Twizel Highlights
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
New Zealand's Tour Company
NEW ZEALAND’S TOURNumber COMPANY 1 Rated! SOURCE: RANKERS 1 THE TRIP OF A LIFETIME hakatours.com Haka Tours started out with the core belief that smaller groups make [email protected] for the best tour experience. That’s why our average tour size is just Ph: +64 3 980 4252 10-12 people, and we restrict numbers to 16. A road trip with a small AUS Free Phone: 1 800 542 662 group of like-minded people with the same attitude, is what best describes our tours. youtube.com/HakaTours facebook.com/HakaTours twitter.com/HakaTours instagram.com/HakaTours WE GET IT – AFTER ALL, WANT TO READ WE ARE TRAVELLERS OURSELVEs. GENUINE, INDEPENDENT REVIEWS ABOUT Because our tour groups are smaller, we have the scope to be flexible. If it’s a hot, HAKA TOURS? sunny day and there is a beach nearby, then we’ll stop for a swim. If we’re in the mood for a long, lazy lunch, then we’ll do just that. Then we suggest you visit WWW.RANKERS.CO.NZ And because our buses are smaller and much more mobile, we can veer far away from the main roads and take you to some cool places that the bigger bus companies can simply not go. CHECK OUT OUR AWESOME UP-MARKET We must be doing something right. For the last two years we have beaten over BACKPACKER BRAND, 4,000 other tourism businesses in New Zealand to be named the #1 commercial HAKA LODGE! tourism business in the country. HAKALODGE.COM 2 3 “PEOPLE DO NOT DECIDE TO BECOME EXTRAORDINARY. -
Aoraki Mount Cook
Aoraki Mount Cook: Environmental Change on an Iconic Mountaineering Route Authors: Heather Purdie, and Tim Kerr Source: Mountain Research and Development, 38(4) : 364-379 Published By: International Mountain Society URL: https://doi.org/10.1659/MRD-JOURNAL-D-18-00042.1 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Mountain-Research-and-Development on 1/23/2019 Terms of Use: https://bioone.org/terms-of-use Mountain Research and Development (MRD) MountainResearch An international, peer-reviewed open access journal Systems knowledge published by the International Mountain Society (IMS) www.mrd-journal.org Aoraki Mount Cook: Environmental Change on an Iconic Mountaineering Route Heather Purdie1* and Tim Kerr2 * Corresponding author: [email protected] 1 University of Canterbury, Department of Geography, Arts Road, Private Bag 4800, Christchurch 8140, New Zealand 2 Aqualinc Research Ltd, Aviation House, Unit 3, 12 Orchard Road, Burnside, Christchurch 8053, New Zealand Ó 2018 Purdie and Kerr. -
High-Precision 10Be Chronology of Moraines in the Southern Alps Indicates Synchronous Cooling in Antarctica and New Zealand 42,000 Years Ago ∗ Samuel E
Earth and Planetary Science Letters 405 (2014) 194–206 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl High-precision 10Be chronology of moraines in the Southern Alps indicates synchronous cooling in Antarctica and New Zealand 42,000 years ago ∗ Samuel E. Kelley a, ,1, Michael R. Kaplan b, Joerg M. Schaefer b, Bjørn G. Andersen c,2, David J.A. Barrell d, Aaron E. Putnam b, George H. Denton a, Roseanne Schwartz b, Robert C. Finkel e, Alice M. Doughty f a Department of Earth Sciences and Climate Change Institute, University of Maine, Orono, ME 04469, USA b Lamont–Doherty Earth Observatory, Palisades, NY 10964, USA c Department of Geosciences, University of Oslo, Oslo, Norway d GNS Science, Dunedin, New Zealand e Lawrence Livermore National Laboratory, Livermore, CA 94550, USA f Department of Earth Sciences, Dartmouth College, Hanover, NH 03750, USA a r t i c l e i n f o a b s t r a c t Article history: Millennial-scale temperature variations in Antarctica during the period 80,000 to 18,000 years ago are Received 13 July 2013 known to anti-correlate broadly with winter-centric cold–warm episodes revealed in Greenland ice Received in revised form 22 July 2014 cores. However, the extent to which climate fluctuations in the Southern Hemisphere beat in time with Accepted 25 July 2014 Antarctica, rather than with the Northern Hemisphere, has proved a controversial question. In this study Available online 16 September 2014 we determine the ages of a prominent sequence of glacial moraines in New Zealand and use the results Editor: G.M. -
New Zealand 24 Days/23 Nights
Tour Code NZG 2018 New Zealand 24 days/23 nights An exceptional adventure awaits you at the other end of the world, discover the natural beauty of New Zealand. Nowhere else in the world will you find such a variety of landscapes: Glaciers, volcanic mountains, hot springs, lakes, Pacific coasts, virgin forests, snow-capped mountains and deep valleys opening onto fjords. New Zealand concentrates all the most beautiful European landscapes. A unique cycling experience! Day 1 and 2: Departure from Paris to Day 7 Moeraki – Naseby 49km Christchurch South Island In the morning, leave by bus to the Macraes The circuit runs along the Mt-Aspiring Flat, the largest active gold mine in New National Park. In clear weather you can see Depart for a long flight of approximately 24h00 Zealand. Since 1990, 1.8 million gold bars the snow-capped peaks glittering in the sun. to one of the furthest lands from Europe. have been extracted from this mine. We can A bus ride from the swamp forest of observe the area from a beautiful belvedere. Kahikatea to the Fox Glacier followed by a Day 3: Christchurch One of the most beautiful bike stages awaits short hike takes you to the foot of the glacier us. From 500m above sea level, it's time for Welcome to Christchurch, New Zealand's in the middle of the rainforest. a descent to the village of Hyde. The circuit second largest town, which stands above the follows the gold prospectors Otago Rail Trail, Pacific coast. Shortly after your arrival, you will Jour 12 Glacier le Fox Hotitika 67km a disused railway track dating from 1879, have the opportunity to visit the city and Port through tunnels and over viaducts with an Hill where you can admire the view of the impressive view of the Otago landscape. -
Farming in North Otago
FARMING IN NORTH OTAGO J. D. CURRIE Ministry of Agriculture and Fisheries, Oarnaru Abstract North Otago is a well-established, efficiently farmed district. Primary production, which grossed an estimated $20 million in the 1973-4 season, will continue to be the major source of regional revenue. The geographic character and the soil resources of the district are described with a comprehensive coverage of historical development, current farming practices and future opportunities for pastoral development. The principal factor limiting agriculture in North Otago is a climate characterized by low, variable rainfall. Pastoral potential is closely tied to investment in oversowing, lucerne and irrigation. Successful farming under difhcult environmental conditions demands above-average ability. The managerial skill of North Otago’s farmers is an outstanding regional resource that augurs well for the future. GEOGRAPHIC DESCRIPTION NORTH OTAGO is a well-defined region. The northern, Canterbury, boundary follows the Waitaki River to its snowfield source in the Southern Alps beyond Lake Ohau. Above Kurow are the hydro dams, below Kurow the river remains as a broad natural boundary, flowing in swift braided channels down a bouldery bed to the sea. The southern boundary that isolates North Otago from its parent province is a mountain wall running north-west from Shag Point to the Lindis Pass and on to the Alps. A fork in the mountains that sweep round from Danseys Pass to Kurow divides North Otago into two districts that are distinct in nature and development. Inland, at Omarama, the sparsely populated run country is similar to Central Otago. Below Kurow is the more closely settled country, The moun- tains and foothills are only suited to extensive grazing, but most of the lower country is made up of rolling loessial downs, good natural grassland, much of it arable. -
Alps 2 Ocean Cycle Trail Visitor Survey 2020
LEAP Research Report No. 52 Alps 2 Ocean Cycle Trail Visitor Survey 2020 Lena Mkwara David Simmons Geoffrey Kerr November 2020 Alps 2 Ocean Cycle Trail Visitor Survey 2020 Lena Mkwara David Simmons Geoffrey Kerr Land Environment and People Research Report Report No. 52 November 2020 ISSN 1172-0859 (Print) ISSN 1172-0891 (PDF) ISBN 978-0-86476-452-2 (Print) ISBN 978-0-86476-455-3 (PDF) Lincoln University, Canterbury, New Zealand Abstract This report presents the findings from a 2020 survey of Alps 2 Ocean Cycle Trail (A2O) cyclists. COVID-19 cancelled fieldwork before data collection was complete. The limited data indicate that cyclists are extremely satisfied with the A2O and associated services, and make substantial expenditures associated with their ride. The A2O was a strong attractant to cyclists, the large majority of whom would not have visited the districts in the absence of the trail. Keywords A2O Cycle Trail, tourist attractions, tourism spending, economic attribution model, Mackenzie District, Waitaki District Acknowledgements This project benefitted immensely from the contributions of others. We wish to thank the following people for their generosity and assistance. Waitaki District Council, Tourism Waitaki and Cycle Journeys for their guidance and support. Accommodation providers and visitor centre operators who assisted with the distribution of survey cards. Lincoln University colleagues who peer reviewed the survey instrument. Dr Sally Driml, University of Queensland, for peer review of the survey instrument and the economic attribution model. Dr Yvonne Mathews, University of Waikato/Waikato Regional Council, for structuring the interactive mapping inputs. Dr Bentry Mkwara for GIS mapping assistance. -
Alpine Competition Handbook 2018
ALPINE COMPETITION HANDBOOK 2018 Published by: 78 Anderson Road, PO Box 395, Wanaka 9343, New Zealand | +64 3 443 4085 | www.snowsports.co.nz 1 Table of Contents 1 Introduction ................................................................................................................................................. 6 1.1 The Objectives of this Handbook ........................................................................................................ 6 1.2 New Zealand’s Alpine Ski Racing History ............................................................................................. 6 1.3 About Snow Sports New Zealand ........................................................................................................ 6 1.4 Alpine Sport Committee ...................................................................................................................... 7 1.5 FIS ........................................................................................................................................................ 7 1.6 World Para Alpine Skiing ..................................................................................................................... 7 1.7 Race Organising Committees............................................................................................................... 7 2 Race Organisation ........................................................................................................................................ 8 The objectives in the organisation and conduct of -
Phaedra Upton1, Rachel Skudder2 and the Mackenzie Basin Lakes
Using coupled models to place constraints on fluvial input into Lake Ohau, New Zealand Phaedra Upton1, Rachel Skudder2 and the Mackenzie Basin Lakes Team3 [email protected], 1GNS Science, 2Victoria University of Wellington, 3GNS Science + Otago University + Victoria University of Wellington 2004: no large storms 0 2000 kg/sec 1/1/10 daily rainfall Godley River modelled suspended sediment load Tasman River LakeTekapo 1/1/00 0 200 mm Lake Pukaki 1995: large summer storm 0 2000 kg/sec Hopkins River Box core #1 1/1/90 daily rainfall modelled suspended Lake Ohau Box core #2 Raymond Film Services sediment load Ahuriri River Figure 2: Lake Tekapo following a large rainfall event in its catchment. A sediment laden inflow plunges into the lake and leaves the surface waters clear. We use HydroTrend (Kettner and Syvitski 2008, Computers and 6 m core Daily Rainfall (mm) 0 200 mm Geoscience, 34) to calculate the overall sediment influx into the lake and 1/1/80 couple it to a conceptual model of how this sediment might be distributed 1969: large winter storm through the lake basin depending on the season to produce model cores. 0 2000 kg/sec 0 3 6 12 18 24km Figure 1: Located east of the main divide in the central Southern Alps, the Mackenzie Lakes; Ohau, Pukaki and Tekapo, occupy fault Figure 3: Map of Lake Ohau showing the location of the three cores we controlled glacial valleys and contain high resolution sedimentary compare our models to. daily rainfall records of the last ~17 ka. These sediments potentially contain a 1/1/70 modelled suspended record of climatic events and transitions, earthquakes along the Alpine sediment load Fault to the northwest, landscape response during and following deglaciation and recent human-influenced land use changes. -
Waitaki Clutha
Energy Link Limited 18/06/2021 Waitaki Thursday, 17 June 2021 Issue: 1261 A weekly summary relating to New Zealand hydro storage and inflows. Compiled by Energy Link Ltd. Storage Summary South Island South Island South Island North Island Total Storage Controlled Uncontrolled Total Taupo Current Storage (GWh) 1601 459 2060 71 2130 Storage Change (GWh) 48 120 169 19 188 Note: SI Controlled; Tekapo, Pukaki and Hawea: SI Uncontrolled; Manapouri, Te Anau, Wanaka, Wakatipu Transpower Security of Supply South Island North Island New Zealand Current Storage (GWh) 1925 71 1995 Note: These figures are provided to align with Transpower's Security of Supply information. However due to variances in generation efficiencies and timing, storage may not exactly match Transpower's figures. New Zealand Summary Total storage increased 187.6 GWh over the last week. South Island controlled storage increased 3.1% to 1601 GWh; South Island uncontrolled storage increased 35.5% to 459 GWh; with Taupo storage increasing 36.2% to 71 GWh. New Zealand Storage and Inflow Summary 5000 2000 4500 1750 4000 1500 3500 1250 3000 2500 1000 Clutha 2000 750 Storage (GWh) Storage 1500 (GWh) Inflows 500 1000 250 500 0 0 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Month Taupo Inflows (2021/22) South Island inflows (2021/22) South Island 2020/21 South Island 2021/22 Waikato 2020/21 Waikato 2021/22 New Zealand Storage (2021/22) New Zealand Storage (2020/21) Average SI Storage (16/17-20/21) Thursday, 17 June 2021 Manapouri Clutha Waitaki Waikato NZ Storage (GWh) This Week 324 293 1443 71 2130 Last Week 249 242 1400 52 1943 % Change 30.0% 20.9% 3.1% 36.2% 9.7% Inflow (GWh) This Week 166 117 173 51 507 Last Week 90 60 146 35 331 % Change 84.3% 96.1% 17.9% 46.8% 53.1% Subscribe at www.energylink.co.nz/publications Ph (03) 479 2475 Consultancy House Email: [email protected] Hydro Watch Dunedin Energy Link Limited 18/06/2021 Lake Levels and Outflows Catchment Lake Level Storage Outflow Outflow (m. -
NIWA Lake Benmore Model Assessment Nutrient Load Effects
Updated model assessment of the effects of increased nutrient loads into Lake Benmore Prepared for Environment Canterbury August 2015 Prepared by : Bob Spigel (NIWA) David Plew (NIWA) David Hamilton (University of Waikato) Donna Sutherland (NIWA) Clive Howard-Williams (NIWA) For any information regarding this report please contact: Bob Spigel Scientist Hydrodynamics +64-3-343 8020 [email protected] National Institute of Water & Atmospheric Research Ltd PO Box 8602 Riccarton Christchurch 8011 Phone +64 3 348 8987 NIWA CLIENT REPORT No: CHC2015-089 Report date: August 2015 NIWA Project: ENC14506 Quality Assurance Statement Reviewed by: Sandy Elliot Approved for release John Quinn by: Ohau C Canal inflow entering Haldon Arm, Lake Benmore. [Donna Sutherland, NIWA] © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the copyright owner(s). Such permission is only to be given in accordance with the terms of the client’s contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is accurate, NIWA does not give any express or implied warranty as to the completeness of the information contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated during the Project or agreed by NIWA and the Client. Contents Extended summary ............................................................................................................ -
General Distribution and Characteristics of Active Faults and Folds in the Mackenzie District, South Canterbury D.J.A
General distribution and characteristics of active faults and folds in the Mackenzie District, South Canterbury D.J.A. Barrell D.T. Strong GNS Science Consultancy Report 2010/147 Environment Canterbury Report No. R10/44 June 2010 DISCLAIMER This report has been prepared by the Institute of Geological and Nuclear Sciences Limited (GNS Science) exclusively for and under contract to Environment Canterbury. Unless otherwise agreed in writing by GNS Science, GNS Science accepts no responsibility for any use of, or reliance on, any contents of this report by any person other than Environment Canterbury and shall not be liable to any person other than Environment Canterbury, on any ground, for any loss, damage or expense arising from such use or reliance. The data presented in this report are available to GNS Science for other use from June 2010 BIBLIOGRAPHIC REFERENCE Barrell, D.J.A., Strong, D.T. 2010. General distribution and characteristics of active faults and folds in the Mackenzie District, South Canterbury. GNS Science Consultancy Report 2010/147. 22 p. © Environment Canterbury Report No. R10/44 ISBN 978-1-877574-18-4 Project Number: 440W1435 2010 CONTENTS EXECUTIVE SUMMARY .........................................................................................................II 1. INTRODUCTION ..........................................................................................................1 2. INFORMATION SOURCES .........................................................................................2 3. GEOLOGICAL OVERVIEW -
Lake Ohau Lodge to Omarama
SH80 km SECTION 4: Lake Ohau Lodge to Omarama 40 SH8 FITNESS: Intermediate SKILL:Intermediate TRAFFIC: Low GRADE: 3 PUKAKI CANAL 4 LAKE OHAU LODGE Ben Ohau Rd Glen Lyon Rd SKIFIELD CREEK Glen Lyon Rd BEN OHAU Manuka Tce LAKE OHAU Old Glen Lyon Rd PARSONS CREEK TWIZEL 3 Lake Ohau Max Smith Dr SAWYERS CREEK Rd Glen LyonOHAU Road CANAL FREEHOLD CREEK LAKE OHAU VILLAGE OHAU RIVER OHAU WEIR FLOOD ROUTE Tambrae Track LAKE RUATANIWHA LAKE MIDDLETON SH8 OHAU WEIR Lake Ohau Track Maori Swamp High Point Lake Ohau Rd HISTORIC WOOLSHED Quailburn Rd N LEVEL 1000 BENMORE RANGE 800 SH8 AORAKI/MOUNT COOK AORAKI/MOUNT LAKE OHAU LODGE LAKE OHAU 600 BRAEMAR STATION TWIZEL OMARAMA 400 OTEMATATA KUROW Quailburn Rd 200 DUNTROON OAMARU 0 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 Henburn Rd KEY: Onroad Off-road trail Ohau Weir flood route Picnic Area Prohibition Rd AHURIRI RIVER 0 1 2 3 4 5km CLAY CLIFFS Scale OMARAMA 5 www.alps2ocean.com SH83 SH8 Map current as of 24/9/13 Starting from the Lake Ohau Lodge descent to Quailburn Road [18.3km]. to see the Clay Cliffs (14km return). driveway, the trail traverses the lower From the Quailburn Road intersection you When Quailburn Road meets the slopes of the Ruataniwha Conservation can detour 2km to the historic woolshed highway [35.6km], the off-road trail winds Park, with stunning views back across the at the end of Quailburn Road (where alongside below the highway edge. basin to the Benmore Range.