Evolution of Cuticular Hydrocarbons in the Hymenoptera : a Metaanalysis

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Cuticular Hydrocarbons in the Hymenoptera : a Metaanalysis Evolution of cuticular hydrocarbons in the hymenoptera : a meta-analysis Kather, R and Martin, SJ http://dx.doi.org/10.1007/s10886-015-0631-5 Title Evolution of cuticular hydrocarbons in the hymenoptera : a meta-analysis Authors Kather, R and Martin, SJ Type Article URL This version is available at: http://usir.salford.ac.uk/id/eprint/36247/ Published Date 2015 USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. JChemEcol DOI 10.1007/s10886-015-0631-5 Evolution of Cuticular Hydrocarbons in the Hymenoptera: a Meta-Analysis Ricarda Kather1 & Stephen J. Martin 2 Received: 12 July 2015 /Revised: 30 August 2015 /Accepted: 1 September 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Chemical communication is the oldest form of social and solitary species, with some of the most complex communication, spreading across all forms of life. In insects, CHC profiles belonging to the Parasitica. This profile com- cuticular hydrocarbons (CHC) function as chemical cues for plexity has been maintained in the ants, but some specializa- the recognition of mates, species, and nest-mates in social tion in biosynthetic pathways has led to a simplification of insects. Although much is known about the function of indi- profiles in the aculeate wasps and bees. The absence of vidual hydrocarbons and their biosynthesis, a phylogenetic CHC classes in some taxa or species may be due to gene overview is lacking. Here, we review the CHC profiles of silencing or down-regulation rather than gene loss, as demon- 241 species of Hymenoptera, one of the largest and most im- strated by sister species having highly divergent CHC profiles, portant insect orders, which includes the Symphyta (sawflies), and cannot be predicted by their phylogenetic history. The the polyphyletic Parasitica (parasitoid wasps), and the presence of highly complex CHC profiles prior to the Aculeata (wasps, bees, and ants). We investigated whether vast radiation of the social Hymenoptera indicates a these taxonomic groups differed in the presence and absence ‘spring-loaded’ system where the diversity of CHC of CHC classes and whether the sociality of a species (solitar- needed for the complex communication systems of so- ily vs. social) had an effect on CHC profile complexity. We cial insects were already present for natural selection to found that the main CHC classes (i.e., n-alkanes, alkenes, and act upon, rather than having evolved independently. methylalkanes) were all present early in the evolutionary his- This diversity may have aided the multiple independent tory of the Hymenoptera, as evidenced by their presence in evolution of sociality within the Aculeata. ancient Symphyta and primitive Parasitica wasps. Throughout all groups within the Hymenoptera, the more complex a CHC Keywords Cuticular hydrocarbons . Communication . the fewer species that produce it, which may reflect the Sociality . Spring-loaded . Hymenoptera . Gene-silencing . Occam’s razor principle that insects’ only biosynthesize the Sanflies . Parasitoid wasps . Aculeate wasps . Ants . Bees most simple compound that fulfil its needs. Surprisingly, there was no difference in the complexity of CHC profiles between Introduction Electronic supplementary material The online version of this article (doi:10.1007/s10886-015-0631-5) contains supplementary material, Chemical communication is the oldest form of communica- which is available to authorized users. tion, spreading across all forms of life (Wilson 1970), and underlies almost all known behavior from genes to super-or- * Stephen J. Martin ganisms. Pheromones are one of the most important signals [email protected] perceived through the chemical sensory channel (Wyatt 2013), and are particularly complex and well studied in insects 1 Department of Animal and Plant Sciences, University of Sheffield, (Howard and Blomquist 2005), where 1000s of pheromones Sheffield S10 2TN, UK have been described. Short-range contact pheromones are 2 School of Environment and Life Sciences, The University of Salford, used by many insects to identify and potentially discriminate Manchester M5 4WT, UK against other individuals of the same or different species JChemEcol (Wyatt 2013). The best studied group of compounds are the underlie the production of all these CHC (Howard and cuticular hydrocarbons (CHC) that are embedded in the cutic- Blomquist 2005; Morgan 2010). Both types of pathways in- ular lipid layer of all insects and have been extensively volve the elongation and reduction of fatty acyl-CoAs precur- researched over the past 30 years. This has shown that CHC sors to aldehydes before oxidative decarbonylation to obtain differ greatly both quantitatively and qualitatively among as the correct carbon chain length (Qiu et al. 2012). The produc- well as within a species. More recently, CHC have been tion of n-alkanes and alkenes, involves malonyl-CoA and, in shown to convey information about an individual’s fertility, the case of alkenes, a fatty acyl-CoA desaturase inserting a sex, gender, caste, kin, etc. in numerous species (Blomquist double-bond into the carbon chain at a precise location; i.e., a and Bagnères 2010). The majority of CHC studies have con- Δ9 desaturase inserts a double bond in the 9th position, a Δ7 centrated on the Hymenoptera, one of the largest and most desaturase into the 7th position etc. In the production of diverse insect orders with over 130,000 described species, methylalkanes, it is methylmalonyl-CoA that helps to insert including many economically and environmentally important a methyl group at various positions along the carbon chain. species, especially among the social bees, wasps and ants There is increasing evidence that compound structure (i.e., (Wilson 1971). The combined hymenopteran biomass out- presence and position of double-bonds or methyl groups) rath- weighs that of all other terrestrial organisms, even the verte- er than chain length is the key factor when it comes to an brates, due to their evolutionary success, which is reflected in insect’s ability to detect and learn different hydrocarbons their vast abundance (Wilson 1971). Central to their success is (Châline et al. 2005;Danietal.2005; van Wilgenburg et al. their chemical ecology. 2010). These studies demonstrate that insects can easily dis- Within the Hymenoptera, a huge diversity of CHC is pres- criminate between compounds bearing moieties such as dou- ent with thousands of compounds already having been de- ble bond and methyl branches, but cannot discriminate linear scribed. This diversity is generated simply by either the inser- alkanes. Furthermore, insects are able to learn and distinguish tion of one or more double bonds (olefins) or one or more between compounds of the same chain length that vary in the methyl groups (methylalkanes) at various positions along a position of their double-bond or methyl group, but are unable chain of carbon atoms that typically varies from 21 to around to discriminate between different homologs, i.e., compounds 40 carbons in length. Very rarely do both biosynthetic path- that share the same structure but differ in chain length (van ways combine to produce methylalkenes, which are Wilgenburg et al. 2010). Hence, we have concentrated on the methylalkanes that also contain a double bond/s. divergence of CHC structural isomers among the Importantly, these small additions of a double bond or methyl Hymenoptera, and have omitted data on chain length in order group cause the molecules to bend via Van der Waals forces, to make the analysis of the dataset manageable. so giving each CHC a unique conformation (shape). Another factor that makes Hymenoptera a key system is Furthermore, most methylalkanes contain chiral centers and that the order contains both solitary and social species. perception depends on odorant chirality, although in 20 insect Solitary insects use CHC to identify mates of the correct spe- species from nine orders the methyl-branched hydrocarbons cies and gender (e.g., Bartelt et al. 2002;Böröczkyetal.2009; were in the (R)-configuration (Bello et al. 2015). Likewise the Steiner et al. 2006), whereas social insects use CHC to distin- vast majority of insect olefins are present in the (Z)-configu- guish individuals of different species, castes, colonies, domi- ration. It has been shown that insects detect these small differ- nance statuses, developmental stages, kin, etc.(e.g., Bonavita- ences in compound structure, i.e., the position, chirality, or Cougourdan et al. 1987; Ferreira-Caliman et al. 2010;Martin absence of double bonds or methyl groups, so insects can et al. 2008a;Monnin2006; Wagner et al. 2001). Given that distinguish between compounds of the same chain length that social insects have a much greater level of chemical commu- vary in the position of their double bond(s) (Dani et al. 2005) nication than solitary insects, it has long been assumed that or methyl group(s) (Châline et al. 2005). However, little is social insects will produce a greater variety of CHC compared known about the actual molecular mechanism at the basis of to solitary Hymenoptera;
Recommended publications
  • Rainfall and Parasitic Wasp (Hymenoptera: Ichneumonoidea
    Agricultural and Forest Entomology (2000) 2, 39±47 Rainfall and parasitic wasp (Hymenoptera: Ichneumonoidea) activity in successional forest stages at Barro Colorado Nature Monument, Panama, and La Selva Biological Station, Costa Rica B. A. Shapiro1 and J. Pickering Institute of Ecology, University of Georgia, Athens, GA 30602-2602, U.S.A. Abstract 1 In 1997, we ran two Malaise insect traps in each of four stands of wet forest in Costa Rica (two old-growth and two 20-year-old stands) and four stands of moist forest in Panama (old-growth, 20, 40 and 120-year-old stands). 2 Wet forest traps caught 2.32 times as many ichneumonoids as moist forest traps. The average catch per old-growth trap was 1.89 times greater than the average catch per second-growth trap. 3 Parasitoids of lepidopteran larvae were caught in higher proportions in the wet forest, while pupal parasitoids were relatively more active in the moist forest. 4 We hypothesize that moisture availability is of key importance in determining parasitoid activity, community composition and trophic interactions. Keywords Barro Colorado Nature Monument, Ichneumonoidea, La Selva, parasitoids, precipitation, tropical moist forest, tropical wet forest. istics of each parasitoid species and abiotic factors. Seasonal Introduction patterns of insect activity are often correlated with temperature, One of the largest groups of parasitic Hymenoptera is the as processes such as development and diapause are often superfamily Ichneumonoidea, which consists of two families intimately associated with temperature change (Wolda, 1988). (the Ichneumonidae and the Braconidae), 64 subfamilies and an Fink & VoÈlkl (1995) gave several examples of small insects for estimated 100 000 species world-wide (Gauld & Bolton, 1988; which low humidity and high temperature have detrimental Wahl & Sharkey, 1993).
    [Show full text]
  • Alien Dominance of the Parasitoid Wasp Community Along an Elevation Gradient on Hawai’I Island
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck U.S. Geological Survey, [email protected] Paul C. Banko U.S. Geological Survey Marla Schwarzfeld U.S. Geological Survey Melody Euaparadorn U.S. Geological Survey Kevin W. Brinck U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Peck, Robert W.; Banko, Paul C.; Schwarzfeld, Marla; Euaparadorn, Melody; and Brinck, Kevin W., "Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island" (2008). USGS Staff -- Published Research. 652. https://digitalcommons.unl.edu/usgsstaffpub/652 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biol Invasions (2008) 10:1441–1455 DOI 10.1007/s10530-008-9218-1 ORIGINAL PAPER Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck Æ Paul C. Banko Æ Marla Schwarzfeld Æ Melody Euaparadorn Æ Kevin W. Brinck Received: 7 December 2007 / Accepted: 21 January 2008 / Published online: 6 February 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Through intentional and accidental increased with increasing elevation, with all three introduction, more than 100 species of alien Ichneu- elevations differing significantly from each other. monidae and Braconidae (Hymenoptera) have Nine species purposely introduced to control pest become established in the Hawaiian Islands.
    [Show full text]
  • Study of the Morphometric Diversity of the Population of Honeybees (Apis Mellifera) in the North-East Algeria Abstract
    Research iMedPub Journals European Journal of Experimental Biology 2016 http://www.imedpub.com/ Vol.6 No.6:6 ISSN 2248-9215 Study of the Morphometric Diversity of the Population of Honeybees (Apis Mellifera) In the North-East Algeria Bouzeraa H1, Achou M2, Sellami H1 and Slotani N1 1Laboratory of Applied Animal Biology, Faculty of Science, University Badji-Mokhtar, Annaba, Algeria 2Research Unit Toxicology-Environmental Microbiology and Health (UR11ES70), Faculty of Sciences of Sfax, University of Sfax, Tunisia Corresponding author: Bouzeraaa H, Laboratory of Applied Animal Biology, Faculty of Science, University Badji-Mokhtar, Annaba, Algeria, Tel: +234 8032886428; E-mail: [email protected] Received Date: November 24, 2016; Accepted Date: December 29, 2016; Published Date: December 31, 2016 Copyright: © 2016 Bouzeraaa H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: Bouzeraa H, Achou M, Sellami H, et al. Study of the morphometric diversity of the population of honeybees (Apis mellifera) in the North- East Algeria. Eur Exp Biol. 2016, 6:6 In Algeria, 02 breeds have been identified: The first one, Apis mellifera intermissa (Tellian bee) described by Buttel-Reepen (in Abstract Ruttner), it is a breed of north Africa found in northern Algerian Sahara and Libya to Morocco [13-15]. The second breed, was A biometric study was conducted on domestic worker bees successively described by Baldensperger and also by Haccour coming from three 03 sites (Tahir, Al-Ancer and Ziama) of [16,17].
    [Show full text]
  • Scottish Bees
    Scottish Bees Introduction to bees Bees are fascinating insects that can be found in a broad range of habitats from urban gardens to grasslands and wetlands. There are over 270 species of bee in the UK in 6 families - 115 of these have been recorded in Scotland, with 4 species now thought to be extinct and insufficient data available for another 2 species. Bees are very diverse, varying in size, tongue-length and flower preference. In the UK we have 1 species of honey bee, 24 species of bumblebee and the rest are solitary bees. They fulfil an essential ecological and environmental role as one of the most significant groups of pollinating insects, all of which we depend upon for the pollination of 80% of our wild and cultivated plants. Some flowers are in fact designed specifically for bee pollination, to the exclusion of generalist pollinators. Bees and their relatives Bees are classified in the complex insect order Hymenoptera (meaning membrane-winged), which also includes many kinds of parasitic wasps, gall wasps, hunting wasps, ants and sawflies. There are about 150,000 species of Hymenoptera known worldwide separated into two sub-orders. The first is the most primitive sub-order Symphyta which includes the sawflies and their relatives, lacking a wasp-waist and generally with free-living caterpillar-like larvae. The second is the sub-order Apocrita, which includes the ants, bees and wasps which are ’wasp-waisted’ and have grub-like larvae that develop within hosts, galls or nests. The sub-order Apocrita is in turn divided into two sections, the Parasitica and Aculeata.
    [Show full text]
  • Effects of Time, Temperature, and Honey on Nosema Apis (Microsporidia: Nosematidae), a Parasite of the Honeybee, Apis Mellifera (Hymenoptera: Apidae)
    Journal of Invertebrate Pathology 77, 258–268 (2001) doi:10.1006/jipa.2001.5028, available online at http://www.idealibrary.com on Effects of Time, Temperature, and Honey on Nosema apis (Microsporidia: Nosematidae), a Parasite of the Honeybee, Apis mellifera (Hymenoptera: Apidae) Louise A. Malone,*,1 Heather S. Gatehouse,† and Emma L. Tregidga* *Horticulture and Food Research Institute of New Zealand Limited, Mt. Albert Research Centre, Private Bag 92169, Auckland, New Zealand; and †Horticulture and Food Research Institute of New Zealand Limited, Palmerston North Research Centre, Private Bag 11030, Palmerston North, New Zealand Received November 22, 2000, accepted April 20, 2001 ingestion of contaminated comb (Bailey, 1981) and wa- Newly emerged adult bees were fed with Nosema ter sources (L’Arrivee, 1965), trophallaxis (Webster, apis spores subjected to various treatments, and their 1993), and perhaps also honey stores and crushed in- longevity, proportions of bees infected, and spores per fected bees (Fries, 1993). Consequently the two “reser- bee recorded. Spores lost viability after 1, 3, or 6 voirs” of N. apis inoculum within a bee colony are live months in active manuka or multifloral honey, after 3 infected bees and deposits of viable spores on or in wax, days in multifloral honey, and after 21 days in water or honey, and the interior surfaces of the hive. The rela- sugar syrup at 33°C. Air-dried spores lost viability af- tive importance of each reservoir is unknown. How- ter 3 or 5 days at 40°, 45°, or 49°C. Increasing numbers ever, the results of a study using fumagillin feeding, of bees became infected with increasing doses of spores, regardless of their subsequent food (active which acts on the pathogen in live bees, combined with manuka honey, thyme honey, or sugar syrup).
    [Show full text]
  • Fauna of Chalcid Wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan Province, Southern Iran
    J Insect Biodivers Syst 02(1): 155–166 First Online JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article http://jibs.modares.ac.ir http://zoobank.org/References/AABD72DE-6C3B-41A9-9E46-56B6015E6325 Fauna of chalcid wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan province, southern Iran Tahereh Tavakoli Roodi1, Majid Fallahzadeh1* and Hossien Lotfalizadeh2 1 Department of Entomology, Jahrom branch, Islamic Azad University, Jahrom, Iran. 2 Department of Plant Protection, East-Azarbaijan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran ABSTRACT. This paper provides data on distribution of 13 chalcid wasp species (Hymenoptera: Chalcidoidea: Chalcididae) belonging to 9 genera and Received: 30 June, 2016 three subfamilies Chalcidinae, Dirhininae and Haltichellinae from Hormozgan province, southern Iran. All collected species are new records for the province. Accepted: Two species Dirhinus excavatus Dalman, 1818 and Hockeria bifasciata Walker, 13 July, 2016 1834 are recorded from Iran for the first time. In the present study, D. excavatus Published: is a new species record for the Palaearctic region. An updated list of all known 13 July, 2016 species of Chalcididae from Iran is also included. Subject Editor: George Japoshvili Key words: Chalcididae, Hymenoptera, Iran, Fauna, Distribution, Malaise trap Citation: Tavakoli Roodi, T., Fallahzadeh, M. and Lotfalizadeh, H. 2016. Fauna of chalcid wasps (Hymenoptera: Chalcidoidea: Chalcididae) in Hormozgan province, southern Iran. Journal of Insect Biodiversity and Systematics, 2(1): 155–166. Introduction The Chalcididae are a moderately specious Coleoptera, Neuroptera and Strepsiptera family of parasitic wasps, with over 1469 (Bouček 1952; Narendran 1986; Delvare nominal species in about 90 genera, occur and Bouček 1992; Noyes 2016).
    [Show full text]
  • Nosema Disease in the Honey Bee (Apis Mellifera L) Infested with Varroa Mites in Southern Spain
    Original article Nosema disease in the honey bee (Apis mellifera L) infested with varroa mites in southern Spain FJ Orantes Bermejo P García Fernández Dpto Producción Animal, Centro de Investigación y Formación Agraria (CIFA), Camino de Purchil s/n, 18004 Granada, Spain (Received 8 November 1996; accepted 7 May 1997) Summary &mdash; Twenty-nine hives infested by Varroa jacobsoni were sampled over a 2-year period in order to find out their degree of infection by Nosema apis. The hives were situated in ten apiaries dis- tributed throughout southern Spain. N apis has been found in 90% of the apiaries sampled and in 55.17% of the hives studied, but only 5.1% of the bees were infected. We have found a low corre- lation between the average number of spores per infected bee in the positive samples and the percentage of infected bees (r2 = 0.2438; P < 0.001; n = 33), and between the average number spores in the composite samples of 60 bees and the percentage of infected bees (r2 = 0.4557; P < 0.001, n = 33). Our results show that N apis and V jacobsoni could develop independently and that those samples which manifested a low, medium and high infestation by V jacobsoni had percentage infections with N apis of 22.6% ± 3.6% vs 47.5% ± 16.2% vs 16.7% ± 10.4% respectively, without significant dif- ferences (F = 0.2817; P = 0.7567). A progressive increase in the number of spores per individual was detected with increasing levels of V jacobsoni infestation: 5.9 x 106 vs 9.1 &times;6 10 vs 13.8 x 106 spores/bees, but no significant differences exist between them (F = 0.6053; P = 0.5531).
    [Show full text]
  • Kamila Soares Lopes
    KAMILA SOARES LOPES ESTUDO DO POTENCIAL ANTIEPILÉPTICO DE PEPTÍDEOS ISOLADOS DA PEÇONHA DA VESPA SOCIAL Chartergellus communis (Hymenoptera: Vespidae). BRASÍLIA, 2018 11 UNIVERSIDADE DE BRASÍLIA FACULDADE DE CIÊNCIAS DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE KAMILA SOARES LOPES ESTUDO DO POTENCIAL ANTIEPILÉPTICO DE PEPTÍDEOS ISOLADOS DA PEÇONHA DA VESPA SOCIAL Chartergellus communis (Hymenoptera: Vespidae). Tese apresentada como requisito para a obtenção do Título de Doutora em Ciências da Saúde pelo Programa de Pós-Graduação em Ciências da Saúde da Universidade de Brasília. Orientadora: Profa. Dra. Márcia Renata Mortari BRASÍLIA 2018 KAMILA SOARES LOPES ESTUDO DO POTENCIAL ANTIEPILÉPTICO DE PEPTÍDEOS ISOLADOS DA PEÇONHA DA VESPA SOCIAL Chartergellus communis (Hymenoptera: Vespidae). Tese apresentada como requisito para a obtenção do Título de Doutora em Ciências da Saúde pelo Programa de Pós-Graduação em Ciências da Saúde da Universidade de Brasília. Aprovada em _03_/_07_/_2018_ BANCA EXAMINADORA Profa. Dra. Márcia Renata Mortari (Presidente) Universidade de Brasília Profa. Dra. Djane Braz Duarte Universidade de Brasília _____________________________ Prof. Dr. Octávio Luiz Franco Universidade Católica de Brasília Prof. Dr. Célio José de Castro Júnior Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte ____________________________________ Profa. Dra. Victória Monge-Fuentes Universidade de Brasília (suplente) Dedico este trabalho... À Deus, fonte da minha determinação. À minha família, os acolhedores dos meus sonhos. AGRADECIMENTOS Sou enormemente grata a Deus, por ter me dado forças nos momentos de maior precisão, guiado meus passos pelos melhores caminhos e abençoado as minhas escolhas. Amém! Serei eternamente grata à excelente educação que meus pais puderam me proporcionar. Duas pessoas que nunca mediram esforços para garantir a mim, e aos meus irmãos, tudo o que nós precisávamos para sermos pessoas bem instruídas, honestas e íntegras.
    [Show full text]
  • Interspecific Variation in Competitor Avoidance and Foraging Success in Sap-Attracted Insects
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/270496969 Interspecific variation in competitor avoidance and foraging success in sap- attracted insects Article in European Journal of Entomology · November 2009 DOI: 10.14411/eje.2009.066 CITATIONS READS 0 10 1 author: Jiichiro Yoshimoto University of the Valley of Guatemala 12 PUBLICATIONS 58 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Climate change effects on the biodiversity of the seasonally dry tropical forests of Motagua Valley in Guatemala View project All content following this page was uploaded by Jiichiro Yoshimoto on 28 January 2019. The user has requested enhancement of the downloaded file. Eur. J. Entomol. 106: 529–533, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1484 ISSN 1210-5759 (print), 1802-8829 (online) Interspecific variation in competitor avoidance and foraging success in sap-attracted insects JIICHIRO YOSHIMOTO* Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan Key words. Aggressive interactions, community, foraging strategy, interference competition, resources, tree sap Abstract. Many insect species attracted to fermenting sap often fight for access to this resource, which results in the establishment of interspecific dominance hierarchies. In one such system, the hornet Vespa mandarinia (Hymenoptera: Vespidae) behaviourally dominates during the daytime and several subordinate species avoid aggressive interactions in various ways. In order to elucidate the interspecific variation in competitor-avoidance behaviour and its subsequent effect on foraging success, the behaviour of species of hornets, beetles and butterflies at patches (exudation spots) in Japan was recorded.
    [Show full text]
  • Analysis of the Secondary Nest of the Yellow-Legged Hornet Found in the Balearic Islands Reveals Its High Adaptability to Mediterranean Isolated Ecosystems
    C. Herrera, A. Marqués, V. Colomar and M.M. Leza Herrera, C.; A. Marqués, V. Colomar and M.M. Leza. Analysis of the secondary nest of the yellow-legged hornet found in the Balearic Islands reveals its high adaptability to Mediterranean isolated ecosystems Analysis of the secondary nest of the yellow-legged hornet found in the Balearic Islands reveals its high adaptability to Mediterranean isolated ecosystems C. Herrera1, A. Marqués1, V. Colomar2 and M.M. Leza1 1Laboratory of Zoology, Department of Biology, University of the Balearic Islands, Cra. Valldemossa km 7.5, CP: 07122 Palma, Illes Balears, Spain. <[email protected]>. 2Consortium for the Recovery of the Fauna of the Balearic Islands (COFIB), Crta. Sineu km 15, CP: 07142 Santa Eugènia, Illes Balears, Spain. Abstract The yellow-legged hornet (Vespa velutina) was detected for the fi rst time in the north of Spain in 2010, but was not detected in Majorca, Balearic Islands until 2015 and only one secondary nest, with 10 combs, was found in the northwest of the island. During 2016, nine more nests were found in the same region. To better understand the biology of V. velutina in isolated conditions, the following objectives were proposed: (I) describe the architecture and structure of nests; (II) analyse the shape of combs and develop a new method to confi rm the circular pattern of breeding; (III) determine the colony size and (IV) determine the succession of workers and sexual individuals throughout the season. For these reasons, nests that were removed were frozen for at least 48 days until analysis.
    [Show full text]
  • New Bioactive Peptides from the Venom Gland of Social Hornet Vespa Velutina
    UC San Diego UC San Diego Previously Published Works Title New bioactive peptides from the venom gland of a social hornet Vespa velutina. Permalink https://escholarship.org/uc/item/5775p1w5 Authors Meng, Yi-Chuan Mo, Xiang-Gui He, Tian-Tian et al. Publication Date 2021-08-01 DOI 10.1016/j.toxicon.2021.06.002 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Toxicon 199 (2021) 94–100 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon New bioactive peptides from the venom gland of social hornet Vespa velutina Yi-Chuan Meng a,b, Xiang-Gui Mo a,b, Tian-Tian He c, Xin-Xin Wen a,b, James-C Nieh d, Xin-Wang Yang c,*, Ken Tan a,** a CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650000, China b University of Chinese Academy of Sciences, Beijing, 100049, China c Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China d Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA, 92093, USA ARTICLE INFO ABSTRACT Handling Editor: Dr. Raymond Norton Bacterial resistance to drugs is a global problem requiring the urgent development of new antibiotics. Antimi­ crobial peptides (AMPs) are excellent candidates for the design of novel antibiotics to combat microbial resis­ Keywords: tance. In this research, we identified four new peptides (U-VVTX-Vp1a, U-VVTX-Vp1b, U-VVTX-Vp2a, and U- Vespa velutina VVTX-Vp2b, respectively) from the venom of Vespa velutina, and tested their antimicrobial, antioxidant, and + Venom gland hemolytic effects.
    [Show full text]
  • Chalcid Forum Chalcid Forum
    ChalcidChalcid ForumForum A Forum to Promote Communication Among Chalcid Workers Volume 23. February 2001 Edited by: Michael E. Schauff, E. E. Grissell, Tami Carlow, & Michael Gates Systematic Entomology Lab., USDA, c/o National Museum of Natural History Washington, D.C. 20560-0168 http://www.sel.barc.usda.gov (see Research and Documents) minutes as she paced up and down B. sarothroides stems Editor's Notes (both living and partially dead) antennating as she pro- gressed. Every 20-30 seconds, she would briefly pause to Welcome to the 23rd edition of Chalcid Forum. raise then lower her body, the chalcidoid analog of a push- This issue's masthead is Perissocentrus striatululus up. Upon approaching the branch tips, 1-2 resident males would approach and hover in the vicinity of the female. created by Natalia Florenskaya. This issue is also Unfortunately, no pre-copulatory or copulatory behaviors available on the Systematic Ent. Lab. web site at: were observed. Naturally, the female wound up leaving http://www.sel.barc.usda.gov. We also now have with me. available all the past issues of Chalcid Forum avail- The second behavior observed took place at Harshaw able as PDF documents. Check it out!! Creek, ~7 miles southeast of Patagonia in 1999. Jeremiah George (a lepidopterist, but don't hold that against him) and I pulled off in our favorite camping site near the Research News intersection of FR 139 and FR 58 and began sweeping. I knew that this area was productive for the large and Michael W. Gates brilliant green-blue O. tolteca, a parasitoid of Pheidole vasleti Wheeler (Formicidae) brood.
    [Show full text]