Market Report Spring 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluation of Aphicidal Effect of Essential Oils and Their Synergistic Effect Against Myzus Persicae (Sulzer) (Hemiptera: Aphididae)
molecules Article Evaluation of Aphicidal Effect of Essential Oils and Their Synergistic Effect against Myzus persicae (Sulzer) (Hemiptera: Aphididae) Qasim Ahmed 1,† , Manjree Agarwal 2,† , Ruaa Al-Obaidi 3, Penghao Wang 2,* and Yonglin Ren 2,* 1 Agricultural Engineering Sciences, University of Baghdad, Al-Jadriya Campus, Baghdad 10071, Iraq; [email protected] 2 College of Science, Health, Engineering and Education, Murdoch University, South Street, Murdoch, WA 6150, Australia; [email protected] 3 Pharmacy College, Mustansiriyah University, Al-Qadisyia, Baghdad 10052, Iraq; [email protected] * Correspondence: [email protected] (P.W.); [email protected] (Y.R.) † These authors contributed equally to this paper. Abstract: The insecticidal activities of essential oils obtained from black pepper, eucalyptus, rose- mary, and tea tree and their binary combinations were investigated against the green peach aphid, Myzus persicae (Aphididae: Hemiptera), under laboratory and glasshouse conditions. All the tested essential oils significantly reduced and controlled the green peach aphid population and caused higher mortality. In this study, black pepper and tea tree pure essential oils were found to be an effective insecticide, with 80% mortality when used through contact application. However, for combinations of essential oils from black pepper + tea tree (BT) and rosemary + tea tree (RT) tested Citation: Ahmed, Q.; Agarwal, M.; as contact treatment, the mortality was 98.33%. The essential oil combinations exhibited synergistic Al-Obaidi, R.; Wang, P.; Ren, Y. and additive interactions for insecticidal activities. The combination of black pepper + tea tree, Evaluation of Aphicidal Effect of eucalyptus + tea tree (ET), and tea tree + rosemary showed enhanced activity, with synergy rates Essential Oils and Their Synergistic of 3.24, 2.65, and 2.74, respectively. -
Tariff Schedules of the United States Alphabetical Index
TARIFF SCHEDULES OF THE UNITED STATES ALPHABETICAL INDEX 447 TARIFF SCHEDULES OF THE UNITED STATES 449 References to References to Tariff Schedules Tariff Schedules A ABACA 30U.02-0U ACID(S) —Continued ABRASIVES AND ABRASIVE ARTICEES Sch 5 Ft IG fatty, of animal or vegetable origin—Con. abrasive wheels mounted on frameworks, salts of— hand or pedal operated 6i<9.39 quaternary ammonium 1+65.15-20 nspf 519.81-86 sodium and potassium 1+65.25-30 ACCESSORIES (see PARTS, specific article of other 1+90.30-50 which accessory, or name of accessory) gluconic, and its compounds 1+37-51-52 ACCORDIONS 725.1U-16 glycerophosphoric, and its compounds 1+37.51+ ACCOUNTING MACHINES incorporating calculating inorganic 1+16.05-1+0 mechanism 676.1S-25 organic, including halogenated, hydroxy, ACENAPHTHENE li01.02 sulfonated and other substituted and ACETALDEHIDE U27.U0 unsubstituted acids 1+25-70-98 ACETALS ii29.00 monohydric alcohol esters of 1+28+50-72 ACETANILIDE— polyhydric alcohol esters of 1+28.30-1+6 suitable for medicinal use U07.02 salts of I+26.IO-I+27.28 other k03.60 salicylic— ACETATE(S) — suitable for medicinal use 1+07.12 amyl lt28.SO other 1+03-60 benzyl 1+08.05 tannic, containing of tannic acid— butyl 1+28.52 under 50 percent 1+25.98 calcium 1+26.10 50 percent or more 1+37-68-69 cellulose 1+1+5.20 ACONITE 1+35-05-10 copper 1+26.28 ACRIDINE 1+01.01+ ethyl 1+28.58 ACRTLATES AND METHACRTLATES 1+28.62-66 lead 1+26.36 ACRYIIC RESINS 1+1+5.05 nickel 1+26.58 ACRTLONITRILE— 1+25.00 sodium 1+26.86 resins l+i+5.10 vinyl 1+28.68 ACTIVATED CLAY 521.87 Other -
Eucalyptol (1,8 Cineole) from Eucalyptus As COVID-19 Mpro Inhibitor
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 March 2020 doi:10.20944/preprints202003.0455.v1 Eucalyptol (1,8 cineole) from eucalyptus as COVID-19 Mpro inhibitor. However, essential oil a potential inhibitor of further research is necessary to investigate COVID 19 corona virus infection by their potential medicinal use. Molecular docking studies Arun Dev Sharma* and Inderjeet Kaur Keywords: COVID-19, Essential oil, Eucalyptol, Molecular docking PG dept of Biotechnology, Lyallpur Khalsa College Jalandhar *Corresponding author, e mail: [email protected] Graphical abstract Abstract Background: COVID-19, a member of corona virus family is spreading its tentacles across the world due to lack of drugs at present. Associated with its infection are cough, fever and respiratory problems causes more than 15% mortality worldwide. It is caused by a positive, single stranded RNA virus from the enveloped coronaviruse family. However, the main viral proteinase (Mpro/3CLpro) has recently been regarded as a suitable target for drug design against SARS infection due to its vital role in polyproteins processing necessary for coronavirus reproduction. Objectives: The present in silico study was designed to evaluate the effect of Eucalyptol (1,8 cineole), a essential oil component from eucalyptus oil, on Mpro by docking study. Methods: In the present study, molecular docking studies were conducted by using 1- click dock and swiss dock tools. Protein interaction mode was calculated by Protein Interactions Calculator. Results: The calculated parameters such as RMSD, binding energy, and binding site similarity indicated effective binding of eucalyptol to COVID-19 proteinase. Active site prediction further validated the role of active site residues in ligand binding. -
Essential Oils As Therapeutics
Article Essential oils as Therapeutics S C Garg Department of Chemistry Dr. Harisingh Gour University, Sagar 470 003, Madhya Pradesh, India E-mail: [email protected] Kingdom. British nurses are insured by the Abstract Royal College of Nurses to use essential Essential oils are the volatile secondary plant metabolites which mainly oils both topically and inhalation for consist of terpenoids and benzenoids. Research in the later half of 20th century improved patient care. Lavender oil with has revealed that many curative properties attributed to various plants in its mild sedative powers is being tested as indigenous medicine are also present in their essential oils. These oils exert a a drug replacement to treat older patients number of general effects from the pharmacological viewpoint. When applied suffering insomnia, anxiety and depression locally, the essential oils mix readily with skin oils, allowing these to attack the and to make terminal care patients more infective agents quickly and actively. Therapeutic properties of various essential comfortable. In New York hospitals vanilla oils based on folklore, experiences and claims of aromatherapists and scientific oil is released under patient’s noses to help studies have been summarised in this review. In vitro studies conducted by the them relax before an MRI scan. Italian author on antimicrobial and anthelmintic properties of some essential oils have research has shown it to relieve anxiety also been discussed. and fear. Keywords: Essential oils, Therapeutics, Aromatherapy, Antimicrobial, Anthelmintic. Modes of essential oil usage IPC Code; Int. cl.7 ⎯ C11B 9/00, A61P/00, A61P 31/00, A61P 33/10 Inhalation for respiratory tract infections and physiological effect, topical Introduction anointments. -
Sesquiterpene Variation in West Australian Sandalwood (Santalum Spicatum)
Article Sesquiterpene Variation in West Australian Sandalwood (Santalum spicatum) Jessie Moniodis 1,2,3,*, Christopher G. Jones 1, Michael Renton 1,4, Julie A. Plummer 1, E. Liz Barbour 1, Emilio L. Ghisalberti 2 and Joerg Bohlmann 3 1 School of Biological Sciences (M084), University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia; [email protected] (C.G.J.); [email protected] (M.R.); [email protected] (J.A.P.); [email protected] (E.L.B.) 2 School of Chemistry and Biochemistry (M310), University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia; [email protected] 3 Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada; [email protected] 4 School of Agriculture and Environment, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia * Correspondence: [email protected]; Tel.: +61-(08)-6488-4478 Academic Editors: Robert M. Coates and Derek J. McPhee Received: 13 April 2017; Accepted: 19 May 2017; Published: 6 June 2017 Abstract: West Australian sandalwood (Santalum spicatum) has long been exploited for its fragrant, sesquiterpene-rich heartwood; however sandalwood fragrance qualities vary substantially, which is of interest to the sandalwood industry. We investigated metabolite profiles of trees from the arid northern and southeastern and semi-arid southwestern regions of West Australia for patterns in composition and co-occurrence of sesquiterpenes. Total sesquiterpene content was similar across the entire sample collection; however sesquiterpene composition was highly variable. Northern populations contained the highest levels of desirable fragrance compounds, α- and β-santalol, as did individuals from the southwest. -
Identification of Market Adulterants in East Indian Sandalwood Using DNA Barcoding Arun Suma, E
Identification of market adulterants in East Indian sandalwood using DNA barcoding Arun Suma, E. M. Muralidharan, P. Sujanapal, M. Balasundaran To cite this version: Arun Suma, E. M. Muralidharan, P. Sujanapal, M. Balasundaran. Identification of market adulter- ants in East Indian sandalwood using DNA barcoding. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2014, 71 (6), pp.517-522. 10.1007/s13595-013-0354-0. hal- 01101762 HAL Id: hal-01101762 https://hal.archives-ouvertes.fr/hal-01101762 Submitted on 9 Jan 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annals of Forest Science (2014) 71:517–522 DOI 10.1007/s13595-013-0354-0 ORIGINAL PAPER Identification of market adulterants in East Indian sandalwood using DNA barcoding Suma Arun Dev & E. M. Muralidharan & P. Sujanapal & M. Balasundaran Received: 23 April 2013 /Accepted: 2 December 2013 /Published online: 17 December 2013 # INRA and Springer-Verlag France 2013 Abstract and E. monogynum, the former was more similar to S. album & Context East Indian sandalwood (Santalum album L.) in and grouped together in the dendrogram. commercial markets is highly prone to adulteration. -
Botanicals and Contact Allergy
Botanicals Botanicals and Contact plant extracts Allergy essential oils increasingly popular additives cosmetics Christen M. Mowad MD cosmeceuticals Geisinger Medical Center personal care products aromatherapy Danville, PA 17821 massage therapy [email protected] medicinal/healing properties fragrances Botanicals Botanicals - composition push to naturals highly variable consumers dependent on plant part “If natural has to be OK” leaf fewer side effects root industry has added botanicals everywhere fruit cosmetics stem shampoos flower soaps bath gels Botanicals - composition Botanicals and Adverse Events highly variable patients increasingly using them concentration, antigeniticy can differ felt to be Natural and therefore harmless timing of harvest patients may neglect to mention usage Where the plant was grown need to ask processing of plant 1 Botanicals and Adverse Events Botanicals and Phototoxicity Irritant contact dermatitis Balsam of Peru Allergic contact dermatitis Carotene Photocontact dermatitis Cinnamic aldehyde Contact urticaria Essential oils Pigmentation abnormalities Furocoumarins Acneiform eruptions Oak moss Seminars in Derm 15(2):78-82,1996. Botanicals and Contact Urticaria Botanicals and Pigmentation Balsam of Peru Red discoloration by terpenes Benzoic acid Lemon, lime, orange, juniper Camphor Postinflammatory depigmentation Cinnamic alcohol Capsicum Postinflammatory hyperpigmentation Caraway oil Benzyl alcohol Cinnamic acid, alcohol, aldehyde Benzyl salicylate Coumarin Cananga oil Henna Cinnamic alcohol Ethyl vanilla Geraniol Eugenol Seminars in Derm 15(2):78-82,1996. Botanicals and Acneiform Eruptions Botanical Allergy Location Cocoa butter Frequency Coconut oil Location Simpson Thomson Corn oil Axilla 14.3% 10% Linseed oil Extremities 50% 21% Face/Neck 21.4% 41% Olive oil Trunk 21.4% 10% Peanut oil Genitalia 14.3% Pine tar Generalized 7% Sesame oil Exposed 14% Hand 14% Seminars in Derm 15(2):78-82,1996. -
Eucalyptus Essential Oil Is Enjoyed for Its Fresh, Clean Aroma
Eucalyptus Eucalyptus radiata 15 mL PRODUCT INFORMATION PAGE PRODUCT DESCRIPTION Eucalyptus comes from evergreen trees that grow up to 50 feet in height. The chemical structure of Eucalyptus makes it ideal for creating a soothing massage. Steam distilled from the leaves, Eucalyptus essential oil is enjoyed for its fresh, clean aroma. Diffuse Eucalyptus oil to promote a stimulating and rejuvenating environment. USES Cosmetic • Massage daily onto lower abdomen for a soothing massage. • Add one drop to moisturizer and apply to skin for revitalizing benefits. • Place three drops Eucalyptus in bottom of shower to invigorate senses. Application: • Dilute with Fractionated Coconut Oil and apply to chest Plant Part: Leaf and breathe deeply. Extraction Method: Steam distillation • Place one to two drops in hands, rub together, and inhale Aromatic Description: deeply for an invigorating aroma. Camphoraceous, airy Household Main Chemical Components: • During winter months, diffuse Eucalyptus to promote Eucalyptol, alpha-terpineol vitality. • Diffuse Eucalyptus to enjoy its purifying properties when foul odors are in the air. PRODUCT DESCRIPTION Diffusion: Use three to four drops in the diffuser of choice. Eucalyptus Eucalyptus radiata 15 mL Topical use: When used topically, dilute 1 drop with 5-10 drops of carrier oil to minimize skin sensitivity. Part Number: 30061713 Wholesale: $21.75 CAD CAUTIONS Retail: $29.00 CAD PV: 18 Possible skin sensitivity. Keep out of reach of children. If you are pregnant, nursing, or under a doctor’s care, consult your physician. Avoid contact with eyes, inner ears, and sensitive areas. All words with trademark or registered trademark symbols are trademarks or registered trademarks of dōTERRA Holdings, LLC ©2018 dōTERRA Holdings, LLC Eucalyptus PIP CA EN 010919. -
Antibacterial Effect of Eucalyptus Oil, Tea Tree Oil, Grapefruit Seed Extract, Potassium Sorbate, and Lactic Acid for the Development of Feminine Cleansers
International Journal of Internet, Broadcasting and Communication Vol.13 No.2 82-92 (2021) http://dx.doi.org/10.7236/IJIBC.2021.13.2.82 IJIBC 21-2-12 Antibacterial Effect of Eucalyptus Oil, Tea Tree Oil, Grapefruit Seed Extract, Potassium Sorbate, and Lactic Acid for the development of Feminine Cleansers Young Sam Yuk * Lecturer , Department of Clinical Medical Science, Graduate School of Health and Welfare, Dankook University, Cheonan 31116, Republic of Korea E-mail: [email protected] Abstract Purpose : It has been reported that the diversity and abundance of microbes in the vagina decrease due to the use of antimicrobial agents, and the high recurrence rate of female vaginitis due to this suggests that a new treatment is needed. Methods : In the experiment, we detected that 10% potassium sorbate solution, 1% eucalyptus oil solution, 1% tea tree oil solution, 400 µL/10 mL grapefruit seed extract solution, 100% lactic acid, 10% acetic acid solution, and 10% lactic acid solution were prepared and used. After adjusting the pH to 4, 5, and 6 with lactic acid and acetic acid in the mixed culture medium, each bacterium was inoculated into the medium and incubated for 72 h at 35°C. Incubate and 0 h each. 24 h. 48 h. The number of bacteria was measured after 72 h. Results : In the mixed culture test between lactic acid bacteria and pathogenic microorganisms, lactic acid bacteria showed good results at pH 5–5.5. Potassium sorbate, which has varying antibacterial activity based on the pH, killed pathogenic bacteria and allowed lactic acid bacteria to survive at pH 5.5. -
Prominence of Sandalwood (White and Red) Handicraft in the Interiors with Respect to Aromatherapy
Poralla Vaishnavi, Srivastava Srishti; International Journal of Advance Research, Ideas and Innovations in Technology ISSN: 2454-132X Impact factor: 6.078 (Volume 6, Issue 5) Available online at: https://www.ijariit.com Prominence of Sandalwood (white and red) handicraft in the interiors with respect to aromatherapy Vaishnavi Poralla Srishti Srivastava [email protected] [email protected] Jawaharlal Nehru Architecture and Fine Arts University, Jawaharlal Nehru Architecture and Fine Arts University, Hyderabad, Telangana Hyderabad, Telangana ABSTRACT India being the hub for divine wooden handicrafts due to the rare plant species grown here like Santalum album (Sandalwood) and Pterocarpus santalinus (Red sanders) which come under tropical trees are the most valuable and sacred trees associated with the culture, tradition and medicine; Sandalwood’s treasured aroma is extracted from tree’s heartwood and also it is one of the finest natural materials for carving. Since ancient times the traditional way to extract the sandalwood paste is with the help of sacred rubbing stone and sandalwood smoke is by burning the incense sticks in sacred metal or mud burners for medicine and traditional rituals. Taking the concept from the traditional process of extracting; some of interior elements shall be created to spread the aroma of Santalum album into the interiors from the passages of traditional Jharokhas(stone oriel window) and Mashrabiya(wooden oriel window) on the other side creating interior elements like 3d layered wall murals, side brackets, wall brackets, carved pelmets, etc. with Pterocarpus santalinus. As it is the most costly wood, 3d layered wall murals are designed with ombre effect instead of solid wall murals by using less material for a larger space which makes it cost effective and gives an insight for sustainability and these most exquisite sandalwood carvings are made by skilled craftsman cast in situ to prevent damage due to transport. -
Sandalwood Research: a Global Perspective
Subasinghe /Journal of Tropical Forestry and Environment Vol. 3, No. 01 (2013) 1-8 Feature Article Sandalwood Research: A Global Perspective S.M.C.U.P. Subasinghe Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka 1. Introduction Sandalwood is a commercially and culturally important plant species belonging to the family Santalaceae and the genus Santalum. Sandalwood oil extracted from the heartwood has been used for perfumery, medicinal, religious and cultural purposes over centuries of years. In addition to oil, the wood and its powder are used for religious, cultural and medicinal purposes especially in the Asian and Arab regions. There are around 18 sandalwood species belonging to the genus Santalum which are; S. freycinetianum , S. haleakalae , S. ellipticum , S. peniculatum , S. pyrularium , S. involutum , S. boninese, S. insulare, S. austrocaledonicum, S. yasi, S. macgregorii, S. accuminatum, S. murrayanum, S. obtusifolium, S. lanceolatum, S. fernandezianum, S. salicifolium and S. spicatum. All the sandalwood species are identified as obligate wood hemi-parasites which means they absorb certain nutrients such as phosphates and nitrates from the host trees via root connections called haustoria. The global distribution of the sandal family is between 30 degrees N and 40 degrees S from Indonesia in West to Juan Fernandez Island in the north to New Zealand in the South. These species are mainly found in India, Indonesia, Australia, Timor, Hawaii etc. Out of the 18 species mentioned above, about 6 species can be found in Hawaii Islands which shows the highest sandalwood diversity. The main reason for the economic and cultural value of sandalwood is the oil contained in the sandalwood timber, mainly in the heartwood. -
Nearby Dis1-Ricts
~ T•R· E· E·S -==-====-=== Of ---- . DRYANDRA ~---- - and ._---~==- ======i NEARBY DIS1-RICTS - '-· , . by Ken Wallace ~ DEPARTMENT OF CONSERVATION AND ND MANAGEMENT / NAT/VE TREES OF DRYANDRA AND NEARBY DISTRICTS Acknowledgements any people assisted with the production of th is key. I would like to thank CSIRO (Australia) for their approval to use the diagrams of eucalyptus buds and fruits taken from the book Eucalyptus Buds and Fruits published by the Forestry Bureau in 1968. Other illustrations were drawn by Sue Patrick (Figures 18-20, 22-27, 29, 32-33) and Margaret Pieroni (Figures 21, 28, 30-31, 34), and Figure 1 was prepared by Bob Symons. The document was typed by Barb Kennington and designed by Steve Murnane. Comments by Ken Atkins, Brad Bourke, Roger Edmiston, Mal Graham, Steve Hopper, Penny Hussey and Neville Marchant greatly improved the text. Ken Wallace NATIVE TREES OF DRYANDRA AND NEARBY DISTRICTS NATIVE TREES OF DRYANDRA AND NEARBY DISTRICTS Introduction Further Read ing [i] ryandra State Forest is about 20 kilometres to the he books and articles listed below provide further north-west of Narrogin (Figure 1). information on the trees described in this key. While plantations of brown mallet in the forest support a BENNETT, E.M. (1982). A guide to the Western Australian local timber industry, nature conservation is the area's she-oaks (Allocasuarina and Casuarina species). The primary value. Western Australian Naturalist 15 (4): 1-77. Dryandra contains the largest area of native woodlands BLACKALL, W.E. and GRIEVE, B.J. How to Know on the western edge of the wheatbelt, and it provides Westem Australian Wildflowers, Parts I-IV.