NJ ( ) NJ()′′∝− gJ ()exp( ′′ EJ′′ / kT ) =+()21exp(J′′ −hcBJ ′′() J ′′ + 1/) kT 5.33 Lecture Notes: Vibrational-Rotational Spectroscopy Page 2 Rotational Populations at Room Temperature for B = 5 cm-1 gJ'' thermal population NJ'' 0 5 10 15 20 Rotational Quantum Number J'' So, the vibrational-rotational spectrum should look like equally spaced lines about ν 0 with sidebands peaked at J’’>0.
    [Show full text]
  • Optical Spectroscopy - Processes Monitored UV/ Fluorescence/ IR/ Raman/ Circular Dichroism
    Time out—states and transitions Spectroscopy—transitions between energy states of a molecule excited by absorption or emission of a photon hν = ∆E = Ei -Ef Energy levels due to interactions between parts of molecule (atoms, electrons and nucleii) as described by quantum mechanics, and are characteristic of components involved, i.e. electron distributions (orbitals), bond strengths and types plus molecular geometries and atomic masses involved Spectroscopic Regions Typical wavelength Approximate energy Spectroscopic region Techniques and Applications (cm) (kcal mole-1) -11 8 10 3 x 10 γ-ray MÖssbauer 10-8 3 x 105 X-ray x-ray diffraction, scattering 10-5 3 x 102 Vacuum UV Electronic Spectra 3 x 10-5 102 Near UV Electronic Spectra 6 x 10-5 5 x 103 Visible Electronic Spectra 10-3 3 x 100 IR Vibrational Spectra 10-2 3 x 10-1 Far IR Vibrational Spectra 10-1 3 x 10-2 Microwave Rotational Spectra 100 3 x 10-3 Microwave Electron paramagnetic resonance 10 3 x 10-4 Radio frequency Nuclear magnetic resonance Adapted from Table 7-1; Biophysical Chemistry, Part II by Cantor and Schimmel Spectroscopic Process • Molecules contain distribution of charges (electrons and nuclei, charges from protons) and spins which is dynamically changed when molecule is exposed to light •In a spectroscopic experiment, light is used to probe a sample. What we seek to understand is: – the RATE at which the molecule responds to this perturbation (this is the response or spectral intensity) – why only certain wavelengths cause changes (this is the spectrum, the wavelength dependence of the response) – the process by which the molecule alters the radiation that emerges from the sample (absorption, scattering, fluorescence, photochemistry, etc.) so we can detect it These tell us about molecular identity, structure, mechanisms and analytical concentrations Magnetic Resonance—different course • Long wavelength radiowaves are of low energy that is sufficient to ‘flip’ the spin of nuclei in a magnetic field (NMR).
    [Show full text]
  • Rotational Spectroscopy and Interstellar Molecules
    Volume -5, Issue-2, April 2015 » Plescia, J. B., and Cintala M. J. (2012), Impact melt Rotational Spectroscopy and Interstellar in small lunar highland craters, J. Geophys. Res., 117, Molecules E00H12,doi:10.1029/2011JE003941 » Plescia J.B. and Spudis P.D. (2014) Impact melt flows at The fact that life exists on Earth is no secret. However, Lowell crater, Planetary and Space Science, 103, 219- understanding the origin of life, its evolution, and the fu- 227 ture of life on Earth remain interesting issues to be ad- » Shkuratov, Y.,Kaydash, V.,Videen, G. (2012)The lunar dressed. That the regions between stars contain by far the crater Giordano Bruno as seen with optical roughness largest reservoir of chemically-bonded matter in nature imagery, Icarus, 218(1), 525-533 obviously demonstrates the importance of chemistry in » Smrekar S. and Pieters C.M. (1985) Near-infrared spec- the interstellar space. The unique detection of over 200 troscopy of probable impact melt from three large lunar different interstellar molecules largely via their rotational highland craters, Icarus, 63, 442-452 spectra has laid to rest the popular perception that the » Srivastava, N., Kumar, D., Gupta, R. P., 2013. Young vastness of space is an empty vacuum dotted with stars, viscous flows in the Lowell crater of Orientale basin, planets, black holes, and other celestial formations. As- Moon: Impact melts or volcanic eruptions? Planetary trochemistry comprises observations, theory and experi- and Space Science, 87, 37-45. ments aimed at understanding the formation of molecules » Stopar J. D., Hawke B. R., Robinson M. S., DeneviB.W., and matter in the Universe i.e.
    [Show full text]
  • Particle-On-A-Ring”  Suppose a Diatomic Molecule Rotates in Such a Way That the Vibration of the Bond Is Unaffected by the Rotation
    University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Lecture 17 2/25/15 Recommended Reading Atkins & DePaula 9.5 A. Background in Rotational Mechanics Two masses m1 and m2 connected by a weightless rigid “bond” of length r rotates with angular velocity rv where v is the linear velocity. As with vibrations we can render this rotation motion in simpler form by fixing one end of the bond to the origin terminating the other end with reduced mass , and allowing the reduced mass to rotate freely For two masses m1 and m2 separated by r the center of mass (CoM) is defined by the condition mr11 mr 2 2 (17.1) where m2,1 rr1,2 mm12 (17.2) Figure 17.1: Location of center of mass (CoM0 for two masses separated by a distance r. The moment of inertia I plays the role in the rotational energy that is played by mass in translational energy. The moment of inertia is 22 I mr11 mr 2 2 (17.3) Putting 17.3 into 17.4 we obtain I r 2 (17.4) mm where 12 . mm12 We can express the rotational kinetic energy K in terms of the angular momentum. The angular momentum is defined in terms of the cross product between the position vector r and the linear momentum vector p: Lrp (17.5) prprvrsin where the angle between p and r is ninety degrees for circular motion. As a cross product, the angular momentum vector L is perpendicular to the plane defined by the r and p vectors as shown in Figure 17.2 We can use equation 17.6 to obtain an expression for the kinetic energy in terms of the angular momentum L: Figure 17.2: The angular momentum L is a cross product of the position r vector and the linear momentum p=mv vector.
    [Show full text]
  • Photoionization Spectroscopy O
    Photoionization spectroscopy of CH3C3N in the vacuum-ultraviolet range N. Lamarre, C. Falvo, C. Alcaraz, B. Cunha de Miranda, S. Douin, A. Flütsch, C. Romanzin, J.-C. Guillemin, Séverine Boyé-Péronne, B. Gans To cite this version: N. Lamarre, C. Falvo, C. Alcaraz, B. Cunha de Miranda, S. Douin, et al.. Photoionization spectroscopy of CH3C3N in the vacuum-ultraviolet range. Journal of Molecular Spectroscopy, Elsevier, 2015, 315, pp.206-216. 10.1016/j.jms.2015.03.005. hal-01138635 HAL Id: hal-01138635 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01138635 Submitted on 4 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Photoionization spectroscopy of CH 3C3N in the vacuum-ultraviolet range N. Lamarre a, C. Falvo a, C. Alcaraz b,c, B. Cunha de Miranda b, S. Douin a, A. Fl utsch¨ a, C. Romanzin b, J.-C. Guillemin d, a, a, S. Boy e-P´ eronne´ ∗, B. Gans ∗ aInstitut des Sciences Mol´eculaires d’Orsay, Univ Paris-Sud; CNRS, bat 210, Univ Paris-Sud 91405 Orsay cedex (France) bLaboratoire de Chimie Physique, Univ Paris-Sud; CNRS UMR 8000, bat 350, Univ Paris-Sud 91405 Orsay cedex (France) cSynchrotron SOLEIL, L'Orme des Merisiers, St.
    [Show full text]
  • Lecture 6: 3D Rigid Rotor, Spherical Harmonics, Angular Momentum
    Lecture 6: 3D Rigid Rotor, Spherical Harmonics, Angular Momentum We can now extend the Rigid Rotor problem to a rotation in 3D, corre- sponding to motion on the surface of a sphere of radius R. The Hamiltonian operator in this case is derived from the Laplacian in spherical polar coordi- nates given as ∂2 ∂2 ∂2 ∂2 2 ∂ 1 1 ∂2 1 ∂ ∂ ∇2 = + + = + + + sin θ ∂x2 ∂y2 ∂z2 ∂r2 r ∂r r2 sin2 θ ∂φ2 sin θ ∂θ ∂θ For constant radius the first two terms are zero and we have 2 2 1 ∂2 1 ∂ ∂ Hˆ (θ, φ) = − ~ ∇2 = − ~ + sin θ 2m 2mR2 sin2 θ ∂φ2 sin θ ∂θ ∂θ We also note that Lˆ2 Hˆ = 2I where the operator for squared angular momentum is given by 1 ∂2 1 ∂ ∂ Lˆ2 = − 2 + sin θ ~ sin2 θ ∂φ2 sin θ ∂θ ∂θ The Schr¨odingerequation is given by 2 1 ∂2ψ(θ, φ) 1 ∂ ∂ψ(θ, φ) − ~ + sin θ = Eψ(θ, φ) 2mR2 sin2 θ ∂φ2 sin θ ∂θ ∂θ The wavefunctions are quantized in 2 directions corresponding to θ and φ. It is possible to derive the solutions, but we will not do it here. The solutions are denoted by Yl,ml (θ, φ) and are called spherical harmonics. The quantum 1 numbers take values l = 0, 1, 2, 3, .... and ml = 0, ±1, ±2, ... ± l. The energy depends only on l and is given by 2 E = l(l + 1) ~ 2I The first few spherical harmonics are given by r 1 Y = 0,0 4π r 3 Y = cos(θ) 1,0 4π r 3 Y = sin(θ)e±iφ 1,±1 8π r 5 Y = (3 cos2 θ − 1) 2,0 16π r 15 Y = cos θ sin θe±iφ 2,±1 8π r 15 Y = sin2 θe±2iφ 2,±2 32π These spherical harmonics are related to atomic orbitals in the H-atom.
    [Show full text]
  • A 3D Model of the Rigid Rotor Supported by Journal Bearings)
    A 3D MODEL OF THE RIGID ROTOR SUPPORTED BY JOURNAL BEARINGS) Jiří TŮMA1, Radim KLEČKA2, Jaromír ŠKUTA3 and Jiří ŠIMEK4 1 VSB – Technical University of Ostrava, Ostrava, Czech Republic, [email protected] 2 VSB – Technical University of Ostrava, Ostrava, Czech Republic, [email protected] 3 VSB – Technical University of Ostrava, Ostrava, Czech Republic, [email protected] 4 Techlab s.r.o., Sokolovská 207, 190 00 Praha 9, [email protected] Keywords: up to 7 keywords (10 pt) 1. Introduction It is known that the journal bearing with an oil film becomes instable if the rotor rotation speed crosses a certain value, which is called the Bently-Muszynska threshold [1]. To prevent the rotor instability, the active control can be employed. The arrangement of proximity probes and piezoactuators in a rotor system is shown in figure 1. It is assumed that the bushings (carrier ring), inserted into pedestals with clearance, is a movable part in two perpendicular directions while rotor is rotating. Im(r) Bushing Proximity probes Re(r) Ω Re(u) Journal Piezoactuators Im(r) Fig. 1. Journal coordinates and arrangement The research work supported by the GAČR (project no. 101/07/1345) is aimed at the design of the journal bearing active control based on the carrier ring position manipulation by the piezoactuators according to the proximity probe signals, which are a part of the closed loop including a controller. The effect of the feedback on the rotor stability is analyzed by [5]. The test stand of the TECHLAB design [1] is shown in figure 2.
    [Show full text]
  • Hydrogen Conversion in Nanocages
    Review Hydrogen Conversion in Nanocages Ernest Ilisca Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris, CNRS, F-75013 Paris, France; [email protected] Abstract: Hydrogen molecules exist in the form of two distinct isomers that can be interconverted by physical catalysis. These ortho and para forms have different thermodynamical properties. Over the last century, the catalysts developed to convert hydrogen from one form to another, in laboratories and industries, were magnetic and the interpretations relied on magnetic dipolar interactions. The variety concentration of a sample and the conversion rates induced by a catalytic action were mostly measured by thermal methods related to the diffusion of the o-p reaction heat. At the turning of the new century, the nature of the studied catalysts and the type of measures and motivations completely changed. Catalysts investigated now are non-magnetic and new spectroscopic measurements have been developed. After a fast survey of the past studies, the review details the spectroscopic methods, emphasizing their originalities, performances and refinements: how Infra-Red measurements charac- terize the catalytic sites and follow the conversion in real-time, Ultra-Violet irradiations explore the electronic nature of the reaction and hyper-frequencies driving the nuclear spins. The new catalysts, metallic or insulating, are detailed to display the operating electronic structure. New electromagnetic mechanisms, involving energy and momenta transfers, are discovered providing a classification frame for the newly observed reactions. Keywords: molecular spectroscopy; nanocages; electronic excitations; nuclear magnetism Citation: Ilisca, E. Hydrogen Conversion in Nanocages. Hydrogen The intertwining of quantum, spectroscopic and thermodynamical properties of the 2021, 2, 160–206.
    [Show full text]
  • Rotational Spectroscopy
    Rotational spectroscopy - Involve transitions between rotational states of the molecules (gaseous state!) - Energy difference between rotational levels of molecules has the same order of magnitude with microwave energy - Rotational spectroscopy is called pure rotational spectroscopy, to distinguish it from roto-vibrational spectroscopy (the molecule changes its state of vibration and rotation simultaneously) and vibronic spectroscopy (the molecule changes its electronic state and vibrational state simultaneously) Molecules do not rotate around an arbitrary axis! Generally, the rotation is around the mass center of the molecule. The rotational axis must allow the conservation of M R α pα const kinetic angular momentum. α Rotational spectroscopy Rotation of diatomic molecule - Classical description Diatomic molecule = a system formed by 2 different masses linked together with a rigid connector (rigid rotor = the bond length is assumed to be fixed!). The system rotation around the mass center is equivalent with the rotation of a particle with the mass μ (reduced mass) around the center of mass. 2 2 2 2 m1m2 2 The moment of inertia: I miri m1r1 m2r2 R R i m1 m2 Moment of inertia (I) is the rotational equivalent of mass (m). Angular velocity () is the equivalent of linear velocity (v). Er → rotational kinetic energy L = I → angular momentum mv 2 p2 Iω2 L2 E E c 2 2m r 2 2I Quantum rotation: The diatomic rigid rotor The rigid rotor represents the quantum mechanical “particle on a sphere” problem: Rotational energy is purely
    [Show full text]
  • Lecture 4: Polyatomic Spectra
    Lecture 4: Polyatomic Spectra Ammonia molecule 1. From diatomic to polyatomic A-axis 2. Classification of polyatomic molecules 3. Rotational spectra of polyatomic N molecules 4. Vibrational bands, vibrational spectra H 1. From diatomic to polyatomic Rotation – Diatomics Recall: For diatomic molecules Energy: FJ ,cm1 BJJ 1 DJ 2 J 12 R.R. Centrifugal distortion constant h Rotational constant: B,cm1 8 2 Ic Selection Rule: J ' J"1 J 1 3 Line position: J "1J " 2BJ"1 4D J"1 Notes: 2 1. D is small, i.e., D / B 4B / vib 1 2 2 D B 1.7 6 2. E.g., for NO, 4 4 310 B NO e 1900 → Even @ J=60, D / B J 2 ~ 0.01 What about polyatomics (≥3 atoms)? 2 1. From diatomic to polyatomic 3D-body rotation B . Convention: A A-axis is the “unique” or “figure” axis, along which lies the molecule’s C defining symmetry . 3 principal axes (orthogonal): A, B, C . 3 principal moments of inertia: IA, IB, IC . Molecules are classified in terms of the relative values of IA, IB, IC 3 2. Classification of polyatomic molecules Types of molecules Linear Symmetric Asymmetric Type Spherical Tops Molecules Tops Rotors Relative IB=IC≠IA magnitudes IB=IC; IA≈0* IA=IB=IC IA≠IB≠IC IA≠0 of IA,B,C NH CO2 3 H2O CH4 C2H2 CH F Examples 3 Acetylene NO2 OCS BCl3 Carbon Boron oxysulfide trichloride Relatively simple No dipole moment Largest category Not microwave active Most complex *Actually finite, but quantized momentum means it is in lowest state of rotation 4 2.
    [Show full text]
  • Fine-And Hyperfine-Structure Effects in Molecular Photoionization: I
    Fine- and hyperfine-structure effects in molecular photoionization: I. General theory and direct photoionization Matthias Germann1 and Stefan Willitsch1, a) Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland (Dated: 2 October 2018) We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 (reported by H. Palm and F. Merkt, Phys. Rev. Lett. 81, 1385 (1998)) and are used for predicting hyperfine populations of molecular ions produced by photoionization. I. INTRODUCTION dynamics.19–21 Thus, there is a growing need for theo- retical models capable of describing fine- and hyperfine Photoionization and photoelectron spectroscopy are effects in molecular photoionization. Whereas the hy- among the eminent experimental techniques to gain infor- perfine structure in Rydberg spectra has previously been mation on the electronic structure of molecules, on their treated within the framework of multichannel quantum- 14–18 photoionization dynamics and the structure and dynam- defect theory (MQDT), we are not aware of
    [Show full text]
  • INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY
    INTRODUCTORYINTRODUCTORY LECTURELECTURE onon ROTATIONALROTATIONAL SPECTROSCOPYSPECTROSCOPY CristinaCristina PuzzariniPuzzarini Dip.Dip. ChimicaChimica ““GiacomoGiacomo CiamicianCiamician”” UniversitUniversitàà didi BolognaBologna CODECSCODECS SummerSummer SchoolSchool 20132013 THEORETICALTHEORETICAL SPECTROSCOPYSPECTROSCOPY EE Eel Evib Erot ELECTRONICELECTRONIC VIBRATIONALVIBRATIONAL ROTATIONALROTATIONAL FREQUENCYFREQUENCY REGIONREGION mm/submm waves Rotational Spectroscopy Electronics Photonics “Building”“Building” thethe ROTATIONALROTATIONAL SPECTRUMSPECTRUM intensity (a.u.) 0 20 40 60 80 100 frequency (cm-1) (1)(1) RotationalRotational energyenergy levelslevels (2)(2) SelectionSelection rules:rules: transitionstransitions allowedallowed (3)(3) IntensityIntensity (transitions)(transitions) CoordinateCoordinate SSyystemstemss Molecule-fixed coordinate system Lab-fixed coordinate system ROTATINGROTATING RIGIDRIGID BODYBODY (CLASSIC(CLASSIC VIEW)VIEW) 1 T ωTIω 2 == angolarangolar velocityvelocity II == inertiainertia tensortensor AngolarAngolar VelocitVelocityy vi r i x ω y RIGIDRIGID BODY:BODY: v ωr i i z InertiaInertia TensorTensor I xx I xy I xz n n 2 2 2 2 I xx mi ri xi mi yi zi i1 i1 I I yx I yy I yz n I xy mi xi yi i1 I zx I zy I zz ByBy cconvenonventiontion:: IIc IIb IIa INERTIAINERTIA TENSORTENSOR II Principal Principal I xx I xy I xz I x 0 0 inertiainertia I I yx I yy I yz systemsystem I 0 I y 0 I zx I zy I zz 0 0 I z AngularAngular MomentMoment RIGID BODY J e defined in the rotating
    [Show full text]