On the Effects of Urea on the Molecular Structure and Activity of Various

Total Page:16

File Type:pdf, Size:1020Kb

On the Effects of Urea on the Molecular Structure and Activity of Various The Journal of Biochemistry, Vol. 58, No. 1, 1965 Effects of Urea on the Activity and Structure of Yeast Alcohol Dehydrogenase By TAKAHISA OHTA* and YASUYUEI OGURA (From the Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo) (Received for publication, March 29, 1965) There have been many reports (1-8) on (9) and K lot z (10). However, to interprete the effects of urea on the molecular structure the mechanism of inhibition by urea on enzyme and activity of various enzymes. Most reactions, further investigations are necessary enzymes (1-4) are known to be inhibited by since few have covered both kinetics of the en low concentrations of urea which do not zymatic reaction and physicochemical analysis denature their protein. The mode of inhibi of the structural changes of the enzyme protein. tion of urea on various enzyme reactions has In this paper, the effects of urea upon yeast been studied kinetically by R a j a g o p a l a n, alcohol dehydrogenase [EC 1. 1. 1. 1, Alcohol: Fridovich and Handler (3) and also NAD oxidoreductase (yeast)] have been studi by Chase's group (6-8) using rather low ed, focusing attention on the relationship be concentrations of urea. The inhibition by tween the structure of the enzyme molecule urea of various enzymes, such as xanthine and its catalytic activity. oxidase [EC 1.2.3.2], muscle lactate dehydro EXPERIMENTAL genase [EC 1. 1. 1. 27] (3) and kidney aldose mutarotase [EC 5.1.3.3] (6) has been reported Materials-Yeast alcohol dehydrogenase was prepar to be reversible and competitive for the sub ed from fresh baker's yeast* by the following pro strate. However, the reactions of yeast and cedures which are essentially based upon the method liver alcohol dehydrogenases [EC 1. 1. 1. 1] (3), of R a c k e r (11). Eight pounds of fragmented fresh yeast were macerated with 450 ml. of ethyl acetate. yeast ji-fructofuranosidase [EC 3.2. 1.26, pre The mixture was left at room temperature for 40 viously known as invertase] (7) arid (3-amylase minutes and then centrifuged at 6,000Xg for 30 [EC 3.2.1.2] (8) were found to be noncompeti minutes. The resulting precipitate was suspended in tivelv inhibited by urea. 4 liters of 0.25 .44 Na2HPO4, and the suspension was In the presence of higher concentrations adjusted to pH 7.5 with NH4OH, and left at 4°C for of urea, however, Brand, E v e r s e and a week. At the end of this autolysis period, the yeast K a p l a n (4) found that yeast and liver residue was removed by centrifugation. To the alcohol dehydrogenases and various animal supernatant solution, solid ammonium sulfate was lactate dehydrogenases lost activity irrever added to 60% saturation. The mixture was left to stand for 30 minutes at room temperature and then sibly and in parallel with the changes in the precipitate was collected by centrifugation, dis their protein structure. On the other hand, solved in cold water and dialysed against 0.0211 Harris (5) reported that in the presence Na2HPO4 at 4°C overnight. The dialysed solution of 2.0-8.O M urea trypsin loses reversibly its was quickly brought to 50-55•Ž and maintained at activity in parallel with the unfolding of its this temperature for 15 minutes in a water bath. protein molecule. After cooling, the mixture was centrifuged and the The action of urea on the various protein Abbreviations used: NAD, nicotinamide adenine molecules has been explained by K a u z man n dinucleotide ; NADH,, reduced nicotinamide adenine * Present address : Department of Chemistry, dinucleotide ; EDTA, ethylenediamine tetraacetate. ** Baker's yeast was kindly supplied by Oriental College of General Education, University of Tokyo, Meguro-ku, Tokyo. Yeast Co., Tokyo. 73 74 T. OHTA and Y. OGuRA clear supernatant obtained was chilled in a salt-ice of the assay medium was 3.0 ml. The reaction was bath. One-half volume of acetone (-10°C) was added initiated by addition of 0.01 ml. of enzyme solution slowly to the supernatant with continuous stirring and in pyrophosphate buffer. Spectrophotometric readings the mixture was kept at -10°C for 1 hour. The were taken at 10 second intervals and the initial resulting precipitate was removed by centrifugation velocity was determined from the changes in optical at 6,000Xg for 10 minutes or by filtration. Then density observed during the first 30 seconds. The the supernatant was again chilled to -10°C, and velocity was expressed as moles of substrate oxidized mixed with an additional 0.55 volume of cold acetone. per second per enzyme unit, assuming that one native The resulting precipitate was collected by centrifuga enzyme molecule contains four enzyme units. tion or filtration, dissolved in 0.01 M phosphate Fluorometry-Fluorometric measurements were buffer, pH 6.5, and dialysed against the same buffer made with a Hitachi EPU-2A spectrophotometer overnight at 4°C. Then the precipitate was removed equipped with a Hitachi G-1 spectrofluorometric by centrifugation and the supernatant was passed attachment which consisted of a grating monochro through a DEAE-cellulose column previously equili meter and a 500 W high pressure xenon arclamp. brated with 0.01 M phosphate buffer, pH 6.5, and The simple was placed in a 1 em.2 quartz cell with washed with an equal volume of the same buffer. low fluorescence and was illuminated with monochro By this treatment nucleic acid, which disturbed the matic light. The fluorescence emission was measured crystallization of the enzyme, could be completely at right angles to the exciting light beam. Emitted removed. The eluate was then put into cellulose energy was measured by comparison of the observed tubing and left for several hours in 0.35 saturated value with the fluorescence excitation spectrum and ammonium sulfate solution, adjusted to pH 7.5. the absorption spectrum of a dilute solution of fluore Crystals which formed were collected by centrifuga seein in 0.1 N NaOH. The intensity of fluorescence tion and dissolved in 0.01 M phosphate buffer, pH 7.5. was expressed by the quantity F : After four recrystallizations, 200 to 400 mg. of crys talline yeast alcohol dehydrogenase were obtained from 8 1 b of fresh yeast. This enzyme preparation was , where q is proportional to the number of quanta found to be homogeneous by electrophoresis and emitted and T is the transmittancy to the test solution analytical centrifugation, though it was reported by at the wave length of the exciting light. The fluores H a y e s and V e l i c k (13) that two electrophoretically cence emission spectrum of the enzyme was measured different components of yeast alcohol dehydrogenase, using diluted enzyme solution with an optical density; that is, an active component and an inactive de less than 0.2 at 280 mp. naturation product, were present even after recrystalli Ultraviolet Difference Spectrum-The ultraviolet zation. Negligible amount of the denatured component difference spectrum was measured with a Hitachi seems to have been present in our preparation. EPU-2A spectrophotometer. The width of the slit was fixed during any one series of experiments and Urea was purified by the method of B e n e s c h, the same pipettes were employed to reduce pipetting Lard y and Ben e s c h (12), that is, a concentrated errors. The value of the difference in optical density solution of urea was treated with Amberlite MB-1 cation and anion exchange resin at 50-55°C, filtered at any given wave length thus obtained was expressed through a glass filter and crystallized. The NAD by dividing it by that of the reference solution at used was purchased from Sigma Chemicals. NADH2 280 my. was prepared by reduction of the NAD, with yeast Viscometry -Viscosity was measured with an alcohol dehydrogenase and ethanol in the presence of Ostwald type viscometer of spiral form. The outflow time for water was 80-100 seconds at 20.0°C. Measure semicarbazide and EDTA, and was purified by ments were carried out in a thermostat maintained repeated alcohol fractionation and washing with ether. at 20.0°C. The reduced viscosity was defined as follows : The enzyme concentration was determined by measuring the optical density at 280 my, assuming an extinction coefficient of 1.89 X 105 cm.2 mole-1 based were r and ƒÅƒÍ are the viscosity of the test solution on a molecular weight of 150,000 (13 ). and the solvent, and c is the concentration of protein Activity Measurements-Enzymatic activity was de in g. per 100 ml. termined by measuring the increase in optical density Sedimentation Analysis-Sedimentation measurments at 340 my due to formation of NADH,. The measure were carried out with a Spinco model E analytical ments were made at pH 8.5 and 20°C using a ultracentrifuge. The sedimentation patterns were Hitachi EPU-2A spectrophotometer. The total volume obtained by schlieren optics at a rotor speed of 59,780 Effects of Urea on Yeast Alcohol Dehydrogenase 75 r.pm, and temperatures between 10° and 28°C re urea, but the rate of the reaction decreased gulated by the automatic temperature control unit. with increase in the concentration of urea. The molecular weight of the enzyme was de The enzyme was not preincubated with urea, termined with an ultracentrifuge by Y p h a n t i s' but there was no lag in the inhibition. This procedure (14). 'Experiments were carried out using shows that the inhibitory effect of urea is a cell with seven observation channels at a rotor instantaneous.
Recommended publications
  • Urea Adducts of the Esters of Stearic Acid
    University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1952 Urea adducts of the esters of stearic acid Paul Elliott Greene University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Chemistry Commons Recommended Citation Greene, Paul Elliott. (1952). Urea adducts of the esters of stearic acid. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/1186 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. I': UREA,, ADDUCTS OF THE :ESTERS OF S'rEARIC ACID A Thesis Presented to Tb.~ Faculty of the Department of Chemistry College of the Pacific In Partial Fulfillment of the Requi:r>ements for the Degree Master of A:rts by Paul Elliott Greene... June 1952 ACKNOt~L1i:DGE~4ENT Appreciation is expressed to th.e faculty members of the Chemistry Department of the College of the Paciflc and ospecially to Dr. H;merson Cobb for the gu.idance and criticism given to the writer during this p~>r:i.od of' study. TABLE OF CONTENTS PAGE Urea and urea complexes .. • .. • • .. • .. • • • • • • 1 Adducts of' hydrocl.'ll1bon der1 vati ves • • • • • * • Similar molecular complexes • • • • • • • • • Structure cf ut.. ea £'.d.ducts • • . .. .. • 7 --------App-lioat:Lon-of_:ux~ee.-a.dd"u.cts-~--~-·--~-~-·-·-.. -·-·-· 11.---- P:r•eparati.on of intermedi.ates • • • • • • • • • • • 14 Purif:toation of ste:Htr:to ao:td .
    [Show full text]
  • Heats of Formation of Certain Nickel-Pyridine Complex Salts
    HEATS OF FORFATION OF CERTAIN NICKEL-PYRIDINE COLPLEX SALTS DAVID CLAIR BUSH A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June l9O [4CKNOWLEDGMENT The writer wishes to acknowledge his indebtedness and gratitude to Dr. [4. V. Logan for his help and encour- agement during this investigation. The writer also wishes to express his appreciation to Dr. E. C. Gilbert for helpful suggestions on the con- struction of the calortheter, and to Lee F. Tiller for his excellent drafting and photostating of the figures and graphs. APPROVED: In Charge of ?ajor Head of Department of Chemistry Chairrian of School Graduate Comrittee Dean of Graduate School Date thesis is presented /11 ' Typed by Norma Bush TABLE OF CONTENTS HISTORICAL BACKGROUND i INTRODUCTION 2 EXPERIMENTAL 5 Preparation of the Compounds 5 Analyses of the Compounds 7 The Calorimeter Determination of the Heat Capacity 19 Determination of the Heat of Formation 22 DISCUSSION 39 41 LITERATURE CITED 42 TABLES I Analyses of the Compounds 8 II Heat Capacity of the Calorimeter 23 III Heat of Reaction of Pyridine 26 IV Sample Run and Calculation 27 V Heat of Reaction of Nickel Cyanate 30 VI Heat of Reaction of Nickel Thiocyanate 31 VII Heat of Reaction of Hexapyridinated Nickel Cyanate 32 VIII Heat of Reaction of Tetrapyridinated Nickel Thiocyanate 33 IX Heat of Formation of the Pyridine Complexes 34 FI GURES i The Calorimeter 10 2 Sample Ijector (solids) 14 2A Sample Ejector (liquids) 15 3 Heater Circuit Wiring Diagram 17 4 heat Capacity of the Calorimeter 24 5 Heat of Reaction of Pyridine 28 6 Heat of Reaction of Hexapyridinated Nickel Cyanate 35 7 Heat of Reaction of Tetrapyridinated Nickel Thiocyanate 36 8 Heat of Reaction of Nickel Cyanate 37 9 Heat of Reaction of Nickel Thiocyanate 38 HEATS OF FOW ATION OF CERTAIN NICKEL-PYRIDINE COMPLEX SALTS HISTORICAL BACKGROUND Compounds of pyridine with inorganic salts have been prepared since 1970.
    [Show full text]
  • United States Patent Office Patented Jan
    3,071,593 United States Patent Office Patented Jan. 1, 1963 2 3,071,593 O PREPARATION OF AELKENE SULFES Paul F. Warner, Philips, Tex., assignor to Philips Petroleum Company, a corporation of Delaware wherein each R is selected from the group consisting of No Drawing. Filed July 27, 1959, Ser. No. 829,518 5 hydrogen, alkyl, aryl, alkaryl, aralkyl and cycloalkyl 8 Claims. (C. 260-327) groups having 1 to 8 carbon atoms, the combined R groups having up to 12 carbon atoms. Examples of Suit This invention relates to a method of preparing alkene able compounds are ethylene oxide, propylene oxide, iso sulfides. Another aspect relates to a method of convert butylene oxide, a-amylene oxide, styrene oxide, isopropyl ing an alkene oxide to the corresponding sulfide at rela O ethylene oxide, methylethylethylene oxide, 3-phenyl-1, tively high yields without refrigeration. 2-propylene oxide, (3-methylphenyl) ethylene oxide, By the term "alkene sulfide' as used in this specifica cyclohexylethylene oxide, 1-phenyl-3,4-epoxyhexane, and tion and in the claims, I mean to include not only un the like. substituted alkene sulfides such as ethylene sulfide, propyl The salts of thiocyanic acid which I prefer to use are ene sulfide, isobutylene sulfide, and the like, but also 5 the salts of the alkali metals or ammonium. I especially hydrocarbon-substituted alkene sulfides such as styrene prefer ammonium thiocyanate, sodium thiocyanate, and oxide, and in general all compounds conforming to the potassium thiocyanate. These compounds can be reacted formula with ethylene oxide in a cycloparaffin diluent to produce 20 substantial yields of ethylene sulfide and with little or S no polymer formation.
    [Show full text]
  • UREA/AMMONIA (Rapid)
    www.megazyme.com UREA/AMMONIA (Rapid) ASSAY PROCEDURE K-URAMR 04/20 (For the rapid assay of urea and ammonia in all samples, including grape juice and wine) (*50 Assays of each per Kit) * The number of tests per kit can be doubled if all volumes are halved © Megazyme 2020 INTRODUCTION: Urea and ammonia are widely occurring natural compounds. As urea is the most abundant organic solute in urine, and ammonia is produced as a consequence of microbial protein catabolism, these analytes serve as reliable quality indicators for food products such as fruit juice, milk, cheese, meat and seafood. Ammonium carbonate is used as a leaven in baked goods such as quick breads, cookies and muffins. Unlike some other kits, this kit benefits from the use of a glutamate dehydrogenase that is not inhibited by tannins found in, for example, grape juice and wine. In the wine industry, ammonia determination is important in the calculation of yeast available nitrogen (YAN). YAN is comprised of three highly variable components, free ammonium ions, primary amino nitrogen (from free amino acids) and the contribution from the sidechain of L-arginine.1 For the most accurate determination of YAN, all three components should be quantified, and this is possible using Megazyme’s L-Arginine/Urea/Ammonia Kit (K-LARGE) and NOPA Kit (K-PANOPA). Urea determination can be important in preventing the formation of the known carcinogen ethyl carbamate (EC) in finished wine. PRINCIPLE: Urea is hydrolysed to ammonia (NH3) and carbon dioxide (CO2) by the enzyme urease (1). (urease) (1) Urea + H2O 2NH3 + CO2 In the presence of glutamate dehydrogenase (GlDH) and reduced nicotinamide-adenine dinucleotide phosphate (NADPH), ammonia (as + ammonium ions; NH4 ) reacts with 2-oxoglutarate to form L-glutamic acid and NADP+ (2).
    [Show full text]
  • House Fly Attractants and Arrestante: Screening of Chemicals Possessing Cyanide, Thiocyanate, Or Isothiocyanate Radicals
    House Fly Attractants and Arrestante: Screening of Chemicals Possessing Cyanide, Thiocyanate, or Isothiocyanate Radicals Agriculture Handbook No. 403 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE Contents Page Methods 1 Results and discussion 3 Thiocyanic acid esters 8 Straight-chain nitriles 10 Propionitrile derivatives 10 Conclusions 24 Summary 25 Literature cited 26 This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. ¿/áepé4áaUÁí^a¡eé —' ■ -"" TMK LABIL Mention of a proprietary product in this publication does not constitute a guarantee or warranty by the U.S. Department of Agriculture over other products not mentioned. Washington, D.C. Issued July 1971 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 25 cents House Fly Attractants and Arrestants: Screening of Chemicals Possessing Cyanide, Thiocyanate, or Isothiocyanate Radicals BY M. S. MAYER, Entomology Research Division, Agricultural Research Service ^ Few chemicals possessing cyanide (-CN), thio- cyanate was slightly attractive to Musca domes- eyanate (-SCN), or isothiocyanate (~NCS) radi- tica, but it was considered to be one of the better cals have been tested as attractants for the house repellents for Phormia regina (Meigen).
    [Show full text]
  • Thiocyanate Pyridine Complexes
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2017 Structural Comparison of Copper(II) Thiocyanate Pyridine Complexes Joseph V. Handy College of WIlliam & Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Inorganic Chemistry Commons Recommended Citation Handy, Joseph V., "Structural Comparison of Copper(II) Thiocyanate Pyridine Complexes" (2017). Undergraduate Honors Theses. Paper 1100. https://scholarworks.wm.edu/honorstheses/1100 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Structural Comparison of Copper(II) Thiocyanate Pyridine Complexes A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Chemistry from The College of William & Mary by Joseph Viau Handy Accepted for ____________________________ ________________________________ Professor Robert D. Pike ________________________________ Professor Deborah C. Bebout ________________________________ Professor David F. Grandis ________________________________ Professor William R. McNamara Williamsburg, VA May 3, 2017 1 Table of Contents Table of Contents…………………………………………………...……………………………2 List of Figures, Tables, and Charts………………………………………...…………………...4 Acknowledgements….…………………...………………………………………………………6
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Amino Acid Catabolism: Urea Cycle the Urea Bi-Cycle Two Issues
    BI/CH 422/622 OUTLINE: OUTLINE: Protein Degradation (Catabolism) Digestion Amino-Acid Degradation Inside of cells Urea Cycle – dealing with the nitrogen Protein turnover Ubiquitin Feeding the Urea Cycle Activation-E1 Glucose-Alanine Cycle Conjugation-E2 Free Ammonia Ligation-E3 Proteosome Glutamine Amino-Acid Degradation Glutamate dehydrogenase Ammonia Overall energetics free Dealing with the carbon transamination-mechanism to know Seven Families Urea Cycle – dealing with the nitrogen 1. ADENQ 5 Steps 2. RPH Carbamoyl-phosphate synthetase oxidase Ornithine transcarbamylase one-carbon metabolism Arginino-succinate synthetase THF Arginino-succinase SAM Arginase 3. GSC Energetics PLP uses Urea Bi-cycle 4. MT – one carbon metabolism 5. FY – oxidases Amino Acid Catabolism: Urea Cycle The Urea Bi-Cycle Two issues: 1) What to do with the fumarate? 2) What are the sources of the free ammonia? a-ketoglutarate a-amino acid Aspartate transaminase transaminase a-keto acid Glutamate 1 Amino Acid Catabolism: Urea Cycle The Glucose-Alanine Cycle • Vigorously working muscles operate nearly anaerobically and rely on glycolysis for energy. a-Keto acids • Glycolysis yields pyruvate. – If not eliminated (converted to acetyl- CoA), lactic acid will build up. • If amino acids have become a fuel source, this lactate is converted back to pyruvate, then converted to alanine for transport into the liver. Excess Glutamate is Metabolized in the Mitochondria of Hepatocytes Amino Acid Catabolism: Urea Cycle Excess glutamine is processed in the intestines, kidneys, and liver. (deaminating) (N,Q,H,S,T,G,M,W) OAA à Asp Glutamine Synthetase This costs another ATP, bringing it closer to 5 (N,Q,H,S,T,G,M,W) 29 N 2 Amino Acid Catabolism: Urea Cycle Excess glutamine is processed in the intestines, kidneys, and liver.
    [Show full text]
  • Catalytic Carbonylation of Amines And
    CATALYTIC CARBONYLATION OF AMINES AND DIAMINES AS AN ALTERNATIVE TO PHOSGENE DERIVATIVES: APPLICATION TO SYNTHESES OF THE CORE STRUCTURE OF DMP 323 AND DMP 450 AND OTHER FUNCTIONALIZED UREAS By KEISHA-GAY HYLTON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2004 Copyright 2004 by Keisha-Gay Hylton Dedicated to my father Alvest Hylton; he never lived to celebrate any of my achievements but he is never forgotten. ACKNOWLEDGMENTS A number of special individuals have contributed to my success. I thank my mother, for her never-ending support of my dreams; and my grandmother, for instilling integrity, and for her encouragement. Special thanks go to my husband Nemanja. He is my confidant, my best friend, and the love of my life. I thank him for providing a listening ear when I needed to “discuss” my reactions; and for his support throughout these 5 years. To my advisor (Dr. Lisa McElwee-White), I express my gratitude for all she has taught me over the last 4 years. She has shaped me into the chemist I am today, and has provided a positive role model for me. I am eternally grateful. I, of course, could never forget to mention my group members. I give special mention to Corey Anthony, for all the free coffee and toaster strudels; and for helping to keep the homesickness at bay. I thank Daniel for all the good gossip and lessons about France. I thank Yue Zhang for carbonylation discussions, and lessons about China.
    [Show full text]
  • Silver-Based Monomer and Coordination
    Silver-based monomer and coordination polymer with organic thiocyanate ligand: Structural, computational and antiproliferative activity study Nenad Filipović, Predrag Ristić, Goran Janjić, Olivera Klisurić, Adrián Puerta, José Padrón, Morgan Donnard, Mihaela Gulea, Tamara Todorović To cite this version: Nenad Filipović, Predrag Ristić, Goran Janjić, Olivera Klisurić, Adrián Puerta, et al.. Silver- based monomer and coordination polymer with organic thiocyanate ligand: Structural, com- putational and antiproliferative activity study. Polyhedron, Elsevier, 2019, 173, pp.114132. 10.1016/j.poly.2019.114132. hal-02319545 HAL Id: hal-02319545 https://hal.archives-ouvertes.fr/hal-02319545 Submitted on 5 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Graphical Abstract - Pictogram (for review) Click here to download Graphical Abstract - Pictogram (for review) GraphicalAbstract-pictogram.tif Graphical Abstract - Synopsis (for review) Click here to download Graphical Abstract - Synopsis (for review) Graphical-Abstract-with-Synopsis.docx Graphical Abstract Analyzed structures of silver-based monomer and coordination polymer with organic thiocyanate represent an example where the nature of (non)coordinated ions were found to have the profound influence on coordination mode of the ligand and consequently crystal packing. The monomer showed an excellent antiproliferative activity in tested human tumor cell lines.
    [Show full text]
  • NIH Public Access Author Manuscript Bioorg Med Chem Lett
    NIH Public Access Author Manuscript Bioorg Med Chem Lett. Author manuscript; available in PMC 2013 September 15. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Bioorg Med Chem Lett. 2012 September 15; 22(18): 5889–5892. doi:10.1016/j.bmcl.2012.07.074. Biologically Active Ester Derivatives as Potent Inhibitors of the Soluble Epoxide Hydrolase In-Hae Kima,b, Kosuke Nishia,b, Takeo Kasagamia,c, Christophe Morisseaua, Jun-Yan Liua, Hsing-Ju Tsaia, and Bruce D. Hammocka,* aDepartment of Entomology and UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, California 95616, USA Abstract Substituted ureas with a carboxylic acid ester as a secondary pharmacophore are potent soluble epoxide hydrolase (sEH) inhibitors. Although the ester substituent imparts better physical properties, such compounds are quickly metabolized to the corresponding less potent acids. Toward producing biologically active ester compounds, a series of esters were prepared and evaluated for potency on the human enzyme, stability in human liver microsomes, and physical properties. Modifications around the ester function enhanced in vitro metabolic stability of the ester inhibitors up to 32-fold without a decrease in inhibition potency. Further, several compounds had improved physical properties. Keywords sEH; sEH inhibitors; substituted urea-ester derivatives; metabolic stability Epoxyeicosatrienoic acids (EETs), which are metabolites of arachidonic acid by cytochrome P450 epoxygenases,
    [Show full text]
  • Effect of Thiol Molecular Structure on the Sensitivity of Gold Nanoparticle
    sensors Letter Effect of Thiol Molecular Structure on the Sensitivity of Gold Nanoparticle-Based Chemiresistors toward Carbonyl Compounds 1, 2, 3 Zhenzhen Xie y, Mandapati V. Ramakrishnam Raju y, Prasadanie K. Adhihetty , Xiao-An Fu 1 and Michael H. Nantz 3,* 1 Department of Chemical Engineering, University of Louisville, Louisville, KY 40208, USA; [email protected] (Z.X.); [email protected] (X.-A.F.) 2 Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] 3 Department of Chemistry, University of Louisville, Louisville, KY 40208, USA; [email protected] * Correspondence: [email protected] These authors contributed equally. y Received: 2 November 2020; Accepted: 4 December 2020; Published: 8 December 2020 Abstract: Increasing both the sensitivity and selectivity of thiol-functionalized gold nanoparticle chemiresistors remains a challenging issue in the quest to develop real-time gas sensors. The effects of thiol molecular structure on such sensor properties are not well understood. This study investigates the effects of steric as well as electronic effects in a panel of substituted thiol-urea compounds on the sensing properties of thiolate monolayer-protected gold nanoparticle chemiresistors. Three series of urea-substituted thiols with different peripheral end groups were synthesized for the study and used to prepare gold nanoparticle-based chemiresistors. The responses of the prepared sensors to trace volatile analytes were significantly affected by the urea functional motifs. The largest response for sensing acetone among the three series was observed for the thiol-urea sensor featuring a tert-butyl end group. Furthermore, the ligands fitted with N, N’-dialkyl urea moieties exhibit a much larger response to carbonyl analytes than the more acidic urea series containing N-alkoxy-N’-alkyl urea and N, N’-dialkoxy urea groups with the same peripheral end groups.
    [Show full text]