Optimization of Electrolysis Parameters for Green Sanitation Chemicals Production Using Response Surface Methodology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
History of the Chlor-Alkali Industry
2 History of the Chlor-Alkali Industry During the last half of the 19th century, chlorine, used almost exclusively in the textile and paper industry, was made [1] by reacting manganese dioxide with hydrochloric acid 100–110◦C MnO2 + 4HCl −−−−−−→ MnCl2 + Cl2 + 2H2O (1) Recycling of manganese improved the overall process economics, and the process became known as the Weldon process [2]. In the 1860s, the Deacon process, which generated chlorine by direct catalytic oxidation of hydrochloric acid with air according to Eq. (2) was developed [3]. ◦ 450–460 C;CuCl2 cat. 4HCl + O2(air) −−−−−−−−−−−−−−→ 2Cl2 + 2H2O(2) The HCl required for reactions (1) and (2) was available from the manufacture of soda ash by the LeBlanc process [4,5]. H2SO4 + 2NaCl → Na2SO4 + 2HCl (3) Na2SO4 + CaCO3 + 2C → Na2CO3 + CaS + 2CO2 (4) Utilization of HCl from reaction (3) eliminated the major water and air pollution problems of the LeBlanc process and allowed the generation of chlorine. By 1900, the Weldon and Deacon processes generated enough chlorine for the production of about 150,000 tons per year of bleaching powder in England alone [6]. An important discovery during this period was the fact that steel is immune to attack by dry chlorine [7]. This permitted the first commercial production and distribu- tion of dry liquid chlorine by Badische Anilin-und-Soda Fabrik (BASF) of Germany in 1888 [8,9]. This technology, using H2SO4 for drying followed by compression of the gas and condensation by cooling, is much the same as is currently practiced. 17 “chap02” — 2005/5/2 — 09Brie:49 — page 17 — #1 18 CHAPTER 2 In the latter part of the 19th century, the Solvay process for caustic soda began to replace the LeBlanc process. -
Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Chlor-Alkali Manufacturing Industry December 2001
EUROPEAN COMMISSION Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Chlor-Alkali Manufacturing industry December 2001 Executive summary EXECUTIVE SUMMARY This reference document on best available techniques in the chlor-alkali industry reflects an information exchange carried out according to Article 16(2) of Council Directive 96/61/EC. The document has to be seen in the light of the preface which describes the objectives of the document and its use. The chlor-alkali industry The chlor-alkali industry is the industry that produces chlorine (Cl2) and alkali, sodium hydroxide (NaOH) or potassium hydroxide (KOH), by electrolysis of a salt solution. The main technologies applied for chlor-alkali production are mercury, diaphragm and membrane cell electrolysis, mainly using sodium chloride (NaCl) as feed or to a lesser extent using potassium chloride (KCl) for the production of potassium hydroxide. The diaphragm cell process (Griesheim cell, 1885) and the mercury cell process (Castner- Kellner cell, 1892) were both introduced in the late 1800s. The membrane cell process was developed much more recently (1970). Each of these processes represents a different method of keeping the chlorine produced at the anode separate from the caustic soda and hydrogen produced, directly or indirectly, at the cathode. Currently, 95% of world chlorine production is obtained by the chlor-alkali process. The geographic distribution of chlor-alkali processes world-wide differs appreciably (production capacity of chlorine): - western Europe, predominance of mercury cell process (June 2000): 55% - United States, predominance of diaphragm cell process: 75% - Japan, predominance of membrane cell process: >90% The remaining chlorine production capacity in western Europe consists of (June 2000) diaphragm cell process 22%, membrane cell process 20% and other processes 3%. -
Environmental Protection Agency
Friday, December 19, 2003 Part II Environmental Protection Agency 40 CFR Part 63 National Emission Standards for Hazardous Air Pollutants: Mercury Emissions from Mercury Cell Chlor-Alkali Plants; Final Rule VerDate jul<14>2003 15:14 Dec 18, 2003 Jkt 203001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\19DER2.SGM 19DER2 70904 Federal Register / Vol. 68, No. 244 / Friday, December 19, 2003 / Rules and Regulations ENVIRONMENTAL PROTECTION types of sources (usually in the Information or other information whose AGENCY elemental or inorganic forms) transports disclosure is restricted by statute. through the atmosphere and eventually The official public docket is the 40 CFR Part 63 deposits onto land or water bodies. collection of materials that is available [OAR–2002–0017; FRL–7551–5] When mercury is deposited to surface for public viewing. The EPA Docket waters, natural processes (bacterial) can RIN 2060–AE85 Center Public Reading Room is open transform some of the mercury into from 8:30 a.m. to 4:30 p.m., Monday methylmercury that accumulates in fish. through Friday, excluding legal National Emission Standards for Ingestion is the primary exposure route Hazardous Air Pollutants: Mercury holidays. The telephone number for the of interest for methylmercury. The Reading Room is (202) 566–1744, and Emissions From Mercury Cell Chlor- health effect of greatest concern due to Alkali Plants the telephone number for the Air Docket methylmercury is neurotoxicity, is (202) 566–1742. AGENCY: Environmental Protection particularly with respect to fetuses and Agency (EPA). young children. Electronic Docket Access. You may access the final rule electronically ACTION: Final rule. -
Full Agreement
CONSULTATIONS AND WORKSHOPS Benefits and Risks of the Use of Chlorine-containing Disinfectants in Food Production and Food Processing Report of a Joint FAO/WHO Expert Meeting Ann Arbor, MI, USA, 27–30 May 2008 Use of Chlorine-containing Disinfectants in Food Production and Food Processing WHO Library Cataloguing-in-Publication Data Benefits and risks of the use of chlorine-containing disinfectants in food production and food processing: report of a joint FAO/WHO expert meeting, Ann Arbor, MI, USA, 27–30 May 2008. 1.Food contamination. 2.Chlorine - toxicity. 3.Disinfectants - toxicity. 4.Disinfection - utilization. 5.Food hygiene - standards. 6.Risk assessment. I.World Health Organization. II.Food and Agriculture Organization of the United Nations. ISBN 978 92 4 159894 1 (NLM classification: WA 701) ISBN 978 92 5 106476 4 © FAO and WHO 2009 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) or of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Chlor-Alkali Manufact
EUROPEAN COMMISSION Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Chlor-Alkali Manufacturing Industry December 2001 i EXECUTIVE SUMMARY This reference document on best available techniques in the chlor-alkali industry reflects an information exchange carried out according to Article 16(2) of Council Directive 96/61/EC. The document has to be seen in the light of the preface which describes the objectives of the document and its use. The chlor-alkali industry The chlor-alkali industry is the industry that produces chlorine (Cl2) and alkali, sodium hydroxide (NaOH) or potassium hydroxide (KOH), by electrolysis of a salt solution. The main technologies applied for chlor-alkali production are mercury, diaphragm and membrane cell electrolysis, mainly using sodium chloride (NaCl) as feed or to a lesser extent using potassium chloride (KCl) for the production of potassium hydroxide. The diaphragm cell process (Griesheim cell, 1885) and the mercury cell process (Castner- Kellner cell, 1892) were both introduced in the late 1800s. The membrane cell process was developed much more recently (1970). Each of these processes represents a different method of keeping the chlorine produced at the anode separate from the caustic soda and hydrogen produced, directly or indirectly, at the cathode. Currently, 95% of world chlorine production is obtained by the chlor-alkali process. The geographic distribution of chlor-alkali processes world-wide differs appreciably (production capacity of chlorine): - western Europe, predominance of mercury cell process (June 2000): 55% - United States, predominance of diaphragm cell process: 75% - Japan, predominance of membrane cell process: >90% The remaining chlorine production capacity in western Europe consists of (June 2000) diaphragm cell process 22%, membrane cell process 20% and other processes 3%. -
Electrolysed Oxidising Water
Electrolysed Oxidising Water TECHNOLOGY SUMMARY Status An emerging technology Location Pre- or post-slaughter Intervention type Surface treatment of hide or warm carcase Treatment time 15-30 seconds Regulations Approved in US and considered safe in Japan and Australia, but awaiting full approval. Not approved for the EU for carcass washing, but approved for treatment of drinking water. Approved for water treatment and equipment sanitising in New Zealand Effectiveness 1.5-3 log reduction Likely cost Packaged units range from AU$20,000 to AU$75,000 Value for money Substantially cheaper than other treatments (e.g., organic acid chemicals are more expensive than salt). However, even though salt would be cheaper, the equipment costs would be similar to any surface treatment equipment Plant or process Minimal change; can use existing plumbing. Space may be changes required for a spray cabinet treatment area if none existing Environmental impact Environmentally friendly solution, may in fact improve quality of effluent Energy would be required to produce the current OH&S Solution is harmless, unit is fully enclosed so little safety issue from electric current generated as part of process Advantages Salt is the only chemical used Little corrosion of stainless steel and carbon steel when using EO water Disadvantages or Need a spray cabinet to apply treatment to carcases limitations Depending on the pressure of application, there may be issues with water penetration into the fat surfaces Page 1 of 4 Disclaimer Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. -
Mercury Fact Sheet
National Mercury Testing Program The Rise of Mercury Pollution its way into our lakes and rivers. Once in the water, toxic mercury is absorbed through the fat and muscle tissue of There is growing concern and scientific evidence that many animals like fish. Americans are being exposed to harmful levels of mercury pollution. However, the Bush administration is failing to Most people are exposed to mercury by consuming the polluted protect Americans from this dangerous toxin. Instead, the fish. As a result, federal and state governments warn people to administration has proposed to delay for 10 to 20 years and limit the consumption of certain species of fish and fish caught weaken the first national law that would clean up mercury from in waters that are contaminated with mercury. power plants, the single largest source of mercury in the country. This is in stark contrast from what was originally People that work in industries that regularly handle mercury proposed and what is achievable now, even by the (dentistry, thermometer production) or deal with high level of Environmental Protection Agencys own previous analysis: a mercury emissions (electricity generation primarily through coal, chlorine production through chlor-akali facilities, 90 percent reduction in mercury pollution by 2008. insecticides, etc.) are also at an increased risk for exposure to mercury pollution. What is Mercury and Who is Affected by Mercury Pollution? The Food and Drug Administration is charged with the protection of the public from mercury in store-bought fish. Mercury is a neurotoxin that is most often seen as a by-product Unfortunately their recommendations are vague and provide from industrial processes like power plants, incinerators and insufficient information to the public. -
Eco Profile on Chlorine
An Eco-profile and Environmental Product Declaration of the European Chlor-Alkali Industry Chlorine (The chlor-alkali process) Euro Chlor September 2013 - Synthesis 1 Introduction Allocation method Stoichiometric allocation for Salt, mass allocation for all other input This Environmental Product Declaration (EPD) is and emissions. Sensitivity analysis based upon life cycle inventory (LCI) data from for other allocation methods was performed. Euro Chlor’s member companies. It has been prepared according to the rules of Description of the Product and the PlasticsEurope’s LCI Methodology “Eco-profiles Production Process and Environmental Declarations” (version 2.0, This Eco-profile and EPD represents the European April 2011). EPDs provide environmental average industrial production of chlorine, sodium performance data, but no information on the hydroxide, hydrogen, and sodium hypochlorite by economic and social aspects, which would be chlor-alkali electrolysis from cradle to gate. necessary for a complete sustainability assessment. Further, they do not imply a value Production Process judgment between environmental criteria. Salt (NaCl) recovered from various sources (rock This EPD describes the production of chlorine by salt, solar salt, solution-mined brine, vacuum chlor-alkali electrolysis from cradle to gate (from salt) is dissolved in water and the resulting brine production of salt/brine to liquid chlorine, is purified and fed to the electrolysis unit where sodium hydroxide, and hypochlorite at plant). the brine is electrochemically decomposed into Please keep in mind that comparisons cannot chlorine, hydrogen, and sodium hydroxide. Three be made on the level of the chemicals alone: it different electrolysis techniques are applied: is necessary to consider the full life cycle of an mercury, diaphragm, and membrane cell application in order to compare the performance technology. -
Expert Group for Technical Advice on Organic Production EGTOP Final
EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR AGRICULTURE AND RURAL DEVELOPMENT Directorate B. Multilateral relations, quality policy B.4. Organics Estratto delle pag 42,43 e 44: Expert Group for Technical Advice on Organic Production EGTOP Final Report on Cleaning and Disinfection The EGTOP adopted this technical advice at the 12th plenary meeting of 14 – 15 • calcium magnesium carbonate (dolomite) [no restriction proposed] • cleaning products which do not contain active disinfectant substances • Ecolabelled (at least to EU standard) cleaning products 1.2 List of substances for cleaning and disinfection, which may be used for limited purposes indicated here (only if other substances listed in chapter 2.1 of this Annex cannot be used): • iodophors (only in the presence of eggs) • cleaning products which are not ecolabelled, only if there are no suitable ecolabelled products 2. Products for use in aquaculture, only in the absence of animals 2.1 Basic list of substances for cleaning and disinfection, which may be used for all purposes authorised under general legislation: • ethanol, propan-2-ol (alcohols) • sodium hydroxide (caustic soda), calcium hydroxide (slaked lime) • calcium oxide (quicklime) • sodium hypochlorite (bleach), calcium hypochlorite, mixtures of potassium peroxomonosulphate and sodium chloride producing hypochlorous acid • ozone • cleaning products which do not contain active disinfectant substances • Ecolabelled (at least to EU standard) cleaning products 2.2 List of substances for cleaning and disinfection, which may be -
Effects of Treatment with Electrolyzed Oxidizing Water on Postharvest
agriculture Article Effects of Treatment with Electrolyzed Oxidizing Water on Postharvest Diseases of Avocado Md Kamrul Hassan 1,2 and Elizabeth Dann 1,* 1 Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 2CW Ecosciences Precinct, Dutton Park, Brisbane QLD 4102, Australia; [email protected] 2 Department of Horticulture, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh * Correspondence: [email protected] Received: 14 October 2019; Accepted: 29 October 2019; Published: 11 November 2019 Abstract: The present study comprised five trials to investigate the efficacy of postharvest treatment with electrolyzed oxidizing (EO) water on postharvest disease development in avocado. Mature (dry matter 24–34%), hard green fruit cv. Hass (four trials), and cv. Wurtz (one trial) from orchards receiving minimal fungicide sprays were sourced, and subsequently dipped for 30 s in treatment solutions. Fruit were ripened at 23 ◦C and 65% relative humidity to encourage postharvest disease development, and assessed when ripe for anthracnose and stem end rot (SER), arising from natural field infections and/or the size of lesions resulting from post-treatment inoculation with Colletotrichum siamense. In the case of natural infection, EO water treatment reduced severity of SER disease by 30–75% compared with water treated control fruit in all four trials where it was assessed. Reduction in severity of SER after Graduate A+ fungicide or hypochlorite (NaOCl) bleach treatment ranged from 60–88% or 25–50%, respectively, compared with water controls. Under extremely high anthracnose disease pressure, 20% v/v EO water, NaOCl, as well as Graduate A+ fungicide treatments were mostly ineffective. -
Mercury Use: Chemical Manufacturers/Users
210 DRAFT WISCONSIN MERCURY SOURCEBOOK: CHEMICAL ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ MERCURY USE: Table of Contents About This Handout ........................... 211 CHEMICAL Why Should I Be Concerned About Mercury? ............................................. 212 MANUFACTURERS/USERS Keeping Mercury Out of Wastewater . 214 Sewer Pipes ......................................... 214 Mercury compounds are used in a wide variety of settings by chemical Mercury-Containing Compounds ...... 214 Work by the MPCA ............................. 214 manufacturers. Chemical uses of mercury may occur in catalysts, Mercury-Containing Chemicals and cosmetics, explosives, fireworks, livestock and poultry remedies, Alternatives ......................................... 215 packaging, pharmaceuticals, pigments and dyes, poisons, preservatives, Work by The Massachusetts Water Resources Authority ............................ 215 and special paper coatings. Commonly used mercury compounds include Results from 75 Priority Samples ...... 216 mercuric oxide (cathode material in batteries), mercuric chloride Caustic Soda ....................................... 217 (pharmaceuticals), phenylmercuric acetate (used in paints and Case study: Potlatch Corporation ..... 219 pharmaceuticals) mercuric sulfide (used in red pigment and other Action Ideas to Consider .................... 220 pharmaceuticals), and thimerosal (contact lens solutions) [ross and Bibliography ....................................... 220 associates]. Most of the mercury- containing -
1.6-MB PDF File
The Materials Flow of Mercury in the Economies of the United States and the World By John L. Sznopek and Thomas G. Goonan U.S. Geological Survey Circular 1197 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Bruce Babbitt, Secretary U.S. Geological Survey Charles G. Groat, Director Version 1.0 This report is only available on line at http://greenwood. cr.usgs.gov/pub/circulars/c1197/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government . Published in the Central Region, Denver Colorado Manuscript approved for publication June 14, 2000 Edited by Lorna Carter Photo composition by William E. Sowers Graphics by William E. Sowers Contents Abstract ................................................................................................................................................ 1 Introduction .......................................................................................................................................... 1 Acknowledgments .............................................................................................................................. 3 Mercury Flow Analysis........................................................................................................................ 3 Domestic ...................................................................................................................................... 3 Emissions to the Environment ........................................................................................