Useful Mathematical Formulae

Total Page:16

File Type:pdf, Size:1020Kb

Useful Mathematical Formulae Appendix A Useful Mathematical Formulae x1−q − 1 ln x ≡ (x > 0, q ∈ R)(A.1) q 1 − q 1−q lnq x = x ln2−q x (x > 0; ∀q)(A.2) lnq (1/x) + ln2−q x = 0(x > 0; ∀q)(A.3) q q lnq x + ln(1/q)(1/x ) = 0(x > 0; ∀q)(A.4) ⎧ < < − / − , ⎪ 0ifq 1 and x 1 (1 q) ⎪ ⎪ ⎪ 1 ⎨⎪ + − 1−q < ≥− / − , 1 [1 (1 q) x] if q 1 and x 1 (1 q) x 1−q e ≡ [1 + (1 − q) x]+ ≡ q ⎪ ⎪ ex if q = 1(∀x) , ⎪ ⎪ ⎩ 1 [1 + (1 − q) x] 1−q if q > 1 and x < 1/(q − 1) . (A.5) x −x = ∀ eq e2−q 1(q)(A.6) x q −qx = ∀ (eq ) e(1/q) 1(q)(A.7) x+y+(1−q)xy = x y ∀ eq eq eq ( q)(A.8) 329 330 Appendix A Useful Mathematical Formulae x ⊕q y ≡ x + y + (1 − q) xy (A.9) For x ≥ 0 and y ≥ 0: ⎧ −q −q ⎪ 0ifq < 1andx 1 + y1 < 1 , ⎪ ⎪ ⎪ 1 ⎪ 1−q 1−q 1−q 1−q 1−q 1 ⎨ [x + y − 1] if q < 1andx + y ≥ 1 , 1−q 1−q 1−q x ⊗ y ≡ [x + y − 1]+ ≡ q ⎪ ⎪ xy if q = 1 ∀(x, y) , ⎪ ⎪ ⎩ − − 1 − − [x 1 q + y1 q − 1] 1−q if q > 1andx 1 q + y1 q > 1 . (A.10) 1 − x ⊗q y = [1 + (1 − q)(lnq x + lnq y)] 1 q (A.11) ⊕ x q y = x y ∀ eq eq eq ( q) (A.12) x+y = x ⊗ y ∀ eq eq q eq ( q) (A.13) d ln x 1 q = (x > 0; ∀q) (A.14) dx xq dex q = (ex )q (∀q) (A.15) dx q x q = qx ∀ (eq ) e2−(1/q) ( q) (A.16) x a = ax ∀ (eq ) e1−(1−q)/a ( q) (A.17) / − 2 − x 1/(q−1) 1 − b (q 1) a b b a− x x e = x q−1 e (b > 0; q > 1) (A.18) q q − 1 q Appendix A Useful Mathematical Formulae 331 1 1 3 1 2 1 ex = ex [1 − (1 − q)x2 + (1 − q)2x3(1 + x) − (1 − q)3x4(1 + x + x2) q 2 3 8 4 3 12 1 65 5 5 + (1 − q)4x5(1 + x + x2 + x3) 5 72 24 384 1 11 17 1 1 − (1 − q)5x6(1 + x + x2 + x3 + x4) + ...](q → 1; ∀x) 6 10 48 24 640 (A.19) 1 1 1 ln x = ln x [1 + (1 − q)lnx + (1 − q)2 ln2 x + (1 − q)3 ln3 x q 2 6 24 1 1 + (1 − q)4 ln4 x + (1 − q)5 ln5 x + ...](q → 1; x > 0) 120 720 (A.20) x ⊗q y = xy 1 − (1 − q)(ln x)(ln y) 1 + (1 − q)2 [(ln2 x)(ln y) + (ln x)(ln2 y) + (ln2 x)(ln2 y)] 2 1 − (1 − q)3 [2(ln3 x)(ln y) + 9(ln2 x)(ln2 y) + 2(ln x)(ln3 y) 12 +6(ln3 x)(ln2 y) + 6(ln2 x)(ln3 y) + 2(ln3 x)(ln3 y)] 1 + (1 − q)4 [(ln4 x)(ln y) + 14(ln3 x)(ln2 y) 24 +14(ln2 x)(ln3 y) + (ln x)(ln4 y) + 4 2 + 3 3 + 2 4 7(ln x)(ln y) 24(ln x)(ln y) 7(ln x)(ln y) +6(ln4 x)(ln3 y) + 6(ln3 x)(ln4 y) + (ln4 x)(ln4 y)] + ... (A.21) 1 1 1 ex = 1 + x + x2q + x3q(2q − 1) + x4q(2q − 1)(3q − 2) q 2 6 24 1 + x5q(2q − 1)(3q − 2)(4q − 3) + ... (x → 0; ∀q) (A.22) 120 1 1 1 ln (1 + x) = x − x2q + x3q(1 + q) − x4q(1 + q)(2 + q) q 2 6 24 1 + x5q(1 + q)(2 + q)(3 + q) + ... (x → 0; ∀q) (A.23) 120 x 1 b/(q−1)2 − q− 1 − a b b 1 a− x x e = x q−1 e (q > 1; b > 0) (A.24) q q − 1 q 332 Appendix A Useful Mathematical Formulae lnq x 2 lnq,q x ≡ lnq e (x > 0, (q, q ) ∈ R ) (A.25) 2 lnq,q (x ⊗q y) = lnq,q x ⊕q lnq,q y (x > 0, (q, q ) ∈ R ) (A.26) ∞ −β 1 1 2−q − α −α z = ααq−1 β(q−1) z eq 1 d e e (A.27) ⌫ 1 − q−1 [β(q − 1)] q 1 0 (α>0; β>0; 1 < q < 2) The following relations are useful for the Fourier transform of q-Gaussians (with β>0): ∞ eixp F (p) ≡ dx q + − β 2 1/(q−1) −∞ [1 (q 1) x ] ∞ cos (xp) = 2 dx 2 1/(q−1) 0 [1 + (q − 1) β x ] ⎧ √ 3−q ⎪ π 2−q 2 β(1−q) 2(1−q) p ⎪ ⌫ − √ < , ⎪ − β ( − ) J 3 q β − if q 1 ⎪ (1 q) 1 q p 1−q (1 q) ⎪ ⎪ ⎨ 2 π − p = e 4β if q = 1 , ⎪ β (A.28) ⎪ ⎪ ⎪ 3−q ⎪ π |p| 2(q−1) |p| ⎩ 2 √ − √ < < , β − β − K 3 q β − if 1 q 3 ⌫ 1 (q 1) 2 (q 1) 2(q−1) (q 1) q−1 where Jν (z) and Kν (z) are, respectively, the Bessel and the modified Bessel func- tions. For the three successive regions of q we have respectively used formulae 3.387-2 (page 346), 3.323-2 (page 333) and 8.432-5 (page 905) of [228] (see also [868]). For the q < 1 result we have taken into account the fact that the q-Gaussian |x| > √ 1 identically vanishes for β(1−q) . ∞ ∞ ξ ≡ iξ x ⊗ = iξ x[ f (x)]q−1 ≥ Fq [ f ]( ) dx eq q f (x) dx eq f (x)(q 1) (A.29) −∞ −∞ ∞ Fq [ f ](0) = dx f(x)(q ≥ 1) (A.30) −∞ ξ ∞ dFq [ f ]( ) q = i dx x [ f (x)] (q ≥ 1) (A.31) dξ ξ= −∞ 0 d2 F [ f ](ξ) ∞ q =−q dx x2 [ f (x)]2q−1 (q ≥ 1) (A.32) ξ 2 d ξ=0 −∞ Appendix A Useful Mathematical Formulae 333 d3 F [ f ](ξ) ∞ q =−iq(2q − 1) dx x3 [ f (x)]3q−2 (q ≥ 1) (A.33) ξ 3 d ξ=0 −∞ − d(n) F [ f ](ξ) n1 ∞ q = i n + m q − dx xn f x 1+n(q−1) n ( ) [1 ( 1)] [ ( )] dξ ξ= −∞ 0 m=0 (q ≥ 1; n = 1, 2, 3...) (A.34) 2−q Fq [af(ax)](ξ) = Fq [ f ](ξ/a )(a > 0; 1 ≤ q < 2) . (A.35) The generating function I (t)(t ∈ R) of a given distribution PN (N = 0, 1, 2, ...) is defined as follows: ∞ ∞ N I (t) ≡ t PN ( PN = 1) . (A.36) N=0 N=0 The negative binomial distribution is defined as follows: (N + k − 1)! N¯ /k N 1 k PN (N¯ , k) ≡ (N¯ > 0, k > 0) , (A.37) N!(k − 1)! 1 + N¯ /k 1 + N¯ /k where ∞ N¯ = NPN (N¯ , k) , (A.38) N=0 ∞ 1 [ (N − N¯ )2 P ] − N¯ = N=0 N . (A.39) k N¯ 2 Its generating function is given by = N¯ (t−1) , I (t) eq (A.40) with 1 q ≡ 1 + . (A.41) k The particular case q = 1 (i.e., k →∞) corresponds to the Poisson distribution 334 Appendix A Useful Mathematical Formulae N¯ N P (N¯ ) = e−N¯ , (A.42) N N! which satisfies the property that the width equals the mean value, i.e., ∞ 2 (N − N¯ ) PN = N¯ . (A.43) N=0 Appendix B Escort Distributions and q-Expectation Values B.1 First Example In order to illustrate the practical utility and peculiar properties of escort distribu- tions and their associated q-expectation values, we introduce and analyze here a pedagogical example [884].1 Let us assume that we have a set of empirical distributions { fn(x)} (n = 1, 2, 3, ...) defined as follows: A f (x) = n (λ>0; α ≥ 0) , (B.1) n (1 + λx)α if 0 ≤ x ≤ n, and zero otherwise. Normalization of fn(x) immediately yields λ(α − 1) A = . (B.2) n 1 − (1 + λ n)1−α In order to have finite values for An, ∀n, including n →∞(i.e., 0 < A∞ < ∞), α>1 is needed. Consequently A∞ = λ(α − 1) . (B.3) By identifying 1 α = , (B.4) q − 1 λ = β(q − 1) , (B.5) 1 The present illustration has greatly benefited from lengthy discussions with S. Abe, who launched [885] interesting questions regarding q-expectation values, and with E.M.F. Curado. 335 336 Appendix B Escort Distributions and q-Expectation Values Fig. B.1 The distributions fn (x)forn = 1, 2, 3, ∞ (from top to bottom) for (λ, α) = (2, 3/2) (from [884]). Equation (B.1) can be rewritten as = −β x β> ≥ . fn(x) An eq ( 0; q 1) (B.6) The variable x ≥ 0 could be a physical quantity, say earthquake intensity, mea- sured along small intervals, say 10−6, so small that sums can be replaced by integrals within an excellent approximation. The empiric distribution fn(x) could correspond to different seismic regions, say region 1 (for n = 1), region 2 (for n = 2), and so on. See Fig. B.1. Suppose we want to characterize the distribution fn(x) through its mean value. A straightforward calculation yields n 1 − (1 + λn)α + λn[α + (α − 1)λn] x (n) ≡ dx xf (x) = . (B.7) n α−1 0 (α − 2)λ(1 + λn)[1 − (1 + λn) ] This quantity is finite for all n (including n →∞)forα>2, but x (∞) diverges for 1 <α≤ 2.
Recommended publications
  • On Escort Distributions, Q-Gaussians and Fisher Information Jean-François Bercher
    On escort distributions, q-gaussians and Fisher information Jean-François Bercher To cite this version: Jean-François Bercher. On escort distributions, q-gaussians and Fisher information. 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Jul 2010, Chamonix, France. pp.208-215, 10.1063/1.3573618. hal-00766571 HAL Id: hal-00766571 https://hal-upec-upem.archives-ouvertes.fr/hal-00766571 Submitted on 18 Dec 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On escort distributions, q-gaussians and Fisher information J.-F. Bercher Laboratoire d’Informatique Gaspard Monge, Université Paris-Est, ESIEE, 5 bd Descartes, 77454 Marne-la-Vallée Cedex 2, France Abstract. Escort distributions are a simple one parameter deformation of an original distribution p. In Tsallis extended thermostatistics, the escort-averages, defined with respect to an escort dis- tribution, have revealed useful in order to obtain analytical results and variational equations, with in particular the equilibrium distributions obtained as maxima of Rényi-Tsallis entropy subject to constraints in the form of a q-average. A central example is the q-gaussian, which is a generalization of the standard gaussian distribution.
    [Show full text]
  • Tsallis Statistics of the Magnetic Field in the Heliosheath Lf Burlaga,1 Af Vin
    The Astrophysical Journal, 644:L83–L86, 2006 June 10 ᭧ 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. TSALLIS STATISTICS OF THE MAGNETIC FIELD IN THE HELIOSHEATH L. F. Burlaga,1 A. F. Vin˜ as,1 N. F. Ness,2 and M. H. Acun˜a3 Received 2006 March 27; accepted 2006 May 3; published 2006 May 25 ABSTRACT The spacecraft Voyager 1 crossed the termination shock on 2004 December 16 at a distance of 94 AU from the Sun, and it has been moving through the heliosheath toward the interstellar medium since then. The distributions of magnetic field strength B observed in the heliosheath are Gaussian over a wide range of scales, yet the measured profile appears to be filamentary with occasional large jumps in the magnetic field strengthB(t) . All of the probability distributions of changes in B,dBn { B(t ϩ t) Ϫ B(t) on scales t from 1 to 128 days, can be fit with the symmetric Tsallis distribution of nonextensive statistical mechanics. At scales ≥32 days, the distributions are Gaussian, but on scales from 1 through 16 days the probability distribution functions have non-Gaussian tails, suggesting that the inner heliosheath is not in statistical equilibrium on scales from 1 to 16 days. Subject headings: magnetic fields — solar wind — turbulence — waves 1. INTRODUCTION is expressed by the form of u in the distribution function. In The solar wind moves supersonically beyond a few solar Tsallis statistical mechanics, the probability that a system is in a state with energy u is proportional toexp (Ϫ u) .
    [Show full text]
  • Arxiv:1707.03526V1 [Cond-Mat.Stat-Mech] 12 Jul 2017 Eq
    Generalized Ensemble Theory with Non-extensive Statistics Ke-Ming Shen,∗ Ben-Wei Zhang,y and En-Ke Wang Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China (Dated: October 17, 2018) The non-extensive canonical ensemble theory is reconsidered with the method of Lagrange multipliers by maximizing Tsallis entropy, with the constraint that the normalized term of P q Tsallis' q−average of physical quantities, the sum pj , is independent of the probability pi for Tsallis parameter q. The self-referential problem in the deduced probability and thermal quantities in non-extensive statistics is thus avoided, and thermodynamical relationships are obtained in a consistent and natural way. We also extend the study to the non-extensive grand canonical ensemble theory and obtain the q-deformed Bose-Einstein distribution as well as the q-deformed Fermi-Dirac distribution. The theory is further applied to the general- ized Planck law to demonstrate the distinct behaviors of the various generalized q-distribution functions discussed in literature. I. INTRODUCTION In the last thirty years the non-extensive statistical mechanics, based on Tsallis entropy [1,2] and the corresponding deformed exponential function, has been developed and attracted a lot of attentions with a large amount of applications in rather diversified fields [3]. Tsallis non- extensive statistical mechanics is a generalization of the common Boltzmann-Gibbs (BG) statistical PW mechanics by postulating a generalized entropy of the classical one, S = −k i=1 pi ln pi: W X q Sq = −k pi lnq pi ; (1) i=1 where k is a positive constant and denotes Boltzmann constant in BG statistical mechanics.
    [Show full text]
  • Conceptual Inadequacy of the Shore and Johnson Axioms for Wide Classes of Complex Systems
    Entropy 2015, 17, 2853-2861; doi:10.3390/e17052853 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Conceptual Inadequacy of the Shore and Johnson Axioms for Wide Classes of Complex Systems Constantino Tsallis 1;2 1 Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro - RJ, Brazil; E-Mail: [email protected] 2 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, NM, USA Academic Editor: Antonio M. Scarfone Received: 9 April 2015 / Accepted: 4 May 2015 / Published: 5 May 2015 Abstract: It is by now well known that the Boltzmann-Gibbs-von Neumann-Shannon logarithmic entropic functional (SBG) is inadequate for wide classes of strongly correlated systems: see for instance the 2001 Brukner and Zeilinger’s Conceptual inadequacy of the Shannon information in quantum measurements, among many other systems exhibiting various forms of complexity. On the other hand, the Shannon and Khinchin axioms uniquely P mandate the BG form SBG = −k i pi ln pi; the Shore and Johnson axioms follow the same path. Many natural, artificial and social systems have been satisfactorily approached P q 1− i pi with nonadditive entropies such as the Sq = k q−1 one (q 2 R; S1 = SBG), basis of nonextensive statistical mechanics. Consistently, the Shannon 1948 and Khinchine 1953 uniqueness theorems have already been generalized in the literature, by Santos 1997 and Abe 2000 respectively, in order to uniquely mandate Sq. We argue here that the same remains to be done with the Shore and Johnson 1980 axioms.
    [Show full text]
  • Beyond Behavioural Economics
    Beyond Behavioural Economics A Process Realist Perspective Mathematics of Behavioural Economics and Finance James Juniper November, 2015 Ultimate scientific explanation is attractive and important, but financial engineering cannot wait for full explanation. That is, it is legitimate to strive towards a second best: a “descriptive phenomenology” that is organized tightly enough to bring a degree of order and understanding. Benoit B. Mandelbrot (1997) Overview • Keynes on DM under uncertainty & role of conventions • Ontological considerations • Objective not just subjective • Applications: • Bounded sub-additivity (Tversky & Wakker) • Equivalent approach—fuzzy measure theory (approximation algebras) • Concept lattices and “framing” • Tsallis arithmetic: q-generalized binomial approximation […] civilization is a thin and precarious crust erected by the personality and will of a very few and only maintained by rules and conventions skillfully put across and guilefully preserved” (Keynes, X: 447) The “love of money as a possession” is a “somewhat disgusting morbidity, one of those semi-criminal, semi-pathological propensities which one hands over with a shudder to the specialists in mental disease (IX: 329) For we shall enquire more curiously than is safe today into the true character of this ‘purposiveness’ with which in varying degrees Nature has endowed almost all of us. For purposiveness means that we are more concerned with the remote future results of our actions than with their own quality or their immediate effects on the environment. The ‘purposive’ man is always trying to secure a spurious and delusive immortality for his acts by pushing his interest in them forward into time. He does not love his cat, but his cat’s kittens; nor, in truth, the kittens, but only the kittens’ kittens, and so on forward to the end of catdom.
    [Show full text]
  • Nanothermodynamics – a Generic Approach to Material Properties at Nanoscale
    Nanothermodynamics – A generic approach to material properties at nanoscale A. K. Rajagopal (1) , C. S. Pande (1) , and Sumiyoshi Abe (2) (1) Naval Research Laboratory, Washington D.C., 20375, USA (2) Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan ABSTRACT Granular and nanoscale materials containing a relatively small number of constituents have been studied to discover how their properties differ from their macroscopic counterparts. These studies are designed to test how far the known macroscopic approaches such as thermodynamics may be applicable in these cases. A brief review of the recent literature on these topics is given as a motivation to introduce a generic approach called “Nanothermodynamics”. An important feature that must be incorporated into the theory is the non-additive property because of the importance of ‘surface’ contributions to the Physics of these systems. This is achieved by incorporating fluctuations into the theory right from the start. There are currently two approaches to incorporate this property: Hill (and further elaborated more recently with Chamberlin) initiated an approach by modifying the thermodynamic relations by taking into account the surface effects; the other generalizes Boltzmann-Gibbs statistical mechanics by relaxing the additivity properties of thermodynamic quantities to include nonextensive features of such systems. An outline of this generalization of the macroscopic thermodynamics to nano-systems will be given here. Invited presentation at the Indo-US Workshop on “Nanoscale
    [Show full text]
  • [Cond-Mat.Stat-Mech] 3 Sep 2004 H Ee Om Esalte S Tt E H Specific the Get to It Use Then and Shall Tsallis We for Simple Temperature Form
    Generalized Entropies and Statistical Mechanics Fariel Shafee Department of Physics Princeton University Princeton, NJ 08540 USA.∗ We consider the problem of defining free energy and other thermodynamic functions when the entropy is given as a general function of the probability distribution, including that for nonextensive forms. We find that the free energy, which is central to the determination of all other quantities, can be obtained uniquely numerically even when it is the root of a transcendental equation. In particular we study the cases of the Tsallis form and a new form proposed by us recently. We compare the free energy, the internal energy and the specific heat of a simple system of two energy states for each of these forms. PACS numbers: 05.70.-a, 05.90 +m, 89.90.+n Keywords: entropy, nonextensive, probability distribution function, free energy, specific heat I. INTRODUCTION heat in both cases and see how it changes with the change of the parameter at different temperatures. We have recently [1] proposed a new form of nonex- tensive entropy which depends on a parameter similar II. ENTROPY AND PDF to Tsallis entropy [2, 3, 4], and in a similar limit ap- proaches Shannon’s classical extensive entropy. We have shown how the definition for this new form of entropy can The pdf is found by optimizing the function arise naturally in terms of mixing of states in a phase cell when the cell is re-scaled, the parameter being a measure L = S + α(1 − pi)+ β(U − piEi) (1) of the rescaling, and how Shannon’s coding theorem [5] Xi Xi elucidates such an approach.
    [Show full text]
  • Fractal Structure and Non-Extensive Statistics
    entropy Article Fractal Structure and Non-Extensive Statistics Airton Deppman 1,* ID , Tobias Frederico 2, Eugenio Megías 3,4 and Debora P. Menezes 5 1 Instituto de Física, Universidade de São Paulo, Rua do Matão Travessa R Nr.187, Cidade Universitária, CEP 05508-090 São Paulo, Brazil 2 Instituto Tecnológico da Aeronáutica, 12228-900 São José dos Campos, Brazil; [email protected] 3 Departamento de Física Teórica, Universidad del País Vasco UPV/EHU, Apartado 644, 48080 Bilbao, Spain; [email protected] 4 Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Avenida de Fuente Nueva s/n, 18071 Granada, Spain 5 Departamento de Física, CFM, Universidade Federal de Santa Catarina, CP 476, CEP 88040-900 Florianópolis, Brazil; [email protected] * Correspondence: [email protected] Received: 27 June 2018; Accepted: 19 August 2018; Published: 24 August 2018 Abstract: The role played by non-extensive thermodynamics in physical systems has been under intense debate for the last decades. With many applications in several areas, the Tsallis statistics have been discussed in detail in many works and triggered an interesting discussion on the most deep meaning of entropy and its role in complex systems. Some possible mechanisms that could give rise to non-extensive statistics have been formulated over the last several years, in particular a fractal structure in thermodynamic functions was recently proposed as a possible origin for non-extensive statistics in physical systems. In the present work, we investigate the properties of such fractal thermodynamical system and propose a diagrammatic method for calculations of relevant quantities related to such a system.
    [Show full text]
  • Thermodynamics from First Principles: Correlations and Nonextensivity
    Thermodynamics from first principles: correlations and nonextensivity S. N. Saadatmand,1, ∗ Tim Gould,2 E. G. Cavalcanti,3 and J. A. Vaccaro1 1Centre for Quantum Dynamics, Griffith University, Nathan, QLD 4111, Australia. 2Qld Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia. 3Centre for Quantum Dynamics, Griffith University, Gold Coast, QLD 4222, Australia. (Dated: March 17, 2020) The standard formulation of thermostatistics, being based on the Boltzmann-Gibbs distribution and logarithmic Shannon entropy, describes idealized uncorrelated systems with extensive energies and short-range interactions. In this letter, we use the fundamental principles of ergodicity (via Liouville's theorem), the self-similarity of correlations, and the existence of the thermodynamic limit to derive generalized forms of the equilibrium distribution for long-range-interacting systems. Significantly, our formalism provides a justification for the well-studied nonextensive thermostatistics characterized by the Tsallis distribution, which it includes as a special case. We also give the complementary maximum entropy derivation of the same distributions by constrained maximization of the Boltzmann-Gibbs-Shannon entropy. The consistency between the ergodic and maximum entropy approaches clarifies the use of the latter in the study of correlations and nonextensive thermodynamics. Introduction. The ability to describe the statistical tion [30] or the structure of the microstates [27]. Another state of a macroscopic system is central to many ar- widely-used approach is to generalize the MaxEnt prin- eas of physics [1{4]. In thermostatistics, the statistical ciple to apply to a different entropy functional in place of BGS state of a system of N particles in equilibrium is de- S (fwzg).
    [Show full text]
  • Finite Size Analysis of a Two-Dimensional Ising Model Within
    Finite size analysis of a two-dimensional Ising model within a nonextensive approach N. Crokidakis,1, ∗ D.O. Soares-Pinto,2, † M.S. Reis,3 A.M. Souza,4 R.S. Sarthour,2 and I.S. Oliveira2 1Instituto de F´ısica - Universidade Federal Fluminense, Av. Litorˆanea s/n, 24210-340 Niter´oi - RJ, Brazil. 2Centro Brasileiro de Pesquisas F´ısicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro - RJ, Brazil. 3CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal. 4Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada. (Dated: June 26, 2018) In this work we present a thorough analysis of the phase transitions that occur in a ferromagnetic 2D Ising model, with only nearest-neighbors interactions, in the framework of the Tsallis nonextensive statistics. We performed Monte Carlo simulations on square lattices with linear sizes L ranging from 32 up to 512. The statistical weight of the Metropolis algorithm was changed according to the nonextensive statistics. Discontinuities in the m(T) curve are observed for q ≤ 0.5. However, we have verified only one peak on the energy histograms at the critical temperatures, indicating the occurrence of continuous phase transitions. For the 0.5 < q ≤ 1.0 regime, we have found continuous phase transitions between the ordered and the disordered phases, and determined the critical exponents via finite-size scaling. We verified that the critical exponents α, β and γ depend 2 on the entropic index q in the range 0.5 < q ≤ 1.0 in the form α(q) = (10 q − 33 q + 23)/20, β(q) = (2 q − 1)/8 and γ(q)=(q2 − q + 7)/4.
    [Show full text]
  • A Maximum Entropy Framework for Nonexponential Distributions
    A maximum entropy framework for nonexponential distributions Jack Petersona,b, Purushottam D. Dixitc, and Ken A. Dillb,1 aDepartment of Mathematics, Oregon State University, Corvallis, OR 97331; bLaufer Center for Physical and Quantitative Biology, Departments of Physics and Chemistry, State University of New York, Stony Brook, NY 11794; and cDepartment of Systems Biology, Columbia University, New York, NY 10032 Contributed by Ken A. Dill, November 7, 2013 (sent for review June 26, 2013) P Probability distributions having power-law tails are observed in functional S½fpkg = − kpklog pk subject to constraints, such as a broad range of social, economic, and biological systems. We the known value of the average energy hEi. This procedure gives −βE describe here a potentially useful common framework. We derive the exponential (Boltzmann) distribution, pk ∝ e k ,whereβ distribution functions {pk} for situations in which a “joiner particle” is the Lagrange multiplier that enforces the constraint. This var- k pays some form of price to enter a community of size k − 1, where iational principle has been the subject of various historical justifi- costs are subject to economies of scale. Maximizing the Boltzmann– cations. It is now commonly understood as the approach that Gibbs–Shannon entropy subject to this energy-like constraint chooses the least-biased model that is consistent with the known predicts a distribution having a power-law tail; it reduces to the constraint(s) (39). Boltzmann distribution in the absence of economies of scale. We Is there an equally compelling principle that would select fat- show that the predicted function gives excellent fits to 13 different tailed distributions, given limited information? There is a large distribution functions, ranging from friendship links in social net- literature that explores this.
    [Show full text]
  • The Role of Entropy in the Development of Economics
    entropy Article The Role of Entropy in the Development of Economics Aleksander Jakimowicz Department of World Economy, Institute of Economics, Polish Academy of Sciences, Palace of Culture and Science, 1 Defilad Sq., 00-901 Warsaw, Poland; [email protected] Received: 25 February 2020; Accepted: 13 April 2020; Published: 16 April 2020 Abstract: The aim of this paper is to examine the role of thermodynamics, and in particular, entropy, for the development of economics within the last 150 years. The use of entropy has not only led to a significant increase in economic knowledge, but also to the emergence of such scientific disciplines as econophysics, complexity economics and quantum economics. Nowadays, an interesting phenomenon can be observed; namely, that rapid progress in economics is being made outside the mainstream. The first significant achievement was the emergence of entropy economics in the early 1970s, which introduced the second law of thermodynamics to considerations regarding production processes. In this way, not only was ecological economics born but also an entropy-based econometric approach developed. This paper shows that non-extensive cross-entropy econometrics is a valuable complement to traditional econometrics as it explains phenomena based on power-law probability distribution and enables econometric model estimation for non-ergodic ill-behaved (troublesome) inverse problems. Furthermore, the entropy economics has accelerated the emergence of modern econophysics and complexity economics. These new directions of research have led to many interesting discoveries that usually contradict the claims of conventional economics. Econophysics has questioned the efficient market hypothesis, while complexity economics has shown that markets and economies function best near the edge of chaos.
    [Show full text]