Diseño Y Simulación Del Sistema De Locomoción De Un Robot Hexápodo Para Tareas De Búsqueda Y Rescate

Total Page:16

File Type:pdf, Size:1020Kb

Diseño Y Simulación Del Sistema De Locomoción De Un Robot Hexápodo Para Tareas De Búsqueda Y Rescate ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES Trabajo Fin de Grado Diseño y Simulación del Sistema de Locomoción de un Robot Hexápodo para Tareas de Búsqueda y Rescate Tutor: Dr. Antonio Barrientos Cruz Alumno: Jesús Tordesillas Torres 12431 Curso 2015/2016 Página dejada intencionadamente en blanco “Again, I was watching every person coming down, looked at their face, just to make them happy that they were getting out and we were going in and everything was okay” Kirk Long, bombero en el 11-S Página dejada intencionadamente en blanco Agradecimientos Con mucho gusto puedo dar los agradecimientos a muchas personas. Lamentablemente, en la primera página sólo se puede poner un nombre, pero es justo reconocer que este proyecto no hubiese sido posible sin la ayuda de muchos personas cercanas. En primer lugar, como no, gracias a mi familia. Gracias a mi madre por la lectura atenta y revisión del trabajo. Gracias a mi padre por la ayuda en la revisión del encoder del banco de ensayos. Gracias a mis hermanos Pablo y Alberto por acompañarme en las pruebas en el campo. Y no sólo gracias por eso: gracias, simplemente, por estar ahí. También le debo dar las gracias a mi tutor Antonio Barrientos y al tutor externo Jorge. Gracias por estar siempre apoyándome incluso en las situaciones en las que parecía que todo estaba perdido. A Antonio también le debo dar especialmente las gracias por sus clases de Dinámica de Sistemas y de Robótica: gracias por tu motivación en las clases y gracias por la cercanía a los alumnos. Debo dar también las gracias a Jorge, gracias por tu cercanía, gracias por tu recordatorio «haz el setup en el bashrc» ante mi equivocación continua en Gazebo. Gracias por imprimirme todas las patas pacientemente. Y gracias por adentrarme en el mundo de la robótica. También quiero agradecer a todo el grupo de Cibernética y Robótica: Mario, David, Juanje, Jaime, Pablo, Ángela,... (y los que me quedan). Gracias por el buen ambiente que siempre hay en el laboratorio. Gracias también a Diego por la ayuda con la visión por computador. A Rafa por echarme un mano en mecanizar la pieza. A Marco y ACH por la instalación del disco SSD en mi ordenador, disco sin el cual las simulaciones no hubiesen sido posible. Como no, gracias a los hermanos Madrigal (Joseda y Juanjo) por su ayuda con el Latex y IPE. Gracias también a Eduardo Caro (profesor de la ETSII) por su ayuda con Statgraphics. Gracias a Guadalupe y a Domingo Moreno (profesores de proyectos en la ETSII) por su ayuda en la realización del EDP y del GANTT. Gracias a José María Cabanellas (profesor de la ETSII) por su consejo respecto a los planos de conjunto del robot. También debo de estar muy agradecido a todos los profesores de la ETSII: gracias por enseñarme una carrera tan apasionante como lo es la Ingeniería Industrial. Gracias por enseñarme a no quedarme con la realidad delante de mis ojos, sino saber ir más allá. Gracias por enseñarme que todo es posible por difícil que parezca. Y como no, a mis compañeros de clase Rodrigo, Pablo, Luis, Javi y Guillermo: hemos pasado y sufrido mucho juntos, pero aún nos queda.Y a mis amigos de Madrid: Javi, Jorge, los gemelos, Adrián, Óscar, Diego, Antonio, Santi, Joseda, Juanjo, ... (y no sigo la lista porque si no no acabamos) Gracias a todos III Página dejada intencionadamente en blanco Resumen Una de las aplicaciones de mayor actualidad en el campo de la Robótica es el uso de los robots en las situaciones de búsqueda y rescate. Tareas que ni bomberos, ni personal de rescate ni incluso perros pueden llegar a hacer son posibles gracias al uso de robots móviles dotados de sensores adecuados. Robots de este tipo se han usado en numerosos desastres, desde el Atentado en las Torres Gemelas de Nueva York en 2001 hasta las inundaciones en Río Blanco (Texas, 2016), pasando por el terremoto de Haití (2010) y por el accidente nuclear en Fukushima (2011). En estos desastres, robot terrestres aéreos y marítimos han ayudado en numerosas tareas, tales como la búsqueda de víctimas, el reconocimiento y mapeado de la zona, la asistencia médica y la retirada de escombros. (a) Robot Souryu entrando en una casa destrozada tras el (b) Uno de los robots usados en el 11-S terremoto Niigata Chuetsu Figura 1: Ejemplos de robots de búsqueda y rescate Sin embargo, y a a pesar de la importancia de los robots en este campo, la experiencia de desastres ya ocurridos en los que se han usado robots demuestra que los sistemas de locomoción desarrollados para los mismos no son lo suficientemente robustos y versátiles para los tipos de terrenos de las situaciones de emergencia: en dichas situaciones, los terrenos pueden variar desde una montaña de escombros hasta un terreno embarrado, montones de papeles, escaleras derruidas o vegetación apilada. Se aprecia por tanto la necesidad de un sistema de locomoción que permita el uso del robots en ese tipo de terrenos. En la investigación desarrollada hasta la actualidad se hace notar la carencia de un estudio que analice en profundidad un sistema de locomoción determinado desde todos los aspectos que lo componen: la cinemática de dicho sistema de locomoción, la dinámica del mismo, el estudio matemático y preciso de los materiales de las partes que lo componen, así como los diferentes patrones de movimiento (también conocidos como modos de marcha). Este trabajo profundiza en el diseño y simulación del sistema de locomoción de un robot para tareas de búsqueda y rescate. En primer lugar se ha estudiado el estado del arte tanto de los robots de búsqueda y rescate (en adelante robots USAR 1) como en diferentes sistemas de locomoción en robótica. En este análisis, se han recogido todas las actuaciones registradas hasta la fecha de estos robots en desastres, tantos naturales como provocados 1Urban Search and Rescue V por el hombre. Además, se han analizado los diferentes sistemas de tracción de un gran número de robots actuales, clasificándolos en función de la complejidad y la versatilidad. Una vez terminado el estado del arte, y viendo las ventajas y desventajas de cada opción, se ha decidido el sistema de locomoción del robot: sistema de locomoción por patas. Se han diseñado cinco modos de marcha del robot, en los cuales el robot va moviendo sus patas en una secuencia determinada. Estos modos de marcha se han programado y simulado usando ROS (Robot Operating System) y Gazebo (ver figura 2). Además, se han simulado en cuatro tipo de terrenos: terreno llano, terreno con rampa, terreno abrupto y terreno con obstáculos tipo esféricos y cúbicos. C´amara del Robot Rviz (Odometr´ıay TF) Mundo de Gazebo Gr´aficas Figura 2: Interfaz diseñada Posteriormente se ha desarrollado un modelo cinemático del robot considerando los diferentes modos de marcha que puede tener. Este modelo cinemático se ha comprobado tanto por simulación con Autodesk Inventor como en la realidad usando la Visión por Computador que proporciona Matlab. Asimismo, se ha estudiado el modelo dinámico del mismo. Se ha realizado tanto un modelo generalista, aplicable a cualquier modelo dinámico de la pata, como un modelo más particular en el que se modela la pata usando el modelo del péndulo invertido (SLIP-Spring Loaded Inverted Pendulum). Además, se ha aplicado el Teorema de Castigliano para hallar la deformación horizontal y vertical del eje de la pata. Los resultados obtenidos se han contrastado usando técnicas de regresión no lineal con los datos obtenidos mediante la aplicación del análisis por elementos finitos (FEA-Finite Element Analysis). Los datos analíticos se ajustan con elevada perfección a los datos obtenidos por FEA. Adicionalmente, se ha aplicado la Teoría de Elasticidad y los criterios de ruptura (Rankine y Von Mises) a diferentes materiales y diferentes formas de pata. En concreto, se han diseñado siete formas distintas de pata y cada una de ellas se ha simulado estáticamente usando FEA. Cada pata se ha simulado con siete materiales distintos: Fibra de vidrio, Fibra de Carbono, plástico ABS, Nylon 6,6, plástico PET, Polímero reforzado con Fibra de Carbono y Resina Termoplástica. A partir de estas simulaciones, se han extraídos los coeficientes de seguridad de cada pata en la situación más desfavorable, como se puede ver en la figura 3. También se han realizado simulaciones dinámicas (con la pata en movimiento) en las cuales se comprueba en qué casos la situación más desfavorable es el caso estático. Con el objetivo de analizar la idoneidad de forma de pata ante determinados terrenos, se ha construido un banco de ensayos provisto de motores para simular las patas en terrenos reales. Estos terrenos han sido tierra suelta, barro, paja, grava y terrones. A partir de los resultados obtenidos para cada tipo de terreno, y teniendo en cuenta los coeficientes de seguridad hallados mediante simulación, se ha elegido la pata idónea para cada tipo de terreno. VI ETSII-UPM Diseño del Sistema de Locomoción de un Robot de Rescate Figura 3: Distribución de los coeficientes de seguridad Para concluir el diseño del sistema de locomoción, se ha diseñado el robot en 3D (como se puede apreciar en la figura 4) y se han realizado sus planos respectivos. Asimismo, se han elegido y comprado los motores de acuerdo a los resultados obtenidos en simulación en cuanto a par de pico y velocidad máxima. También se han elegido las baterías y la electrónica que finalmente llevará el robot. Figura 4: Versión final del robot Jesús Tordesillas Torres VII Códigos UNESCO: [330419] - ROBÓTICA [120326] - SIMULACIÓN [331209] - RESISTENCIA DE MATERIALES [240102] - COMPORTAMIENTO ANIMAL [220503] - ELASTICIDAD [220501] - MECÁNICA ANALÍTICA Palabras Clave: Robot, Rescate, Hexápodo, C-Legs, Modelado, Elementos Finitos, Simulación, Resistencia, Elasticidad.
Recommended publications
  • AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
    AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies.
    [Show full text]
  • Rigid Wing Sailboats: a State of the Art Survey Manuel F
    Ocean Engineering 187 (2019) 106150 Contents lists available at ScienceDirect Ocean Engineering journal homepage: www.elsevier.com/locate/oceaneng Review Rigid wing sailboats: A state of the art survey Manuel F. Silva a,b,<, Anna Friebe c, Benedita Malheiro a,b, Pedro Guedes a, Paulo Ferreira a, Matias Waller c a Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal b INESC TEC, Campus da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal c Åland University of Applied Sciences, Neptunigatan 17, AX-22111 Mariehamn, Åland, Finland ARTICLEINFO ABSTRACT Keywords: The design, development and deployment of autonomous sustainable ocean platforms for exploration and Autonomous sailboat monitoring can provide researchers and decision makers with valuable data, trends and insights into the Wingsail largest ecosystem on Earth. Although these outcomes can be used to prevent, identify and minimise problems, Robotics as well as to drive multiple market sectors, the design and development of such platforms remains an open challenge. In particular, energy efficiency, control and robustness are major concerns with implications for autonomy and sustainability. Rigid wingsails allow autonomous boats to navigate with increased autonomy due to lower power consumption and increased robustness as a result of mechanically simpler control compared to traditional sails. These platforms are currently the subject of deep interest, but several important research problems remain open. In order to foster dissemination and identify future trends, this paper presents a survey of the latest developments in the field of rigid wing sailboats, describing the main academic and commercial solutions both in terms of hardware and software.
    [Show full text]
  • Sensors and Measurements for Unmanned Systems: an Overview
    sensors Review Sensors and Measurements for Unmanned Systems: An Overview Eulalia Balestrieri 1,* , Pasquale Daponte 1, Luca De Vito 1 and Francesco Lamonaca 2 1 Department of Engineering, University of Sannio, 82100 Benevento, Italy; [email protected] (P.D.); [email protected] (L.D.V.) 2 Department of Computer Science, Modeling, Electronics and Systems (DIMES), University of Calabria, 87036 Rende, CS, Italy; [email protected] * Correspondence: [email protected] Abstract: The advance of technology has enabled the development of unmanned systems/vehicles used in the air, on the ground or on/in the water. The application range for these systems is continuously increasing, and unmanned platforms continue to be the subject of numerous studies and research contributions. This paper deals with the role of sensors and measurements in ensuring that unmanned systems work properly, meet the requirements of the target application, provide and increase their navigation capabilities, and suitably monitor and gain information on several physical quantities in the environment around them. Unmanned system types and the critical environmental factors affecting their performance are discussed. The measurements that these kinds of vehicles can carry out are presented and discussed, while also describing the most frequently used on-board sensor technologies, as well as their advantages and limitations. The paper provides some examples of sensor specifications related to some current applications, as well as describing the recent research contributions in the field. Citation: Balestrieri, E.; Daponte, P.; Keywords: unmanned systems; UAV; UGV; USV; UUV; sensors; payload; challenges De Vito, L.; Lamonaca, F. Sensors and Measurements for Unmanned Systems: An Overview.
    [Show full text]
  • A Low Cost Prototypal Robotic Platform for Underwater Survey in Shallow Water
    Advances in Robotics & Mechanical Engineering DOI: 10.32474/ARME.2020.02.000150 ISSN: 2643-6736 Research Article A Low Cost Prototypal Robotic Platform for Underwater Survey in Shallow Water Conte G*, Scaradozzi D and Ciuccoli N Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Italy *Corresponding author: G Conte, Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, 60131 Ancona, Received: November 12, 2020 Published: November 30, 2020 Abstract A small, innovative robotic platform for underwater surveys in shallow water is proposed. The platform integrates a The mechatronic structure and the control architecture of the platform are described together with its functional features. Tests commercially available, remotely operated, underwater micro vehicle and a specifically designed and constructed actuated buoy. geolocalizing underwater targets. to validate the implemented constructive solutions are briefly reported, together with functional tests to assess usability in Keywords: Marine robotics; Remotely operated vehicles; Autonomous surface vehicles Introduction functional structure surface and underwater vehicles may be Remotely operated underwater vehicles or ROV are a fundamental tool for inspecting underwater structures in e.g. paper, we describe the development of a small prototypal hybrid costly, complex to operate and logistically demanding. In this robotic platform that overcomes these limiting characteristics. The of an ROV with a surface autonomous vehicle or ASV, which harbour areas, rivers, natural and artificial lakes. Integration platform integrates an actuated buoy, as surface component, and acts as a bridge for communication with a remote station, can The idea of coupling cooperating autonomous surface vehicles and a micro-ROV, as underwater component. The bouy and the micro- significantly increase autonomy, versatility and efficiency [1,2].
    [Show full text]
  • A Survey on Unmanned Surface Vehicles for Disaster Robotics: Main Challenges and Directions
    sensors Review A Survey on Unmanned Surface Vehicles for Disaster Robotics: Main Challenges and Directions Vitor A. M. Jorge 1,*,† , Roger Granada 1,* , Renan G. Maidana 1 , Darlan A. Jurak 1 , Guilherme Heck 1 , Alvaro P. F. Negreiros 2, Davi H. dos Santos 2 and Luiz M. G. Gonçalves 2 and Alexandre M. Amory 1,* 1 School of Technology, Pontíficia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; [email protected] (R.G.M.); [email protected] (D.A.J.); [email protected] (G.H.) 2 Department of Computer Engineering and Automation, Universidade Federal do Rio Grande do Norte, Natal, RN 59078-970, Brazil; [email protected] (A.P.F.N.); [email protected] (D.H.d.S.); [email protected] (L.M.G.G.) * Correspondence: [email protected] (V.A.M.J.); [email protected] (R.G.); [email protected] (A.M.A.) † Current address: Electronics Engineering Division (IEE), Instituto Tecnológico de Aeronáutica, São José dos Campos, SP 12228-900, Brazil. Received: 29 December 2018; Accepted: 31 January 2019; Published: 8 February 2019 Abstract: Disaster robotics has become a research area in its own right, with several reported cases of successful robot deployment in actual disaster scenarios. Most of these disaster deployments use aerial, ground, or underwater robotic platforms. However, the research involving autonomous boats or Unmanned Surface Vehicles (USVs) for Disaster Management (DM) is currently spread across several publications, with varying degrees of depth, and focusing on more than one unmanned vehicle—usually under the umbrella of Unmanned Marine Vessels (UMV).
    [Show full text]
  • Robotics For
    TECHNICAL PROGRESS REPORT ROBOTIC TECHNOLOGIES FOR THE SRS 235-F FACILITY Date Submitted: August 12, 2016 Principal: Leonel E. Lagos, PhD, PMP® FIU Applied Research Center Collaborators: Peggy Shoffner, MS, CHMM, PMP® Himanshu Upadhyay, PhD Alexander Piedra, DOE Fellow SRNL Collaborators: Michael Serrato Prepared for: U.S. Department of Energy Office of Environmental Management Cooperative Agreement No. DE-EM0000598 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, nor any of its contractors, subcontractors, nor their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any other agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. FIU-ARC-2016-800006472-04c-235 Robotic Technologies for SRS 235F TABLE OF CONTENTS Executive Summary .....................................................................................................................................
    [Show full text]
  • A Holistic Approach for Highly Versatile Supervised Autonomous Urban Search and Rescue Robots
    A Holistic Approach for Highly Versatile Supervised Autonomous Urban Search and Rescue Robots Vom Fachbereich Informatik der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation von Dipl.-Inform. Stefan Kohlbrecher (geboren in Hannover) Referent: Prof. Dr. Oskar von Stryk Korreferent: Prof. Dr. Daniele Nardi (Sapienza Università di Roma, Italien) Tag der Einreichung: 20.10.2015 Tag der mündlichen Prüfung: 02.12.2015 D17 Darmstadt 2016 Please cite this document as URN: urn:nbn:de:tuda-tuprints-58162 URL: http://tuprints.ulb.tu-darmstadt.de/5816 This document is provided by tuprints, E-Publishing-Service of the TU Darmstadt http://tuprints.ulb.tu-darmstadt.de [email protected] Contents Abstract 1 Kurzdarstellung 3 1 Introduction 5 1.1 Motivation . 5 1.2 Outline of this Work . 8 2 Background 11 2.1 Robots for Disaster Response . 11 2.1.1 State of the Art . 11 2.1.2 Unmanned Ground Vehicle Platforms . 13 2.1.3 Constrained Communication . 13 2.1.4 Real Disaster Response Examples . 14 2.2 Benchmarking . 15 2.2.1 NIST Standard Test Methods for Response Robots . 15 2.2.2 RoboCup Rescue . 16 2.2.3 DARPA Robotics Challenge . 17 2.2.4 euRathlon . 18 3 Robots Used in this Thesis 19 3.1 Hector Unmanned Ground Vehicles . 19 3.2 Atlas . 22 3.3 THOR-MANG . 23 3.4 Hector Centaur . 24 4 System Architecture 27 4.1 Requirements for a Holistic Approach . 27 4.2 Related Work . 29 4.2.1 Flexible Level of Interaction .
    [Show full text]
  • U.S. Navy Employment Options for UNMANNED SURFACE VEHICLES (Usvs)
    CHILDREN AND FAMILIES The RAND Corporation is a nonprofit institution that EDUCATION AND THE ARTS helps improve policy and decisionmaking through ENERGY AND ENVIRONMENT research and analysis. HEALTH AND HEALTH CARE This electronic document was made available from INFRASTRUCTURE AND www.rand.org as a public service of the RAND TRANSPORTATION Corporation. INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY Skip all front matter: Jump to Page 16 POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY Support RAND Purchase this document TERRORISM AND HOMELAND SECURITY Browse Reports & Bookstore Make a charitable contribution For More Information Visit RAND at www.rand.org Explore the RAND National Defense Research Institute View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. This report is part of the RAND Corporation research report series. RAND reports present research findings and objective analysis that address the challenges facing the public and private sectors. All RAND reports undergo rigorous peer review to ensure high standards for re- search quality and objectivity. U.S. Navy Employment Options for UNMANNED SURFACE VEHICLES (USVs) Scott Savitz, Irv Blickstein, Peter Buryk, Robert W.
    [Show full text]
  • Artificial Intelligence, Strategic Stability and Nuclear Risk
    SIPRI ARTIFICIAL INTELLIGENCE, Policy Paper STRATEGIC STABILITY AND NUCLEAR RISK VINCENT BOULANIN, LORA SAALMAN, PETR TOPYCHKANOV, FEI SU AND MOA PELDÁN CARLSSON June 2020 STOCKHOLM INTERNATIONAL PEACE RESEARCH INSTITUTE SIPRI is an independent international institute dedicated to research into conflict, armaments, arms control and disarmament. Established in 1966, SIPRI provides data, analysis and recommendations, based on open sources, to policymakers, researchers, media and the interested public. The Governing Board is not responsible for the views expressed in the publications of the Institute. GOVERNING BOARD Ambassador Jan Eliasson, Chair (Sweden) Dr Vladimir Baranovsky (Russia) Espen Barth Eide (Norway) Jean-Marie Guéhenno (France) Dr Radha Kumar (India) Ambassador Ramtane Lamamra (Algeria) Dr Patricia Lewis (Ireland/United Kingdom) Dr Jessica Tuchman Mathews (United States) DIRECTOR Dan Smith (United Kingdom) Signalistgatan 9 SE-169 72 Solna, Sweden Telephone: + 46 8 655 9700 Email: [email protected] Internet: www.sipri.org Artificial Intelligence, Strategic Stability and Nuclear Risk vincent boulanin, lora saalman, petr topychkanov, fei su and moa peldán carlsson June 2020 Contents Preface v Acknowledgements vi Abbreviations vii Executive Summary ix 1. Introduction 1 Box 1.1. Key definitions 6 2. Understanding the AI renaissance and its impact on nuclear weapons 7 and related systems I. Understanding the AI renaissance 7 II. AI and nuclear weapon systems: Past, present and future 18 Box 2.1. Automatic, automated, autonomous: The relationship between 15 automation, autonomy and machine learning Box 2.2. Historical cases of false alarms in early warning systems 20 Box 2.3. Dead Hand and Perimetr 22 Figure 2.1. A brief history of artificial intelligence 10 Figure 2.2.
    [Show full text]
  • IROS 2015 Digest
    2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2015) Hamburg, Germany 28 September – 2 October 2015 Pages 1-708 IEEE Catalog Number: CFP15IRO-POD ISBN: 978-1-4799-9995-8 1/8 TABLE OF CONTENTS CHARACTERIZATION OF HANDOVER ORIENTATIONS USED BY HUMANS FOR EFFICIENT ROBOT TO HUMAN HANDOVERS .............................................................................................................................................................................1 Chan, Wesley P. ; Pan, Matthew K.X.J. ; Croft, Elizabeth A. ; Inaba, Masayuki CO-MANIPULATION WITH MULTIPLE PROBABILISTIC VIRTUAL GUIDES ..............................................................................7 Raiola, Gennaro ; Lamy, Xavier ; Stulp, Freek ELECTRIC STIMULATION FEEDBACK FOR GAIT CONTROL OF WALKING ROBOT............................................................14 Hasegawa, Yasuhisa ; Nakayama, Keisuke ; Ozawa, Kohei ; Mengze Li ADAPTIVE OPTIMAL CONTROL FOR COORDINATION IN PHYSICAL HUMAN-ROBOT INTERACTION ........................20 Li, Yanan ; Tee, Keng Peng ; Yan, Rui ; Chan, Wei Liang ; Wu, Yan ; Limbu, Dilip Kumar A PRE-COLLISION CONTROL STRATEGY FOR HUMAN-ROBOT INTERACTION BASED ON DISSIPATED ENERGY IN POTENTIAL INELASTIC IMPACTS.........................................................................................................26 Rossi, Roberto ; Polverini, Matteo Parigi ; Zanchettin, Andrea Maria ; Rocco, Paolo COMPLIANT WING DESIGN FOR A FLAPPING WING MICRO AIR VEHICLE...........................................................................32
    [Show full text]
  • Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress
    Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress Updated September 30, 2021 Congressional Research Service https://crsreports.congress.gov R45757 SUMMARY R45757 Navy Large Unmanned Surface and Undersea September 30, 2021 Vehicles: Background and Issues for Congress Ronald O'Rourke The Navy wants to develop and procure three types of large unmanned vehicles (UVs) called Specialist in Naval Affairs Large Unmanned Surface Vehicles (LUSVs), Medium Unmanned Surface Vehicles (MUSVs), and Extra-Large Unmanned Undersea Vehicles (XLUUVs). The Navy’s proposed FY2022 budget requests $434.1 million in research and development funding for these large UVs and their enabling technologies. The Navy wants to acquire these large UVs as part of an effort to shift the Navy to a more distributed fleet architecture. Compared to the current fleet architecture, this more distributed architecture is to include a smaller proportion of larger ships (such as large-deck aircraft carriers, cruisers, destroyers, large amphibious ships, and large resupply ships), a larger proportion of smaller ships (such as frigates, corvettes, smaller amphibious ships, and smaller resupply ships), and a new third tier of large UVs. The Navy envisions LUSVs as being 200 feet to 300 feet in length and having full load displacements of 1,000 tons to 2,000 tons, which would make them the size of a corvette. (i.e., a ship larger than a patrol craft and smaller than a frigate). The Navy wants LUSVs to be low-cost, high-endurance, reconfigurable ships based on commercial ship designs, with ample capacity for carrying various modular payloads—particularly anti-surface warfare (ASuW) and strike payloads, meaning principally anti-ship and land-attack missiles.
    [Show full text]
  • Swarm Robotics: a Perspective on the Latest Reviewed Concepts and Applications
    sensors Review Swarm Robotics: A Perspective on the Latest Reviewed Concepts and Applications Pollyanna G. Faria Dias 1,∗ , Mateus C. Silva 1 , Geraldo P. Rocha Filho 2 , Patrícia A. Vargas 3 , Luciano P. Cota 4 and Gustavo Pessin 1,4 1 Department of Computer Science, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil; [email protected] (M.C.S.); [email protected] (G.P.) 2 Department of Computer Science, University of Brasília, Brasília 70910-900, Brazil; [email protected] 3 Edinburgh Centre for Robotics, Heriot-Watt University, Edinburgh EH14 4AS, UK; [email protected] 4 Instituto Tecnológico Vale, Ouro Preto 35400-000, Brazil; [email protected] * Correspondence: [email protected] or [email protected] Abstract: Known as an artificial intelligence subarea, Swarm Robotics is a developing study field investigating bio-inspired collaborative control approaches and integrates a huge collection of agents, reasonably plain robots, in a distributed and decentralized manner. It offers an inspiring essential platform for new researchers to be engaged and share new knowledge to examine their concepts in analytical and heuristic strategies. This paper introduces an overview of current activities in Swarm Robotics and examines the present literature in this area to establish to approach between a realistic swarm robotic system and real-world enforcements. First, we review several Swarm Intelligence concepts to define Swarm Robotics systems, reporting their essential qualities and features and contrast them to generic multi-robotic systems. Second, we report a review of the principal projects that allow realistic study of Swarm Robotics.
    [Show full text]