Entropy 2015, 17, 2853-2861; doi:10.3390/e17052853 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Conceptual Inadequacy of the Shore and Johnson Axioms for Wide Classes of Complex Systems Constantino Tsallis 1;2 1 Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro - RJ, Brazil; E-Mail:
[email protected] 2 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, NM, USA Academic Editor: Antonio M. Scarfone Received: 9 April 2015 / Accepted: 4 May 2015 / Published: 5 May 2015 Abstract: It is by now well known that the Boltzmann-Gibbs-von Neumann-Shannon logarithmic entropic functional (SBG) is inadequate for wide classes of strongly correlated systems: see for instance the 2001 Brukner and Zeilinger’s Conceptual inadequacy of the Shannon information in quantum measurements, among many other systems exhibiting various forms of complexity. On the other hand, the Shannon and Khinchin axioms uniquely P mandate the BG form SBG = −k i pi ln pi; the Shore and Johnson axioms follow the same path. Many natural, artificial and social systems have been satisfactorily approached P q 1− i pi with nonadditive entropies such as the Sq = k q−1 one (q 2 R; S1 = SBG), basis of nonextensive statistical mechanics. Consistently, the Shannon 1948 and Khinchine 1953 uniqueness theorems have already been generalized in the literature, by Santos 1997 and Abe 2000 respectively, in order to uniquely mandate Sq. We argue here that the same remains to be done with the Shore and Johnson 1980 axioms.