An Overview of Definitions and Applications in Quantum Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

An Overview of Definitions and Applications in Quantum Mechanics Entropy in Physics: An Overview of Definitions and Applications in Quantum Mechanics Fabian Immanuel IJpelaar January 22, 2021 Abstract In modern physics, entropy is a well-known and important quantity. At its core, the entropy is a function of the probabilities of a distribution that is meant to describe the uncertainty in outcome of a random process represented by that distribution. However, it has been used in many different fields and, as a consequence, has many interpretations. Moreover, a lot of different functions have been grouped under the name of entropy, all with their own uses and interpretations. In this work, we discuss the definitions, origins, and interpretations of many of these functions as well as how they fit together. We will also explicitly cover some of the applications that the entropies have found within physics, in particular in quantum physics. These applications include thermodynamics, measurement uncertainty in quantum mechanics, measures of mixedness in the density matrix formalism and in phase space formalisms, measures of entanglement, and parton distributions in QCD. Master's Thesis Physics Van Swinderen Institute Supervisor: Dani¨elBoer Second Examiner: Elisabetta Pallante 1 Contents Introduction 5 1 The Entropies of Statistical Mechanics and Information Theory 9 1.1 Statistical Mechanics and the Classical Entropy . 10 1.1.1 The Liouville Equation . 10 1.1.2 The Microcanonical Ensemble . 11 1.1.3 The Microcanonical Entropy . 11 1.1.4 Extensivity of the microcanonical Entropy and Temperature . 12 1.1.5 The Canonical Ensemble . 13 1.1.6 The Canonical Entropy . 13 1.1.7 Closing Remarks . 14 1.2 The Shannon Entropy . 15 1.2.1 Comparison with the Standard deviation . 15 1.2.2 Shannon Entropy as a Measure of (Lack of) Information . 16 1.2.3 Statistical Mechanics and Information Theory: Jaynes' Maximum Entropy Principle . 18 1.2.4 Properties . 19 1.3 The Differential (Continuous Shannon) Entropy . 21 1.3.1 Properties . 22 1.3.2 The Differential Entropy and the Standard Deviation . 24 1.4 Summary and Concluding Remarks . 24 2 Course Graining Classical Distributions 26 2.1 Aggregation of Discrete Probabilities . 27 2.2 Coarse Graining Continuous Distributions . 27 2.3 The Second Law and Mixing . 29 2.4 Concluding Remarks . 31 3 Generalized Entropies 32 3.1 The Shannon-Khinchin Axioms . 33 3.1.1 Extensivity . 33 3.1.2 Experimental Robustness . 34 3.2 The Maximum Entropy Method Revisited . 35 3.3 Tsallis Entropy . 36 3.3.1 Properties . 37 3.3.2 Relation to the Shannon Entropy . 38 3.3.3 Maximization . 38 3.3.4 Extensivity . 39 3.3.5 The Zeroth Law of Thermodynamics and the Tsallis Composition Law . 39 3.4 The R´enyi Entropy . 42 3.4.1 Properties . 43 3.4.2 Entropy Maximization . 44 2 3.5 Scaling Exponents . 45 3.6 Imposing Extensivity . 46 3.7 Summary and Concluding Remarks . 47 4 Density Matrices, Mixed States and Quantum Operations 49 4.1 Introduction to the Density Matrix: The Particle Source . 49 4.2 The Density Matrix . 50 4.3 Schmidt Decomposition . 51 4.4 Quantum Operations . 51 4.4.1 Kraus Operators from Unitary Time Evolution . 52 4.5 Defining Mixedness through Majorization . 53 4.5.1 Schur-Convexity (Concavity) . 53 5 Measurement Uncertainty in Discrete Hilbert Spaces 54 5.1 The Uncertainty Principle . 55 5.1.1 The Maassen-Uffink Uncertainty Relation in a 2D Hilbert Space . 57 5.2 Concluding Remarks . 58 6 Position and Momentum Uncertainty 59 6.1 The Uncertainty Relations . 59 6.2 Infinite Square Well . 62 6.2.1 Comparison with the Classical Infinite Square Well . 65 6.3 Harmonic Oscillator . 65 6.3.1 Comparison with the classical harmonic oscillator . 66 6.3.2 Coherent States and Squeeze States . 68 6.4 The Hydrogen Atom . 73 6.5 Maximum Entropy Wavefunctions . 75 6.6 Summary and Concluding Remarks . 78 7 Measures of Mixedness 80 7.1 The Von Neumann Entropy . 81 7.1.1 Von Neumann's Gedanken Experiment . 81 7.1.2 The Ensembles and Entropies of Quantum Statistical Physics . 83 7.1.3 Properties . 84 7.1.4 Entropy Maximization . 87 7.2 The Quantum Tsallis and R´enyi entropies . 89 7.3 Summary and Concluding Remarks . 89 8 Entanglement and the Entanglement Entropy 91 8.1 Quantifying Entanglement: The LOCC Paradigm . 92 8.1.1 Maximally and Minimally Entangled States . 93 8.1.2 Locally Manipulating Two Qubits . 93 8.1.3 The Distillable Entanglement and Entanglement Cost . 94 8.1.4 Beyond Pure States . 95 8.2 The Entanglement Entropy and Area Laws . 95 8.3 The Spin XY Model and the Ground State Entropy . 96 8.4 Entanglement Entropy in Field Theory . 103 8.4.1 The Real Time Approach . 103 8.4.2 The Euclidean Method . 107 8.4.3 The Replica Trick . 109 8.4.4 The Entanglement Entropy of the Free Scalar Field . 109 8.5 Summary and Concluding Remarks . 111 9 Phase Space Entropies 114 9.1 The Wigner and Husimi Representations . 114 3 9.2 The Linear Entropy And Wigner Distributions . 116 9.2.1 Properties . 117 9.2.2 Entropy Maximization . 117 9.2.3 Entropy of Course graining . 118 9.3 Wehrl Entropy and The Husimi-Q Representation . 119 9.3.1 Quantum-Optical States . 119 9.4 Summary and Concluding Remarks . 123 10 Entropy and Parton Distributions 125 10.1 DIS and the Parton Model . 126 10.1.1 QCD and Corrections to Bjorken Scaling . 128 10.2 The Entropy of the Parton Distribution functions . 129 10.3 The Entropy of Ignorance . 132 10.3.1 Entropy of Ignorance for a Spin System . 133 10.3.2 The Entropy of Ignorance vs the Von Neumann entropy in the CCG model . 134 10.4 Summary and Concluding Remarks . 136 Conclusion 137 Appendices 150 A Hydrogen Atom Entropies 151 4 Introduction Entropy, although being ubiquitous throughout physics and even many other fields, is also notorious for being hard to grasp. Von Neumann famously said to Shannon, who had developed his \own" entropy quantity but didn't know yet what to call it [1]: You should call it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, nobody knows what entropy really is, so in a debate you will always have the advantage. (-John Von Neumann to Claude Shannon, 1949) While this quote is a bit dated by now, entropy and entropy-like quantities are still being studied very intensively, and since then, the number of \entropies" has become even larger. Wehrl [2] has even gone as far as to say: \There is a tremendous variety of entropy-like quantities, especially in the classical case, and perhaps every month somebody invents a new one". Moreover, as we will discuss, all these quantities are used within many different fields of research, so even for the same quantity, interpretations may vary, adding another barrier to entry for someone who wants to learn about the use of these entropies. The aim of this work is to act as a general starting point for someone who wants to learn about these entropies and related topics, while still focusing on applications and interpretations in physics, and in particular quantum mechanics. Since we feel that a lot of confusion about the entropy comes from its past uses and interpretations, we will give a brief overview of this in the rest of the introduction. In chapter 1, we will show how the most well known entropy, now called the Boltzmann-Gibbs-Shannon (BGS) entropy, is defined in classical statistical mechanics, as well as in classical information theory. In chapter.
Recommended publications
  • Quantum Metrology with Atoms and Light
    UNIVERSITY OF WARSAW FACULTY OF PHYSICS DOCTORAL THESIS Quantum Metrology with Atoms and Light Author: Supervisor: Karol GIETKA dr hab. Jan CHWEDENCZUK´ Auxiliary Supervisor: dr Tomasz WASAK December 6, 2018 iii Streszczenie Kwantowa Metrologia z Atomami i Swiatłem´ Głównym celem tej dysertacji jest zaproponowanie metod tworzenia kwantowych stanów materii oraz ´swiatłai sprawdzenie mozliwo´sciwykorzystania˙ tych stanów do precyzyjnych pomiarów wielko´scifizycznych. Pierwsza cz˛e´s´ctego celu realizo- wana jest przy pomocy formalizmu kwantowo-mechanicznego w kontek´scieteorii ultra-zimnych gazów atomowych oraz kwantowej elektrodynamiki we wn˛ece,nato- miast druga cz˛e´s´crealizowana jest za pomoc ˛ametod teorii estymacji z informacj ˛aFi- shera w roli głównej. Poł ˛aczeniepowyzszych˙ metod jest znane ogólnie pod poj˛eciem kwantowej metrologii. W ostatnich latach wiele teoretycznego i eksperymentalnego wysiłku zostało włozonego˙ w dziedzin˛ekwantowej metrologii, poniewaz˙ dzi˛ekiniej mozliwy˙ b˛edzienie tylko rozwój technik pomiarowych daj ˛acychlepsz ˛aprecyzj˛eniz˙ te same pomiary wykonane w ramach klasycznej teorii, ale takze˙ moze˙ by´cuzyta˙ do badania fundamentalnych aspektów mechaniki kwantowej takich jak spl ˛atanie. Pierwsz ˛ametod ˛a,któr ˛arozwazamy˙ to mechanizm tworzenia tworzenia stanów spinowo-´sci´sni˛etychznany jako one-axis twisting, który moze˙ by´czastosowany na przykład w kondensacie Bosego-Einsteina uwi˛ezionegow podwójnej studni poten- cjału tworz ˛acefektywnie kondensat dwu składnikowy. Pokazujemy, ze˙ stany spinowo- ´sci´sni˛etestanowi ˛atylko mał ˛arodzin˛estanów spl ˛atanych,które mog ˛aby´cwytwo- rzone przez Hamiltonian one-axis twisting. Ta duza˙ rodzina stanów typu twisted za- wiera nawet najbardziej spl ˛atanystan znany jako kot Schroödingera. Pokazujemy równiez˙ jak wykorzysta´cte kwantowe zasoby w pomiarze nieznanego parametru, wykorzystuj ˛acnieidealne detektory atomowe oraz w przypadku kiedy oddziaływa- nie pomi˛edzyatomami nie jest dokładnie znane.
    [Show full text]
  • On Entropy, Information, and Conservation of Information
    entropy Article On Entropy, Information, and Conservation of Information Yunus A. Çengel Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA; [email protected] Abstract: The term entropy is used in different meanings in different contexts, sometimes in contradic- tory ways, resulting in misunderstandings and confusion. The root cause of the problem is the close resemblance of the defining mathematical expressions of entropy in statistical thermodynamics and information in the communications field, also called entropy, differing only by a constant factor with the unit ‘J/K’ in thermodynamics and ‘bits’ in the information theory. The thermodynamic property entropy is closely associated with the physical quantities of thermal energy and temperature, while the entropy used in the communications field is a mathematical abstraction based on probabilities of messages. The terms information and entropy are often used interchangeably in several branches of sciences. This practice gives rise to the phrase conservation of entropy in the sense of conservation of information, which is in contradiction to the fundamental increase of entropy principle in thermody- namics as an expression of the second law. The aim of this paper is to clarify matters and eliminate confusion by putting things into their rightful places within their domains. The notion of conservation of information is also put into a proper perspective. Keywords: entropy; information; conservation of information; creation of information; destruction of information; Boltzmann relation Citation: Çengel, Y.A. On Entropy, 1. Introduction Information, and Conservation of One needs to be cautious when dealing with information since it is defined differently Information. Entropy 2021, 23, 779.
    [Show full text]
  • ENERGY, ENTROPY, and INFORMATION Jean Thoma June
    ENERGY, ENTROPY, AND INFORMATION Jean Thoma June 1977 Research Memoranda are interim reports on research being conducted by the International Institute for Applied Systems Analysis, and as such receive only limited scientific review. Views or opinions contained herein do not necessarily represent those of the Institute or of the National Member Organizations supporting the Institute. PREFACE This Research Memorandum contains the work done during the stay of Professor Dr.Sc. Jean Thoma, Zug, Switzerland, at IIASA in November 1976. It is based on extensive discussions with Professor HAfele and other members of the Energy Program. Al- though the content of this report is not yet very uniform because of the different starting points on the subject under consideration, its publication is considered a necessary step in fostering the related discussion at IIASA evolving around th.e problem of energy demand. ABSTRACT Thermodynamical considerations of energy and entropy are being pursued in order to arrive at a general starting point for relating entropy, negentropy, and information. Thus one hopes to ultimately arrive at a common denominator for quanti- ties of a more general nature, including economic parameters. The report closes with the description of various heating appli- cation.~and related efficiencies. Such considerations are important in order to understand in greater depth the nature and composition of energy demand. This may be highlighted by the observation that it is, of course, not the energy that is consumed or demanded for but the informa- tion that goes along with it. TABLE 'OF 'CONTENTS Introduction ..................................... 1 2 . Various Aspects of Entropy ........................2 2.1 i he no me no logical Entropy ........................
    [Show full text]
  • Lecture 4: 09.16.05 Temperature, Heat, and Entropy
    3.012 Fundamentals of Materials Science Fall 2005 Lecture 4: 09.16.05 Temperature, heat, and entropy Today: LAST TIME .........................................................................................................................................................................................2� State functions ..............................................................................................................................................................................2� Path dependent variables: heat and work..................................................................................................................................2� DEFINING TEMPERATURE ...................................................................................................................................................................4� The zeroth law of thermodynamics .............................................................................................................................................4� The absolute temperature scale ..................................................................................................................................................5� CONSEQUENCES OF THE RELATION BETWEEN TEMPERATURE, HEAT, AND ENTROPY: HEAT CAPACITY .......................................6� The difference between heat and temperature ...........................................................................................................................6� Defining heat capacity.................................................................................................................................................................6�
    [Show full text]
  • Degree of Quantumness in Quantum Synchronization
    Degree of Quantumness in Quantum Synchronization H. Eneriz,1, 2 D. Z. Rossatto,3, 4, ∗ F. A. Cardenas-L´ opez,´ 5 E. Solano,1, 6, 5 and M. Sanz1,† 1Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain 2LP2N, Laboratoire Photonique, Numerique´ et Nanosciences, Universite´ Bordeaux-IOGS-CNRS:UMR 5298, F-33400 Talence, France 3Departamento de F´ısica, Universidade Federal de Sao˜ Carlos, 13565-905 Sao˜ Carlos, SP, Brazil 4Universidade Estadual Paulista (Unesp), Campus Experimental de Itapeva, 18409-010 Itapeva, Sao˜ Paulo, Brazil 5International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Physics Department, Shanghai University, 200444 Shanghai, China 6IKERBASQUE, Basque Foundation for Science, Mar´ıa D´ıaz de Haro 3, E-48013 Bilbao, Spain We introduce the concept of degree of quantumness in quantum synchronization, a measure of the quantum nature of synchronization in quantum systems. Following techniques from quantum information, we propose the number of non-commuting observables that synchronize as a measure of quantumness. This figure of merit is compatible with already existing synchronization measurements, and it captures different physical properties. We illustrate it in a quantum system consisting of two weakly interacting cavity-qubit systems, which are cou- pled via the exchange of bosonic excitations between the cavities. Moreover, we study the synchronization of the expectation values of the Pauli operators and we propose a feasible superconducting circuit setup. Finally, we discuss the degree of quantumness in the synchronization between two quantum van der Pol oscillators. I. INTRODUCTION Synchronization is originally defined as a process in which two or more self-sustained oscillators evolve to swing in unison.
    [Show full text]
  • A Mini-Introduction to Information Theory
    A Mini-Introduction To Information Theory Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract This article consists of a very short introduction to classical and quantum information theory. Basic properties of the classical Shannon entropy and the quantum von Neumann entropy are described, along with related concepts such as classical and quantum relative entropy, conditional entropy, and mutual information. A few more detailed topics are considered in the quantum case. arXiv:1805.11965v5 [hep-th] 4 Oct 2019 Contents 1 Introduction 2 2 Classical Information Theory 2 2.1 ShannonEntropy ................................... .... 2 2.2 ConditionalEntropy ................................. .... 4 2.3 RelativeEntropy .................................... ... 6 2.4 Monotonicity of Relative Entropy . ...... 7 3 Quantum Information Theory: Basic Ingredients 10 3.1 DensityMatrices .................................... ... 10 3.2 QuantumEntropy................................... .... 14 3.3 Concavity ......................................... .. 16 3.4 Conditional and Relative Quantum Entropy . ....... 17 3.5 Monotonicity of Relative Entropy . ...... 20 3.6 GeneralizedMeasurements . ...... 22 3.7 QuantumChannels ................................... ... 24 3.8 Thermodynamics And Quantum Channels . ...... 26 4 More On Quantum Information Theory 27 4.1 Quantum Teleportation and Conditional Entropy . ......... 28 4.2 Quantum Relative Entropy And Hypothesis Testing . ......... 32 4.3 Encoding
    [Show full text]
  • Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity
    mathematics Article Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity Eied. M. Khalil 1,2, Abdel-Baset. A. Mohamed 3,4,* , Abdel-Shafy F. Obada 2 and Hichem Eleuch 5,6,7 1 Department of Mathematics, College of Science, P.O. Box11099, Taif University, Taif 21944, Saudi Arabia; [email protected] 2 Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt; [email protected] 3 Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam bin Abdulaziz University, Al-Aflaj 11942, Saudi Arabia 4 Faculty of Science, Assiut University, Assiut 71515, Egypt 5 Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, UAE; [email protected] 6 Department of Applied Sciences and Mathematics, College of Arts and Sciences, Abu Dhabi University, Abu Dhabi 59911, UAE 7 Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843, USA * Correspondence: [email protected] Received: 22 September 2020; Accepted: 12 October 2020; Published: 19 October 2020 Abstract: Squeezing and phase space coherence are investigated for a bimodal cavity accommodating a two-level atom. The two modes of the cavity are initially in the Barut–Girardello coherent states. This system is studied with the SU(1,1)-algebraic model. Quantum effects are analyzed with the Husimi function under the effect of the intrinsic decoherence. Squeezing, quantum mixedness, and the phase information, which are affected by the system parameters, exalt a richer structure dynamic in the presence of the intrinsic decoherence.
    [Show full text]
  • Chapter 6 Quantum Entropy
    Chapter 6 Quantum entropy There is a notion of entropy which quantifies the amount of uncertainty contained in an ensemble of Qbits. This is the von Neumann entropy that we introduce in this chapter. In some respects it behaves just like Shannon's entropy but in some others it is very different and strange. As an illustration let us immediately say that as in the classical theory, conditioning reduces entropy; but in sharp contrast with classical theory the entropy of a quantum system can be lower than the entropy of its parts. The von Neumann entropy was first introduced in the realm of quantum statistical mechanics, but we will see in later chapters that it enters naturally in various theorems of quantum information theory. 6.1 Main properties of Shannon entropy Let X be a random variable taking values x in some alphabet with probabil- ities px = Prob(X = x). The Shannon entropy of X is X 1 H(X) = p ln x p x x and quantifies the average uncertainty about X. The joint entropy of two random variables X, Y is similarly defined as X 1 H(X; Y ) = p ln x;y p x;y x;y and the conditional entropy X X 1 H(XjY ) = py pxjy ln p j y x;y x y 1 2 CHAPTER 6. QUANTUM ENTROPY where px;y pxjy = py The conditional entropy is the average uncertainty of X given that we observe Y = y. It is easily seen that H(XjY ) = H(X; Y ) − H(Y ) The formula is consistent with the interpretation of H(XjY ): when we ob- serve Y the uncertainty H(X; Y ) is reduced by the amount H(Y ).
    [Show full text]
  • Multi-Time Correlations in the Positive-P, Q, and Doubled Phase-Space Representations
    Multi-time correlations in the positive-P, Q, and doubled phase-space representations Piotr Deuar Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland A number of physically intuitive results for the in quantum information science (see [58] and [129] for calculation of multi-time correlations in phase- recent reviews) and for the simulation of large-scale space representations of quantum mechanics are quantum dynamics. Negativity of Wigner, P, and other obtained. They relate time-dependent stochastic phase-space quasi-distributions is a major criterion for samples to multi-time observables, and rely on quantumness and closely related to contextuality and the presence of derivative-free operator identi- nonlocality in quantum mechanics [58, 65]. The inabil- ties. In particular, expressions for time-ordered ity to interpret the Glauber-Sudarshan P [67, 132] and normal-ordered observables in the positive-P Wigner distributions in terms of a classical probabil- distribution are derived which replace Heisen- ity density is the fundamental benchmark for quan- berg operators with the bare time-dependent tum light [88, 128]. Quasi-probability representations stochastic variables, confirming extension of ear- arise naturally when looking for hidden variable de- lier such results for the Glauber-Sudarshan P. scriptions and an ontological model of quantum theory Analogous expressions are found for the anti- [16, 58, 93, 127]. Wigner and P-distribution negativ- normal-ordered case of the doubled phase-space ity are considered a resource for quantum computation Q representation, along with conversion rules [8, 58] and closely related to magic state distillation among doubled phase-space s-ordered represen- and quantum advantage [138]; the Glauber-Sudarshan tations.
    [Show full text]
  • Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations
    Article Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations Jen-Tsung Hsiang 1,*,† and Bei-Lok Hu 2,† ID 1 Center for Field Theory and Particle Physics, Department of Physics, Fudan University, Shanghai 200433, China 2 Maryland Center for Fundamental Physics and Joint Quantum Institute, University of Maryland, College Park, MD 20742-4111, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-21-3124-3754 † These authors contributed equally to this work. Received: 26 April 2018; Accepted: 30 May 2018; Published: 31 May 2018 Abstract: Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir.
    [Show full text]
  • Quantum Entanglement Inferred by the Principle of Maximum Tsallis Entropy
    Quantum entanglement inferred by the principle of maximum Tsallis entropy Sumiyoshi Abe1 and A. K. Rajagopal2 1College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan 2Naval Research Laboratory, Washington D.C., 20375-5320, U.S.A. The problem of quantum state inference and the concept of quantum entanglement are studied using a non-additive measure in the form of Tsallis’ entropy indexed by the positive parameter q. The maximum entropy principle associated with this entropy along with its thermodynamic interpretation are discussed in detail for the Einstein- Podolsky-Rosen pair of two spin-1/2 particles. Given the data on the Bell-Clauser- Horne-Shimony-Holt observable, the analytic expression is given for the inferred quantum entangled state. It is shown that for q greater than unity, indicating the sub- additive feature of the Tsallis entropy, the entangled region is small and enlarges as one goes into the super-additive regime where q is less than unity. It is also shown that quantum entanglement can be quantified by the generalized Kullback-Leibler entropy. quant-ph/9904088 26 Apr 1999 PACS numbers: 03.67.-a, 03.65.Bz I. INTRODUCTION Entanglement is a fundamental concept highlighting non-locality of quantum mechanics. It is well known [1] that the Bell inequalities, which any local hidden variable theories should satisfy, can be violated by entangled states of a composite system described by quantum mechanics. Experimental results [2] suggest that naive local realism à la Einstein, Podolsky, and Rosen [3] may not actually hold. Related issues arising out of the concept of quantum entanglement are quantum cryptography, quantum teleportation, and quantum computation.
    [Show full text]
  • Wehrl Entropy, Lieb Conjecture and Entanglement Monotones
    Wehrl entropy, Lieb conjecture and entanglement monotones Florian Mintert1,2 and Karol Zyczkowski˙ 2,3 1Max Planck Institute for the physics of complex systems N¨othnitzerstr. 38 01187 Dresden 2Uniwersytet Jagiello´nski, Instytut Fizyki im. M. Smoluchowskiego, ul. Reymonta 4, 30-059 Krak´ow, Poland and 3Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Al. Lotnik´ow 32/44, 02-668 Warszawa, Poland (Dated: October 23, 2003) We propose to quantify the entanglement of pure states of N × N bipartite quantum systems by defining its Husimi distribution with respect to SU(N) × SU(N) coherent states. The Wehrl entropy is minimal if and only if the analyzed pure state is separable. The excess of the Wehrl entropy is shown to be equal to the subentropy of the mixed state obtained by partial trace of the bipartite pure state. This quantity, as well as the generalized (R´enyi) subentropies, are proved to be Schur-concave, so they are entanglement monotones and may be used as alternative measures of entanglement. PACS numbers: 03.67 Mn, 89.70.+c, I. INTRODUCTION original statement and its proof was given in [11, 13]. It is also straightforward to formulate the Lieb conjecture Investigating properties of a quantum state it is useful for Wehrl entropy computed with respect to the SU(K)– to analyze its phase space representation. The Husimi coherent states [14, 15], but this conjecture seems not to distribution is often very convenient to work with: it ex- be simpler than the original one. ists for any quantum state, is non-negative for any point In this work we consider the Husimi function of an α of the classical phase space Ω, and may be normalized arbitrary mixed quantum state ρ of size N with respect to as a probability distribution [1].
    [Show full text]