Rs1944919 on Chromosome 11Q23.1 and Its Effector Genes COLCA1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Epigenome-Wide Exploratory Study of Monozygotic Twins Suggests Differentially Methylated Regions to Associate with Hand Grip Strength
Biogerontology (2019) 20:627–647 https://doi.org/10.1007/s10522-019-09818-1 (0123456789().,-volV)( 0123456789().,-volV) RESEARCH ARTICLE Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength Mette Soerensen . Weilong Li . Birgit Debrabant . Marianne Nygaard . Jonas Mengel-From . Morten Frost . Kaare Christensen . Lene Christiansen . Qihua Tan Received: 15 April 2019 / Accepted: 24 June 2019 / Published online: 28 June 2019 Ó The Author(s) 2019 Abstract Hand grip strength is a measure of mus- significant CpG sites or pathways were found, how- cular strength and is used to study age-related loss of ever two of the suggestive top CpG sites were mapped physical capacity. In order to explore the biological to the COL6A1 and CACNA1B genes, known to be mechanisms that influence hand grip strength varia- related to muscular dysfunction. By investigating tion, an epigenome-wide association study (EWAS) of genomic regions using the comb-p algorithm, several hand grip strength in 672 middle-aged and elderly differentially methylated regions in regulatory monozygotic twins (age 55–90 years) was performed, domains were identified as significantly associated to using both individual and twin pair level analyses, the hand grip strength, and pathway analyses of these latter controlling the influence of genetic variation. regions revealed significant pathways related to the Moreover, as measurements of hand grip strength immune system, autoimmune disorders, including performed over 8 years were available in the elderly diabetes type 1 and viral myocarditis, as well as twins (age 73–90 at intake), a longitudinal EWAS was negative regulation of cell differentiation. -
Hippo and Sonic Hedgehog Signalling Pathway Modulation of Human Urothelial Tissue Homeostasis
Hippo and Sonic Hedgehog signalling pathway modulation of human urothelial tissue homeostasis Thomas Crighton PhD University of York Department of Biology November 2020 Abstract The urinary tract is lined by a barrier-forming, mitotically-quiescent urothelium, which retains the ability to regenerate following injury. Regulation of tissue homeostasis by Hippo and Sonic Hedgehog signalling has previously been implicated in various mammalian epithelia, but limited evidence exists as to their role in adult human urothelial physiology. Focussing on the Hippo pathway, the aims of this thesis were to characterise expression of said pathways in urothelium, determine what role the pathways have in regulating urothelial phenotype, and investigate whether the pathways are implicated in muscle-invasive bladder cancer (MIBC). These aims were assessed using a cell culture paradigm of Normal Human Urothelial (NHU) cells that can be manipulated in vitro to represent different differentiated phenotypes, alongside MIBC cell lines and The Cancer Genome Atlas resource. Transcriptomic analysis of NHU cells identified a significant induction of VGLL1, a poorly understood regulator of Hippo signalling, in differentiated cells. Activation of upstream transcription factors PPARγ and GATA3 and/or blockade of active EGFR/RAS/RAF/MEK/ERK signalling were identified as mechanisms which induce VGLL1 expression in NHU cells. Ectopic overexpression of VGLL1 in undifferentiated NHU cells and MIBC cell line T24 resulted in significantly reduced proliferation. Conversely, knockdown of VGLL1 in differentiated NHU cells significantly reduced barrier tightness in an unwounded state, while inhibiting regeneration and increasing cell cycle activation in scratch-wounded cultures. A signalling pathway previously observed to be inhibited by VGLL1 function, YAP/TAZ, was unaffected by VGLL1 manipulation. -
Vitamin D Receptor Binding, Chromatin States and Association with Multiple Sclerosis
Human Molecular Genetics, 2012, Vol. 21, No. 16 3575–3586 doi:10.1093/hmg/dds189 Advance Access published on May 16, 2012 Vitamin D receptor binding, chromatin states and association with multiple sclerosis Giulio Disanto1,2,{, Geir Kjetil Sandve3,{, Antonio J. Berlanga-Taylor1,4, Giammario Ragnedda1,2,5, Julia M. Morahan1,2, Corey T. Watson1,2,6, Gavin Giovannoni7, George C. Ebers1,2 and Sreeram V. Ramagopalan1,2,7,8,∗ 1Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK, 2Nuffield Department of Clinical Neurosciences (Clinical Neurology), University of Oxford, The West Wing, John Radcliffe Hospital, Oxford, UK, 3Department of Informatics, University of Oslo, Blindern, Oslo, Norway, 4Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK, 5Department of Clinical and Experimental Medicine, University of Sassari, Italy, 6Department of Biological Sciences, Simon Fraser University, Burnaby, BC, USA, 7Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK and 8London School of Hygiene and Tropical Medicine, London, UK Received April 23, 2012; Revised May 10, 2012; Accepted June 11, 2012 Both genetic and environmental factors contribute to the aetiology of multiple sclerosis (MS). More than 50 genomic regions have been associated with MS susceptibility and vitamin D status also influences the risk of this complex disease. However, how these factors interact in disease causation is unclear. We aimed to investigate the relationship between vitamin D receptor (VDR) binding in lymphoblastoid cell lines (LCLs), chromatin states in LCLs and MS-associated genomic regions. Using the Genomic Hyperbrowser, we found that VDR-binding regions overlapped with active regulatory regions [active promoter (AP) and strong enhancer (SE)] in LCLs more than expected by chance [45.3-fold enrichment for SE (P < 2.0e205) and 63.41-fold enrichment for AP (P < 2.0e205)]. -
Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................ -
Supplemental Text and Figures
Supplemental Materials and Methods Experimental bone metastasis assay Primary PCa cells were sorted by GFP marker from mTmG+ tumors, and 105 cells in 20μL PBS were injected using Hamilton syringe into the tibia of 6-week old NSG mice. Mice were monitored biweekly for moribund signs for euthanasia and organ harvest. Noninvasive mouse and ex vivo imaging MRI imaging with Bruker ICON and fluorescence imaging of fresh organs with metastasis enumeration were recently described (Lu et al. 2017). Primary prostate cell sphere formation assay Isolate of primary cells from prostate, culture and counting of prostatospheres on Matrigel were performed as described (Lukacs et al. 2010). For organoid culture assay, we followed a published matrigel embedding method (Chua et al. 2014). RNA-Seq and differential gene expression Total RNA was isolated from prostate tumors using Direct-zol RNA MiniPrep Kit (Zymo Research) and processed for stranded total RNA-Seq using Illumina HiSeq 4000 at Sequencing and Microarray Facility at MD Anderson Cancer Center. The differential expression analysis was performed using the DESeq2 package of R. P-values obtained after multiple binomial tests were adjusted using BH method. Significant genes are defined by using a cut-off of 0.05 on the BH corrected p-value and an absolute log2 fold change value of at least 1.5. Histology and western blot H&E stain, immunohistochemical (IHC) and western blot were performed as previously described (Ding et al. 2011; Wang et al. 2016). Primary antibodies for IHC include Ki67 (Fisher, RM-9106-S1), cleaved caspase 3 (Cell Signaling Technology aka CST, 9661), cyclin D1 (Fisher, clone SP4), TGFBR2 (Abcam, ab61213), BMPR2 (Abcam, ab130206), AR (EMD Millipore, 06-680), phospho- Akt (CST, 4060), GFP (CST, 2956), E-Cadherin (CST, 14472). -
Variants at IRF5-TNPO3, 17Q12-21 and MMEL1 Are Associated with Primary Biliary Cirrhosis
University of Texas Rio Grande Valley ScholarWorks @ UTRGV Health and Biomedical Sciences Faculty Publications and Presentations College of Health Professions 8-2010 Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis Gideon M. Hirschfield Xiangdong Liu Younghun Han Ivan P. Gorlov Yan Lu See next page for additional authors Follow this and additional works at: https://scholarworks.utrgv.edu/hbs_fac Part of the Medicine and Health Sciences Commons Recommended Citation Hirschfield, G. M., Liu, X., Han, .,Y Gorlov, I. P., Lu, Y., Xu, C., Lu, Y., Chen, W., Juran, B. D., Coltescu, C., Mason, A. L., Milkiewicz, P., Myers, R. P., Odin, J. A., Luketic, V. A., Speiciene, D., Vincent, C., Levy, C., Gregersen, P. K., Zhang, J., … Siminovitch, K. A. (2010). Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis. Nature genetics, 42(8), 655–657. https://doi.org/10.1038/ng.631 This Article is brought to you for free and open access by the College of Health Professions at ScholarWorks @ UTRGV. It has been accepted for inclusion in Health and Biomedical Sciences Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact [email protected], [email protected]. Authors Gideon M. Hirschfield, Xiangdong Liu, ounghunY Han, Ivan P. Gorlov, Yan Lu, Chun Xu, Yue Lu, Wei Chen, Brian D. Juran, and Catalina Coltescu This article is available at ScholarWorks @ UTRGV: https://scholarworks.utrgv.edu/hbs_fac/92 NIH Public Access Author Manuscript Nat Genet. Author manuscript; available in PMC 2010 August 27. -
Identification of Degs in B Cells of Patients with Common Variable
Identification of DEGs in B cells of patients with common variable immunodeficiency and healthy donors Master Degree Project in Systems Biology Molecular Biotechnology Two years Master 120 ECTS Spring semester 2019 Version 1 Shirin Pour Akaber Email: [email protected] Supervisor: Ola Grimsholm (University of Gothenburg) Email: [email protected] Co-supervisor: Andreas Tilevik (University of Skövde) Emails: [email protected] Examiner: Björn Olsson Email: [email protected] University of Skövde, department of Bioscience 541 28 Skövde Abstract Common variable immunodeficiency (CVID) is a rare primary immune deficiency (1:25000) in which patients have a reduction in antibody production and very low titres in one or more of their Ig isotypes, (IgG, IgA and sometimes IgM). This disease can cause different symptoms such as: bronchiectasis, chronic lung disease and even autoimmunity, polyclonal lymphocytic infiltration, lymphoma and death. The underlying causes of CVID are still largely unknown but studies show that different factors like primary B-cell dysfunctions, defects in T cells and antigen-presenting cells are involved. Quantitative analysis of gene expression is of high importance in understanding the molecular mechanisms underlying this diseases´ genome regulation. Next-generation RNA-seq has enabled researchers to analyse both coding and non-coding regions of RNA, and therefore has made it possible to identify differentially expressed genes in large-scale data, especially in polygenic diseases like CVID. The aim for this study was to identify the differentially expressed genes between CVID patients and healthy donors to identify important genes and molecular mechanisms underlying this diseases´ genome regulation. For this matter, whole genome RNA-seq analysis was performed on RNA isolated from sorted peripheral blood naïve and CD27bright memory B cells from healthy donors (n=7) and CVID patients (n=5). -
A Non-Synonymous SNP Within Membrane Metalloendopeptidase-Like 1 (MMEL1) Is Associated with Multiple Sclerosis
Genes and Immunity (2010) 11, 660–664 & 2010 Macmillan Publishers Limited All rights reserved 1466-4879/10 www.nature.com/gene ORIGINAL ARTICLE A non-synonymous SNP within membrane metalloendopeptidase-like 1 (MMEL1) is associated with multiple sclerosis M Ban1,15, JL McCauley2,15, R Zuvich3,15, A Baker1, L Bergamaschi4, M Cox5, A Kemppinen1, S D’Alfonso4, FR Guerini6, J Lechner-Scott5, F Dudbridge7, J Wason7, NP Robertson8, PL De Jager9,10, DA Hafler11, LF Barcellos12, AJ Ivinson13, D Sexton3, JR Oksenberg14, SL Hauser14, MA Pericak-Vance2, J Haines3, A Compston1 and S Sawcer1 1Department of Clinical Neuroscience, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK; 2Miami Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; 3Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN, USA; 4Department of Medical Sciences and Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont, Novara, Italy; 5University of Newcastle, John Hunter Hospital, Newcastle, New South Wales, Australia; 6Laboratory of Molecular Medicine and Biotechnology, Don C Gnocchi Foundation IRCCS, S Maria Nascente, Milan, Italy; 7MRC Biostatistics Unit, Cambridge, UK; 8Department of Neurology, University Hospital of Wales, Heath Park, Cardiff, UK; 9Program in Translational NeuroPsychiatric Genomics, Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA; 10Broad Institute, Cambridge, MA, USA; 11Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; 12Division of Epidemiology, School of Public Health, University of California at Berkeley, Berkeley, CA, USA; 13Harvard NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA and 14Department of Neurology, University of California San Francisco, San Francisco, CA, USA Several single-nucleotide polymorphism (SNP) genome-wide association studies (GWASs) have been completed in multiple sclerosis (MS). -
Comprehensive Bioinformatics Analysis of Lncrnas in Gastric Cancer
ONCOLOGY LETTERS 17: 1279-1291, 2019 Comprehensive bioinformatics analysis of lncRNAs in gastric cancer DONGDONG QI1, QIANG WANG2, MEIQING WU3 and XIONG ZHANG4 1Department of Clinical Laboratory, Hulunbuir Mental Health Center; 2Department of General Surgery; 3Dermatological Department, Inner Mongolia Forestry General Hospital; 4Hulunbuir Mental Health Center, Hulunbuir, Inner Mongolia 022150, P.R. China Received November 26, 2017; Accepted July 3, 2018 DOI: 10.3892/ol.2018.9707 Abstract. Long non-coding RNAs (lncRNAs) have been of tumor cells and developing into the terminal stage of cancer. generally considered to serve important roles in various Nowadays, lack of efficient biomarkers for early diagnosis, types of cancer, including gastric cancer. However, a comprehensive treatment and cancer monitoring has been comprehensive understanding of lncRNAs in gastric cancer considered as one of the main obstacles for better prognosis requires further study. The present study performed an of gastric cancer (2). As a result, it is of great importance to in-depth study revealed 50 differently expressed lncRNAs. further explore the molecular mechanism during the occur- The changed cellular pathways and biological process in rence and development of gastric cancer, hoping to provide gastric cancer were determined. To further confirm the func- new strategy for diagnosis, prognosis and treatment (3). tions of the differently expressed lncRNAs, co-expression During the recent years, non-coding RNAs have been networks were constructed between the lncRNAs and generally concerned because of their diverse roles in the mRNA; this lead to the identification of 6 modules, which post-transcriptional regulation and they are considered to have participated in various cellular pathways. -
Human Neprilysin-2/MMEL1 Antibody Antigen Affinity-Purified Polyclonal Goat Igg Catalog Number: AF2340
Human Neprilysin-2/MMEL1 Antibody Antigen Affinity-purified Polyclonal Goat IgG Catalog Number: AF2340 DESCRIPTION Species Reactivity Human Specificity Detects human Neprilysin2/MMEL1 in direct ELISAs and Western blots. In direct ELISAs, approximately 5% crossreactivity with recombinant human (rh) Neprilysin is observed and less than 1% crossreactivity with rhECE1 and rhECE2 is observed. Source Polyclonal Goat IgG Purification Antigen Affinitypurified Immunogen Mouse myeloma cell line NS0derived recombinant human Neprilysin2/MMEL1 Gly69Trp770 Accession # AAL08942 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 0.1 µg/mL Recombinant Human Neprilysin2/MMEL1 (Catalog # 2340ZN) Flow Cytometry 2.5 µg/106 cells HEK293 cells Immunoprecipitation 25 µg/mL Conditioned cell culture medium spiked with Recombinant Human Neprilysin2/MMEL1 (Catalog # 2340ZN), see our available Western blot detection antibodies CyTOFready Ready to be labeled using established conjugation methods. No BSA or other carrier proteins that could interfere with conjugation. PREPARATION AND STORAGE Reconstitution Reconstitute at 0.2 mg/mL in sterile PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. *Small pack size (SP) is shipped with polar packs. Upon receipt, store it immediately at 20 to 70 °C Stability & Storage Use a manual defrost freezer and avoid repeated freezethaw cycles. -
Bioinformatics Tools for the Analysis of Gene-Phenotype Relationships Coupled with a Next Generation Chip-Sequencing Data Processing Pipeline
Bioinformatics Tools for the Analysis of Gene-Phenotype Relationships Coupled with a Next Generation ChIP-Sequencing Data Processing Pipeline Erinija Pranckeviciene Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Cellular and Molecular Medicine Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa c Erinija Pranckeviciene, Ottawa, Canada, 2015 Abstract The rapidly advancing high-throughput and next generation sequencing technologies facilitate deeper insights into the molecular mechanisms underlying the expression of phenotypes in living organisms. Experimental data and scientific publications following this technological advance- ment have rapidly accumulated in public databases. Meaningful analysis of currently avail- able data in genomic databases requires sophisticated computational tools and algorithms, and presents considerable challenges to molecular biologists without specialized training in bioinfor- matics. To study their phenotype of interest molecular biologists must prioritize large lists of poorly characterized genes generated in high-throughput experiments. To date, prioritization tools have primarily been designed to work with phenotypes of human diseases as defined by the genes known to be associated with those diseases. There is therefore a need for more prioritiza- tion tools for phenotypes which are not related with diseases generally or diseases with which no genes have yet been associated in particular. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) is a method of choice to study the gene regulation processes responsible for the expression of cellular phenotypes. Among publicly available computational pipelines for the processing of ChIP-Seq data, there is a lack of tools for the downstream analysis of composite motifs and preferred binding distances of the DNA binding proteins.