Alteration of the MYB Locus in MYST3-Linked Cases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microglia Emerge from Erythromyeloid Precursors Via Pu.1- and Irf8-Dependent Pathways
ART ic LE S Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways Katrin Kierdorf1,2, Daniel Erny1, Tobias Goldmann1, Victor Sander1, Christian Schulz3,4, Elisa Gomez Perdiguero3,4, Peter Wieghofer1,2, Annette Heinrich5, Pia Riemke6, Christoph Hölscher7,8, Dominik N Müller9, Bruno Luckow10, Thomas Brocker11, Katharina Debowski12, Günter Fritz1, Ghislain Opdenakker13, Andreas Diefenbach14, Knut Biber5,15, Mathias Heikenwalder16, Frederic Geissmann3,4, Frank Rosenbauer6 & Marco Prinz1,17 Microglia are crucial for immune responses in the brain. Although their origin from the yolk sac has been recognized for some time, their precise precursors and the transcription program that is used are not known. We found that mouse microglia were derived from primitive c-kit+ erythromyeloid precursors that were detected in the yolk sac as early as 8 d post conception. + lo − + − + These precursors developed into CD45 c-kit CX3CR1 immature (A1) cells and matured into CD45 c-kit CX3CR1 (A2) cells, as evidenced by the downregulation of CD31 and concomitant upregulation of F4/80 and macrophage colony stimulating factor receptor (MCSF-R). Proliferating A2 cells became microglia and invaded the developing brain using specific matrix metalloproteinases. Notably, microgliogenesis was not only dependent on the transcription factor Pu.1 (also known as Sfpi), but also required Irf8, which was vital for the development of the A2 population, whereas Myb, Id2, Batf3 and Klf4 were not required. Our data provide cellular and molecular insights into the origin and development of microglia. Microglia are the tissue macrophages of the brain and scavenge dying have the ability to give rise to microglia and macrophages in vitro cells, pathogens and molecules using pattern recognition receptors and in vivo under defined conditions. -
The Transcription Factors C-Myb and GATA-2 Act Independently in The
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 5313-5318, May 1996 Medical Sciences The transcription factors c-myb and GATA-2 act independently in the regulation of normal hematopoiesis PAOLA MELOTrl AND BRUNO CALABRETTA Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107 Communicated by Sidney Weinhouse, Thomas Jefferson University, Philadelphia, PA, January 23, 1996 (received for review, October 20, 1995) ABSTRACT The transcription factors c-myb and GATA-2 erythromyeloid differentiation (7). This process appears to are both required for blood cell development in vivo and in rest in the ability of c-myb to activate the expression of vitro. However, very little is known on their mechanism(s) of hematopoiesis-specific targets such as c-kit,flt-3, GATA-1, and action and whether they impact on complementary or over- CD34, but not GATA-2 (7). The induction of c-kit and flt-3 lapping pathways of hematopoietic proliferation and differ- expression and the dependence of c-myb-transfected ES cells entiation. We report here that embryonic stem (ES) cells on the expression of these cytokine receptors for their prolif- transfected with c-myb or GATA-2 cDNAs, individually or in eration (7) strongly suggest that the up-regulation of growth combination, underwent hematopoietic commitment and dif- factor receptor levels is of fundamental importance for the ferentiation in the absence of added hematopoietic growth expansion of progenitor cells. In turn, such a process is factors but that stimulation with c-kit and flt-3 ligands en- probably a requirement for completion of the differentiation hanced colony formation only in the c-myb transfectants. -
Cells Transformed by a V-Myb-Estrogen Receptor Fusion Differentiate Into Multinucleated Giant Cells
JOURNAL OF VIROLOGY, May 1997, p. 3760–3766 Vol. 71, No. 5 0022-538X/97/$04.0010 Copyright q 1997, American Society for Microbiology Cells Transformed by a v-Myb-Estrogen Receptor Fusion Differentiate into Multinucleated Giant Cells UTE ENGELKE, DUEN-MEI WANG, AND JOSEPH S. LIPSICK* Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324 Received 22 October 1996/Accepted 29 January 1997 In order to make conditional alleles of the v-myb oncogene, we constructed and tested avian retroviruses which produce a number of different fusion proteins between v-Myb and the human estrogen receptor (ER). We found that the portion of the ER used in making these fusions profoundly affected their transcriptional activation. However, all the fusions tested were only weakly transforming in embryonic yolk sac assays and there was no direct correlation between the level of transcriptional activation and strength of oncogenic transformation. Nevertheless, transformation by a v-Myb-ER fusion was estrogen dependent, and upon with- drawal of the hormone, monocytic-lineage cells differentiated into multinucleated giant cells. Surprisingly, the withdrawal of estrogen caused a dramatic increase in the stability of the fusion protein, although it remained unable to promote cell growth or block differentiation. Conditional alleles of retroviral oncogenes have provided genes, have been isolated and analyzed in considerable detail powerful tools with which to dissect the mechanism of onco- (3, 4). A differential cDNA screen has identified a target gene, genic transformation and the biology of transformed cells (17, mim-1, which is directly activated by the Gag-Myb-Ets protein 29). -
A Flexible Microfluidic System for Single-Cell Transcriptome Profiling
www.nature.com/scientificreports OPEN A fexible microfuidic system for single‑cell transcriptome profling elucidates phased transcriptional regulators of cell cycle Karen Davey1,7, Daniel Wong2,7, Filip Konopacki2, Eugene Kwa1, Tony Ly3, Heike Fiegler2 & Christopher R. Sibley 1,4,5,6* Single cell transcriptome profling has emerged as a breakthrough technology for the high‑resolution understanding of complex cellular systems. Here we report a fexible, cost‑efective and user‑ friendly droplet‑based microfuidics system, called the Nadia Instrument, that can allow 3′ mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure‑based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efciencies that compare favorably in the feld. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of diferent bufers and barcoded bead confgurations to facilitate diverse applications. Finally, by 3′ mRNA profling asynchronous human and mouse cells at diferent phases of the cell cycle, we demonstrate the system’s ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and fexible technology for future transcriptomic studies, and other related applications, at cell resolution. Single cell transcriptome profling has recently emerged as a breakthrough technology for understanding how cellular heterogeneity contributes to complex biological systems. Indeed, cultured cells, microorganisms, biopsies, blood and other tissues can be rapidly profled for quantifcation of gene expression at cell resolution. -
Inflammatory Cytokine Signalling by Protein Tyrosine Phosphatases in Pancreatic Β-Cells
59 4 W J STANLEY and others PTPN1 and PTPN6 modulate 59: 4 325–337 Research cytokine signalling in β-cells Differential regulation of pro- inflammatory cytokine signalling by protein tyrosine phosphatases in pancreatic β-cells William J Stanley1,2, Prerak M Trivedi1,2, Andrew P Sutherland1, Helen E Thomas1,2 and Esteban N Gurzov1,2,3 Correspondence should be addressed 1 St. Vincent’s Institute of Medical Research, Melbourne, Australia to E N Gurzov 2 Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Melbourne, Australia Email 3 ULB Center for Diabetes Research, Universite Libre de Bruxelles (ULB), Brussels, Belgium esteban.gurzov@unimelb. edu.au Abstract Type 1 diabetes (T1D) is characterized by the destruction of insulin-producing β-cells Key Words by immune cells in the pancreas. Pro-inflammatory including TNF-α, IFN-γ and IL-1β f pancreatic β-cells are released in the islet during the autoimmune assault and signal in β-cells through f protein tyrosine phosphorylation cascades, resulting in pro-apoptotic gene expression and eventually phosphatases β-cell death. Protein tyrosine phosphatases (PTPs) are a family of enzymes that regulate f PTPN1 phosphorylative signalling and are associated with the development of T1D. Here, we f PTPN6 observed expression of PTPN6 and PTPN1 in human islets and islets from non-obese f cytokines diabetic (NOD) mice. To clarify the role of these PTPs in β-cells/islets, we took advantage f inflammation Journal of Molecular Endocrinology of CRISPR/Cas9 technology and pharmacological approaches to inactivate both proteins. We identify PTPN6 as a negative regulator of TNF-α-induced β-cell death, through JNK- dependent BCL-2 protein degradation. -
Homeobox A10 Promotes the Proliferation and Invasion of Bladder Cancer Cells Via Regulation of Matrix Metalloproteinase‑3
ONCOLOGY LETTERS 18: 49-56, 2019 Homeobox A10 promotes the proliferation and invasion of bladder cancer cells via regulation of matrix metalloproteinase‑3 CHUNLEI LIU1*, MINGZHU GE2*, JUN MA1*, YANHUI ZHANG1, YANHUI ZHAO1 and TAO CUI1 Departments of 1Urology and 2Ultrasound, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China Received February 9, 2018; Accepted January 31, 2019 DOI: 10.3892/ol.2019.10312 Abstract. Homeobox A10 (HOXA10) belongs to the family Smoking and obesity are risk factors for BC (2), and genetic of HOX genes, which are closely connected with embryonic mutations and abnormal protein expression serve important development and serve important roles in various tumors. roles in the genesis, development and progression of BC (4). However, the role of HOXA10 in bladder cancer (BC) remains Therefore, exploring new anomalous molecules involved in unclear. In the present study, the role of HOXA10 in BC and the development of BC may advance the understanding of the underlying mechanisms by which it promotes the disease the mechanisms behind this disease and contribute to the progression were investigated. Immunohistochemical analysis improvement of treatment strategies. demonstrated that the expression of the HOXA10 protein Homeobox A10 (HOXA10) belongs to the family of HOX was significantly higher in BC tissues as compared with that genes, which are classified into four subgroups, namely HOX in adjacent normal tissues. Subsequent statistical analysis A-D (5), and are closely connected with embryonic develop- revealed that upregulation of HOXA10 was significantly ment (6). HOXA10 encodes a DNA-binding transcription factor associated with the pathological grade and clinical stage of that serves vital roles in regulating gene expression, viability BC patients. -
Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes. -
The Regulatory Roles of Phosphatases in Cancer
Oncogene (2014) 33, 939–953 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW The regulatory roles of phosphatases in cancer J Stebbing1, LC Lit1, H Zhang, RS Darrington, O Melaiu, B Rudraraju and G Giamas The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3--kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies. Oncogene (2014) 33, 939–953; doi:10.1038/onc.2013.80; published online 18 March 2013 Keywords: cancer; phosphatases; solid tumours GASTROINTESTINAL MALIGNANCIES abs in sera were significantly associated with poor survival in Oesophageal cancer advanced ESCC, suggesting that they may have a clinical utility in Loss of PTEN (phosphatase and tensin homologue deleted on ESCC screening and diagnosis.5 chromosome 10) expression in oesophageal cancer is frequent, Cao et al.6 investigated the role of protein tyrosine phosphatase, among other gene alterations characterizing this disease. Zhou non-receptor type 12 (PTPN12) in ESCC and showed that PTPN12 et al.1 found that overexpression of PTEN suppresses growth and protein expression is higher in normal para-cancerous tissues than induces apoptosis in oesophageal cancer cell lines, through in 20 ESCC tissues. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7, -
Transcription Regulation of MYB: a Potential and Novel Therapeutic Target in Cancer
Review Article Page 1 of 11 Transcription regulation of MYB: a potential and novel therapeutic target in cancer Partha Mitra1,2 1Pre-clinical Division, Vaxxas Pty. Ltd. Translational Research Institute, Woolloongabba QLD 4102, Australia; 2Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba QLD 4102, Australia Correspondence to: Partha Mitra. Pre-clinical Division, Vaxxas Pty. Ltd. Translational Research Institute, 37 Kent St., Woolloongabba QLD 4102, Australia; Queensland University of Technology, Translational Research Institute, 37 Kent St., Woolloongabba QLD 4102, Australia. Email: [email protected]; [email protected]. Abstract: Basal transcription factors have never been considered as a priority target in the field of drug discovery. However, their unparalleled roles in decoding the genetic information in response to the appropriate signal and their association with the disease progression are very well-established phenomena. Instead of considering transcription factors as such a target, in this review, we discuss about the potential of the regulatory mechanisms that control their gene expression. Based on our recent understanding about the critical roles of c-MYB at the cellular and molecular level in several types of cancers, we discuss here how MLL-fusion protein centred SEC in leukaemia, ligand-estrogen receptor (ER) complex in breast cancer (BC) and NF-κB and associated factors in colorectal cancer regulate the transcription of this gene. We further discuss plausible strategies, specific to each cancer type, to target those bona fide activators/co-activators, which control the regulation of this gene and therefore to shed fresh light in targeting the transcriptional regulation as a novel approach to the future drug discovery in cancer. -
Human HOXA10 Peptide (DAG-P0642) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
Human HOXA10 peptide (DAG-P0642) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description In vertebrates, the genes encoding the class of transcription factors called homeobox genes are found in clusters named A, B, C, and D on four separate chromosomes. Expression of these proteins is spatially and temporally regulated during embryonic development. This gene is part of the A cluster on chromosome 7 and encodes a DNA-binding transcription factor that may regulate gene expression, morphogenesis, and differentiation. More specifically, it may function in fertility, embryo viability, and regulation of hematopoietic lineage commitment. Alternatively spliced transcript variants have been described. Read-through transcription also exists between this gene and the downstream homeobox A9 (HOXA9) gene. [provided by RefSeq, Mar 2011] Nature Synthetic Expression System N/A Conjugate Unconjugated Sequence Similarities Belongs to the Abd-B homeobox family.Contains 1 homeobox DNA-binding domain. Cellular Localization Nucleus. Procedure None Format Liquid Preservative None Storage Shipped at 4°C. Upon delivery aliquot and store at -20°C or -80°C. Avoid repeated freeze / thaw cycles. Information available upon request. ANTIGEN GENE INFORMATION Gene Name HOXA10 homeobox A10 [ Homo sapiens (human) ] Official Symbol HOXA10 Synonyms HOXA10; homeobox A10; PL; HOX1; HOX1H; HOX1.8; homeobox protein Hox-A10; homeo box A10; homeobox protein 1H; homeobox protein HOXA10; homeobox protein Hox-1H; homeobox