An Overview of Definitions and Applications in Quantum Mechanics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantum Metrology with Atoms and Light
UNIVERSITY OF WARSAW FACULTY OF PHYSICS DOCTORAL THESIS Quantum Metrology with Atoms and Light Author: Supervisor: Karol GIETKA dr hab. Jan CHWEDENCZUK´ Auxiliary Supervisor: dr Tomasz WASAK December 6, 2018 iii Streszczenie Kwantowa Metrologia z Atomami i Swiatłem´ Głównym celem tej dysertacji jest zaproponowanie metod tworzenia kwantowych stanów materii oraz ´swiatłai sprawdzenie mozliwo´sciwykorzystania˙ tych stanów do precyzyjnych pomiarów wielko´scifizycznych. Pierwsza cz˛e´s´ctego celu realizo- wana jest przy pomocy formalizmu kwantowo-mechanicznego w kontek´scieteorii ultra-zimnych gazów atomowych oraz kwantowej elektrodynamiki we wn˛ece,nato- miast druga cz˛e´s´crealizowana jest za pomoc ˛ametod teorii estymacji z informacj ˛aFi- shera w roli głównej. Poł ˛aczeniepowyzszych˙ metod jest znane ogólnie pod poj˛eciem kwantowej metrologii. W ostatnich latach wiele teoretycznego i eksperymentalnego wysiłku zostało włozonego˙ w dziedzin˛ekwantowej metrologii, poniewaz˙ dzi˛ekiniej mozliwy˙ b˛edzienie tylko rozwój technik pomiarowych daj ˛acychlepsz ˛aprecyzj˛eniz˙ te same pomiary wykonane w ramach klasycznej teorii, ale takze˙ moze˙ by´cuzyta˙ do badania fundamentalnych aspektów mechaniki kwantowej takich jak spl ˛atanie. Pierwsz ˛ametod ˛a,któr ˛arozwazamy˙ to mechanizm tworzenia tworzenia stanów spinowo-´sci´sni˛etychznany jako one-axis twisting, który moze˙ by´czastosowany na przykład w kondensacie Bosego-Einsteina uwi˛ezionegow podwójnej studni poten- cjału tworz ˛acefektywnie kondensat dwu składnikowy. Pokazujemy, ze˙ stany spinowo- ´sci´sni˛etestanowi ˛atylko mał ˛arodzin˛estanów spl ˛atanych,które mog ˛aby´cwytwo- rzone przez Hamiltonian one-axis twisting. Ta duza˙ rodzina stanów typu twisted za- wiera nawet najbardziej spl ˛atanystan znany jako kot Schroödingera. Pokazujemy równiez˙ jak wykorzysta´cte kwantowe zasoby w pomiarze nieznanego parametru, wykorzystuj ˛acnieidealne detektory atomowe oraz w przypadku kiedy oddziaływa- nie pomi˛edzyatomami nie jest dokładnie znane. -
On Entropy, Information, and Conservation of Information
entropy Article On Entropy, Information, and Conservation of Information Yunus A. Çengel Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA; [email protected] Abstract: The term entropy is used in different meanings in different contexts, sometimes in contradic- tory ways, resulting in misunderstandings and confusion. The root cause of the problem is the close resemblance of the defining mathematical expressions of entropy in statistical thermodynamics and information in the communications field, also called entropy, differing only by a constant factor with the unit ‘J/K’ in thermodynamics and ‘bits’ in the information theory. The thermodynamic property entropy is closely associated with the physical quantities of thermal energy and temperature, while the entropy used in the communications field is a mathematical abstraction based on probabilities of messages. The terms information and entropy are often used interchangeably in several branches of sciences. This practice gives rise to the phrase conservation of entropy in the sense of conservation of information, which is in contradiction to the fundamental increase of entropy principle in thermody- namics as an expression of the second law. The aim of this paper is to clarify matters and eliminate confusion by putting things into their rightful places within their domains. The notion of conservation of information is also put into a proper perspective. Keywords: entropy; information; conservation of information; creation of information; destruction of information; Boltzmann relation Citation: Çengel, Y.A. On Entropy, 1. Introduction Information, and Conservation of One needs to be cautious when dealing with information since it is defined differently Information. Entropy 2021, 23, 779. -
ENERGY, ENTROPY, and INFORMATION Jean Thoma June
ENERGY, ENTROPY, AND INFORMATION Jean Thoma June 1977 Research Memoranda are interim reports on research being conducted by the International Institute for Applied Systems Analysis, and as such receive only limited scientific review. Views or opinions contained herein do not necessarily represent those of the Institute or of the National Member Organizations supporting the Institute. PREFACE This Research Memorandum contains the work done during the stay of Professor Dr.Sc. Jean Thoma, Zug, Switzerland, at IIASA in November 1976. It is based on extensive discussions with Professor HAfele and other members of the Energy Program. Al- though the content of this report is not yet very uniform because of the different starting points on the subject under consideration, its publication is considered a necessary step in fostering the related discussion at IIASA evolving around th.e problem of energy demand. ABSTRACT Thermodynamical considerations of energy and entropy are being pursued in order to arrive at a general starting point for relating entropy, negentropy, and information. Thus one hopes to ultimately arrive at a common denominator for quanti- ties of a more general nature, including economic parameters. The report closes with the description of various heating appli- cation.~and related efficiencies. Such considerations are important in order to understand in greater depth the nature and composition of energy demand. This may be highlighted by the observation that it is, of course, not the energy that is consumed or demanded for but the informa- tion that goes along with it. TABLE 'OF 'CONTENTS Introduction ..................................... 1 2 . Various Aspects of Entropy ........................2 2.1 i he no me no logical Entropy ........................ -
Lecture 4: 09.16.05 Temperature, Heat, and Entropy
3.012 Fundamentals of Materials Science Fall 2005 Lecture 4: 09.16.05 Temperature, heat, and entropy Today: LAST TIME .........................................................................................................................................................................................2� State functions ..............................................................................................................................................................................2� Path dependent variables: heat and work..................................................................................................................................2� DEFINING TEMPERATURE ...................................................................................................................................................................4� The zeroth law of thermodynamics .............................................................................................................................................4� The absolute temperature scale ..................................................................................................................................................5� CONSEQUENCES OF THE RELATION BETWEEN TEMPERATURE, HEAT, AND ENTROPY: HEAT CAPACITY .......................................6� The difference between heat and temperature ...........................................................................................................................6� Defining heat capacity.................................................................................................................................................................6� -
Degree of Quantumness in Quantum Synchronization
Degree of Quantumness in Quantum Synchronization H. Eneriz,1, 2 D. Z. Rossatto,3, 4, ∗ F. A. Cardenas-L´ opez,´ 5 E. Solano,1, 6, 5 and M. Sanz1,† 1Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain 2LP2N, Laboratoire Photonique, Numerique´ et Nanosciences, Universite´ Bordeaux-IOGS-CNRS:UMR 5298, F-33400 Talence, France 3Departamento de F´ısica, Universidade Federal de Sao˜ Carlos, 13565-905 Sao˜ Carlos, SP, Brazil 4Universidade Estadual Paulista (Unesp), Campus Experimental de Itapeva, 18409-010 Itapeva, Sao˜ Paulo, Brazil 5International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Physics Department, Shanghai University, 200444 Shanghai, China 6IKERBASQUE, Basque Foundation for Science, Mar´ıa D´ıaz de Haro 3, E-48013 Bilbao, Spain We introduce the concept of degree of quantumness in quantum synchronization, a measure of the quantum nature of synchronization in quantum systems. Following techniques from quantum information, we propose the number of non-commuting observables that synchronize as a measure of quantumness. This figure of merit is compatible with already existing synchronization measurements, and it captures different physical properties. We illustrate it in a quantum system consisting of two weakly interacting cavity-qubit systems, which are cou- pled via the exchange of bosonic excitations between the cavities. Moreover, we study the synchronization of the expectation values of the Pauli operators and we propose a feasible superconducting circuit setup. Finally, we discuss the degree of quantumness in the synchronization between two quantum van der Pol oscillators. I. INTRODUCTION Synchronization is originally defined as a process in which two or more self-sustained oscillators evolve to swing in unison. -
A Mini-Introduction to Information Theory
A Mini-Introduction To Information Theory Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract This article consists of a very short introduction to classical and quantum information theory. Basic properties of the classical Shannon entropy and the quantum von Neumann entropy are described, along with related concepts such as classical and quantum relative entropy, conditional entropy, and mutual information. A few more detailed topics are considered in the quantum case. arXiv:1805.11965v5 [hep-th] 4 Oct 2019 Contents 1 Introduction 2 2 Classical Information Theory 2 2.1 ShannonEntropy ................................... .... 2 2.2 ConditionalEntropy ................................. .... 4 2.3 RelativeEntropy .................................... ... 6 2.4 Monotonicity of Relative Entropy . ...... 7 3 Quantum Information Theory: Basic Ingredients 10 3.1 DensityMatrices .................................... ... 10 3.2 QuantumEntropy................................... .... 14 3.3 Concavity ......................................... .. 16 3.4 Conditional and Relative Quantum Entropy . ....... 17 3.5 Monotonicity of Relative Entropy . ...... 20 3.6 GeneralizedMeasurements . ...... 22 3.7 QuantumChannels ................................... ... 24 3.8 Thermodynamics And Quantum Channels . ...... 26 4 More On Quantum Information Theory 27 4.1 Quantum Teleportation and Conditional Entropy . ......... 28 4.2 Quantum Relative Entropy And Hypothesis Testing . ......... 32 4.3 Encoding -
Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity
mathematics Article Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity Eied. M. Khalil 1,2, Abdel-Baset. A. Mohamed 3,4,* , Abdel-Shafy F. Obada 2 and Hichem Eleuch 5,6,7 1 Department of Mathematics, College of Science, P.O. Box11099, Taif University, Taif 21944, Saudi Arabia; [email protected] 2 Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt; [email protected] 3 Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam bin Abdulaziz University, Al-Aflaj 11942, Saudi Arabia 4 Faculty of Science, Assiut University, Assiut 71515, Egypt 5 Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, UAE; [email protected] 6 Department of Applied Sciences and Mathematics, College of Arts and Sciences, Abu Dhabi University, Abu Dhabi 59911, UAE 7 Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843, USA * Correspondence: [email protected] Received: 22 September 2020; Accepted: 12 October 2020; Published: 19 October 2020 Abstract: Squeezing and phase space coherence are investigated for a bimodal cavity accommodating a two-level atom. The two modes of the cavity are initially in the Barut–Girardello coherent states. This system is studied with the SU(1,1)-algebraic model. Quantum effects are analyzed with the Husimi function under the effect of the intrinsic decoherence. Squeezing, quantum mixedness, and the phase information, which are affected by the system parameters, exalt a richer structure dynamic in the presence of the intrinsic decoherence. -
Chapter 6 Quantum Entropy
Chapter 6 Quantum entropy There is a notion of entropy which quantifies the amount of uncertainty contained in an ensemble of Qbits. This is the von Neumann entropy that we introduce in this chapter. In some respects it behaves just like Shannon's entropy but in some others it is very different and strange. As an illustration let us immediately say that as in the classical theory, conditioning reduces entropy; but in sharp contrast with classical theory the entropy of a quantum system can be lower than the entropy of its parts. The von Neumann entropy was first introduced in the realm of quantum statistical mechanics, but we will see in later chapters that it enters naturally in various theorems of quantum information theory. 6.1 Main properties of Shannon entropy Let X be a random variable taking values x in some alphabet with probabil- ities px = Prob(X = x). The Shannon entropy of X is X 1 H(X) = p ln x p x x and quantifies the average uncertainty about X. The joint entropy of two random variables X, Y is similarly defined as X 1 H(X; Y ) = p ln x;y p x;y x;y and the conditional entropy X X 1 H(XjY ) = py pxjy ln p j y x;y x y 1 2 CHAPTER 6. QUANTUM ENTROPY where px;y pxjy = py The conditional entropy is the average uncertainty of X given that we observe Y = y. It is easily seen that H(XjY ) = H(X; Y ) − H(Y ) The formula is consistent with the interpretation of H(XjY ): when we ob- serve Y the uncertainty H(X; Y ) is reduced by the amount H(Y ). -
Multi-Time Correlations in the Positive-P, Q, and Doubled Phase-Space Representations
Multi-time correlations in the positive-P, Q, and doubled phase-space representations Piotr Deuar Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland A number of physically intuitive results for the in quantum information science (see [58] and [129] for calculation of multi-time correlations in phase- recent reviews) and for the simulation of large-scale space representations of quantum mechanics are quantum dynamics. Negativity of Wigner, P, and other obtained. They relate time-dependent stochastic phase-space quasi-distributions is a major criterion for samples to multi-time observables, and rely on quantumness and closely related to contextuality and the presence of derivative-free operator identi- nonlocality in quantum mechanics [58, 65]. The inabil- ties. In particular, expressions for time-ordered ity to interpret the Glauber-Sudarshan P [67, 132] and normal-ordered observables in the positive-P Wigner distributions in terms of a classical probabil- distribution are derived which replace Heisen- ity density is the fundamental benchmark for quan- berg operators with the bare time-dependent tum light [88, 128]. Quasi-probability representations stochastic variables, confirming extension of ear- arise naturally when looking for hidden variable de- lier such results for the Glauber-Sudarshan P. scriptions and an ontological model of quantum theory Analogous expressions are found for the anti- [16, 58, 93, 127]. Wigner and P-distribution negativ- normal-ordered case of the doubled phase-space ity are considered a resource for quantum computation Q representation, along with conversion rules [8, 58] and closely related to magic state distillation among doubled phase-space s-ordered represen- and quantum advantage [138]; the Glauber-Sudarshan tations. -
Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations
Article Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations Jen-Tsung Hsiang 1,*,† and Bei-Lok Hu 2,† ID 1 Center for Field Theory and Particle Physics, Department of Physics, Fudan University, Shanghai 200433, China 2 Maryland Center for Fundamental Physics and Joint Quantum Institute, University of Maryland, College Park, MD 20742-4111, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-21-3124-3754 † These authors contributed equally to this work. Received: 26 April 2018; Accepted: 30 May 2018; Published: 31 May 2018 Abstract: Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. -
Quantum Entanglement Inferred by the Principle of Maximum Tsallis Entropy
Quantum entanglement inferred by the principle of maximum Tsallis entropy Sumiyoshi Abe1 and A. K. Rajagopal2 1College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan 2Naval Research Laboratory, Washington D.C., 20375-5320, U.S.A. The problem of quantum state inference and the concept of quantum entanglement are studied using a non-additive measure in the form of Tsallis’ entropy indexed by the positive parameter q. The maximum entropy principle associated with this entropy along with its thermodynamic interpretation are discussed in detail for the Einstein- Podolsky-Rosen pair of two spin-1/2 particles. Given the data on the Bell-Clauser- Horne-Shimony-Holt observable, the analytic expression is given for the inferred quantum entangled state. It is shown that for q greater than unity, indicating the sub- additive feature of the Tsallis entropy, the entangled region is small and enlarges as one goes into the super-additive regime where q is less than unity. It is also shown that quantum entanglement can be quantified by the generalized Kullback-Leibler entropy. quant-ph/9904088 26 Apr 1999 PACS numbers: 03.67.-a, 03.65.Bz I. INTRODUCTION Entanglement is a fundamental concept highlighting non-locality of quantum mechanics. It is well known [1] that the Bell inequalities, which any local hidden variable theories should satisfy, can be violated by entangled states of a composite system described by quantum mechanics. Experimental results [2] suggest that naive local realism à la Einstein, Podolsky, and Rosen [3] may not actually hold. Related issues arising out of the concept of quantum entanglement are quantum cryptography, quantum teleportation, and quantum computation. -
Wehrl Entropy, Lieb Conjecture and Entanglement Monotones
Wehrl entropy, Lieb conjecture and entanglement monotones Florian Mintert1,2 and Karol Zyczkowski˙ 2,3 1Max Planck Institute for the physics of complex systems N¨othnitzerstr. 38 01187 Dresden 2Uniwersytet Jagiello´nski, Instytut Fizyki im. M. Smoluchowskiego, ul. Reymonta 4, 30-059 Krak´ow, Poland and 3Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Al. Lotnik´ow 32/44, 02-668 Warszawa, Poland (Dated: October 23, 2003) We propose to quantify the entanglement of pure states of N × N bipartite quantum systems by defining its Husimi distribution with respect to SU(N) × SU(N) coherent states. The Wehrl entropy is minimal if and only if the analyzed pure state is separable. The excess of the Wehrl entropy is shown to be equal to the subentropy of the mixed state obtained by partial trace of the bipartite pure state. This quantity, as well as the generalized (R´enyi) subentropies, are proved to be Schur-concave, so they are entanglement monotones and may be used as alternative measures of entanglement. PACS numbers: 03.67 Mn, 89.70.+c, I. INTRODUCTION original statement and its proof was given in [11, 13]. It is also straightforward to formulate the Lieb conjecture Investigating properties of a quantum state it is useful for Wehrl entropy computed with respect to the SU(K)– to analyze its phase space representation. The Husimi coherent states [14, 15], but this conjecture seems not to distribution is often very convenient to work with: it ex- be simpler than the original one. ists for any quantum state, is non-negative for any point In this work we consider the Husimi function of an α of the classical phase space Ω, and may be normalized arbitrary mixed quantum state ρ of size N with respect to as a probability distribution [1].