The Role of Galactolipids in Spinach Chloroplast Lamellar Membranes: I

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Galactolipids in Spinach Chloroplast Lamellar Membranes: I Plant Physiol. (1974) 53, 699-704 The Role of Galactolipids in Spinach Chloroplast Lamellar Membranes I. PARTIAL PURIFICATION OF A BEAN LEAF GALACTOLIPID LIPASE AND ITS ACTION ON SUB- CHLOROPLAST PARTICLES" 2 Received for publication October 30, 1973 and in revised form January 3, 1974 MARK M. ANDERSON,' RICHARD E. MCCARTY, AND ELIZABETH A. ZIMMER Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14850 ABSTRACT sis, such as fulfilling a structural requirement or even partici- pating directly in a reaction essential to photosynthesis. In an A galactolipid lipase has been isolated and partially purified effort to elucidate the possible role(s) of galactosyl diglycerides from the chloroplast fraction of the primary leaves of Phase- in photosynthesis, we isolated and partially purified a galacto- olus vulgaris var. Kentucky Wonder. The lipase hydrolyzed lipid lipase (galatosyl diglyceride acyl hydrolase) from primary monogalactosyl diglyceride rapidly and phosphatidyl choline bean leaf chloroplasts. The lipase was then used to deacylate relatively slowly. Triolein and p-nitrophenyl stearate were not the lipids in spinach chloroplasts and subchloroplast particles hydrolyzed. so that their ultrastructure and biochemical capabilities could Spinach subchloroplast particles were excellent substrates be determined as a function of galactolipid content. for the lipase. Initial rates of fatty acid release from sub- Galactolipase activity was first detected in extracts of Pha- chloroplast particles at 30 C by the lipase as high as 60 micro- seolus multifloris primary leaves by Sastry and Kates (19). equivalents per minute per milligram protein were observed. More recently Helmsing (9) has reported the purification of a At completion of the reaction, about 2.7 microequivalents of galactolipase from bean leaf homogenates. In this communica- fatty acid were liberated per milligram of chlorophyll in the tion, we report the isolation and partial purification of a ga- subehloroplast particles, indicating that major amounts of lipid lactolipase from the chloroplast fraction of the primary leaves in the particles were rapidly attacked by the lipase. of Phaseolus vulgaris var. Kentucky Wonder. The properties of The treatment of subehloroplast particles with the lipase re- this enzyme differ somewhat from those of previously reported sulted in a rapid inhibition of light-dependent electron flow. galactolipases (9, 19). Furthermore, we found that spinach sub- This inhibition was largely prevented when the incubation was chloroplast particles which have the same membrane polarity carried out in the presence of high concentrations of defatted as chloroplasts (13) were excellent substrates for the galacto- bovine serum albumin. These results suggest that when precau- lipase, suggesting that the acyl ester linkages of the galacto- tions are taken to prevent the binding of fatty acids to the sub- lipids in chloroplast membranes are exposed to the external chloroplast particles, large amounts of lipid may be removed medium. We have also characterized some of the effects of without a marked effect on electron flow. galactolipase treatment on light-dependent electron flow in subchloroplast particles. MATERIALS AND METHODS Galactolipase Purification. Pole bean seeds (Phaseolus vul- garis var. Kentucky Wonder) were soaked in tap water for 24 Galactolipids (mono- and digalactosyl diglycerides) com- hr and were germinated in moist vermiculite at room tempera- prise about 80% of the nonpigmented lipids in the chloroplasts ture. Following germination, the seedlings were illuminated of higher plants and algae (23). The reason for this preponder- for 16 hr per day with fluorescent light (intensity, about 1.2 X ance of galactosyl diglycerides, which is not found in most 10' ergs/ cm2' sec). After 15 to 20 days, the primary leaves were other biological membranes, has been largely unexplained. It harvested and stored at 4 C in the dark for 24 to 48 hr to re- is possible that these lipids have a unique role in photosynthe- move starch. About 150 g of leaves were homogenized in a Waring Blendor for 30 sec with 800 ml of cold 0.4 M sucrose which also contained 0.1 M potassium phosphate buffer (pH I This work was supported by National Institutes of Health Pre- 6.0). The homogenate was filtered first through three and then doctoral Training Grant ST GM 00824-10 to M. M. A., by Re- eight layers of cheesecloth. The filtrate was centrifuged at search Grant GB-30597X from the National Science Foundation, 3300g for 15 min at 4 C, and the resulting pellet, which was and by Research Career Development Award GM-14,877 to R. rich in was a E. M. chloroplasts, resuspended in small volume of su- 2This material is from a dissertation submitted by M. M. A. to crose-Pi buffer. The Chl concentration in the suspension was the Graduate School of Cornell University in partial fulfillment of adjusted to 3 mg per ml with sucrose-Pi buffer. the requirements of the degree of doctor of philosophy. The chloroplast suspension was added dropwise to 17 vol- 'Present Address: Department of Bio-organic Chemistry, Re- umes of rapidly stirred acetone at -17 C (21). The tempera- search Laboratories, Albert Einstein Medical Center, York and ture of the acetone during addition was kept below -10 C. Tabor Roads, Philadelphia, Pennsylvania 19141. After the addition was completed, the stirring was stopped, and 699 700 ANDERSON, McCARTY, AND ZIMMER Plant Physiol. Vol. 53, 1974 the precipitated chloroplast residue was allowed to settle for chloroplast particles were prepared by exposure of chloroplasts 2 to 3 min. The acetone was decanted and the gummy green to sonic oscillation (13). Bovine serum albumin was defatted precipitate was transferred to a glass plate at room tempera- either by the procedure of Chen (5) or by two extractions of ture. The precipitate was kneaded with a spatula to remove as the dry protein with 25 ml of 95% ethanol per g, followed by much acetone as possible and was then allowed to stand until dialysis of solutions of the extracted bovine serum against 5 the odor of acetone could barely be detected (about 3 hr). The mM Tricine-NaOH (pH 8.0) at 4 C for 12 to 18 hr. Bovine residue was gently resuspended in 100 ml of 50 mm potassium serum albumin concentrations were determined spectrophoto- phosphate buffer (pH 7.0) which also contained 1 mm EDTA metrically (5). Analytical polyacrylamide gel electrophoresis per 250 g of leaves used. After 20 min at room temperature, was performed according to Davis (7) except that proteins the suspension was centrifuged at 4 C for 10 min at 12,000g. were stained with Coomassie blue (6). Chlorophyll (3) and The supernatant solution was stored at 4 C. The pellet was ex- protein (22) were estimated by reported procedures. The light- tracted twice more as described above, first with one-half, and dependent reduction of methyl viologen and K3Fe(CN)0 by then with one-fourth the volume of P-EDTA' used in the first chloroplasts was followed by determining oxygen concentra- extraction. The combined supernatant solutions (crude ex- tions with a Clark electrode. tract) were assayed for lipase activity as soon as possible since Materials. Kentucky Wonder bean seeds were purchased sometimes much of the activity was lost in 2 or 3 days. from Agway, Inc., Syracuse, N.Y. Reagents and their vendors The crude extract was placed in a water bath at 68 C and include: rhodamine 6G, Allied Chemical; egg lysolecithin, was brought to 65 C with continuous stirring. After 2 min P-L Biochemicals; phosphatidyl choline and N-(morpholino) at 65 C, the beaker was plunged into an ice bath and was ethane sulfonate, General Biochemicals. stirred until the temperature reached 4 C. The precipitate was removed by centrifugation at 4 C for 10 min at 10,000g. The RESULTS supernatant solution (heated extract) was stored at 4 C. Galactolipase Purification. As may be seen in Table I, the Solid (NH,)2S04 was slowly added with continuous stirring to the heated extract until 65% of saturation at 4 C was ob- purification procedure resulted in about an 80-fold increase of hydrolysis with a recovery of tained. The mixture was stirred at 4 C for 15 min and was then in the specific activity MGDG activity. Very similar results were ob- centrifuged at 12,000g for 10 min at 4 C. The pellet was re- about 80% of enzyme tained when subchloroplast particles, rather than partially suspended in a small volume of P-EDTA buffer and insoluble MGDG, were used as the substrate. material was removed by centrifugation at 3,000g for 10 min purified at 4 C. The supernatant solution (ammonium sulfate fraction) The increase in total enzyme units which usually occurred the crude extract was heated to 65 C (Table I) is of in- was stored at 4 C. when since it suggests the presence of a heat-labile inhibitor Prior to chromatography on Sephadex G-100, the ammo- terest nium sulfate was concentrated to 5 to 10 ml in an ul- of the lipase. Furthermore, incubation of the crude extract with fraction (Table trafiltration apparatus with an Amincon UM-10 membrane trypsin caused a 70% activation of the lipase activity of under positive nitrogen pressure. The Sephadex G-100 column II). Trypsin caused an inhibition rather than an activation, more purified fractions. Since the lipase is had a bed volume of 100 ml/40 mg of protein and was equili- lipase activity in brated with P-EDTA at room temperature. The sample was slightly sensitive to trypsin, it is probable that the actual stimu- eluted from the column in 2-ml fractions. Fractions with the lation of lipase activity in the crude extract is somewhat highest lipase specific activity were combined and stored at greater than 70%.
Recommended publications
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • Lipolytic Enzyme. Uses Thereof in the Food Industry
    (19) & (11) EP 2 267 107 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 29.12.2010 Bulletin 2010/52 C11B 3/00 (2006.01) A23J 7/00 (2006.01) C12N 9/20 (2006.01) (21) Application number: 10174040.5 (22) Date of filing: 18.07.2005 (84) Designated Contracting States: • Soe, Jørn AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-8381, Tilst (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Mikkelsen, Jørn SK TR DK-2650, Hvidovre (DK) • Povelainen, Mira (30) Priority: 16.07.2004 GB 0416035 FIN-00360, Helsinki (FI) 26.07.2004 US 591185 P • Pitkanen, Virve 07.07.2005 GB 0513859 02320 Espoo (FI) (83) Declaration under Rule 32(1) EPC (expert (74) Representative: Williams, Aylsa solution) D Young & Co LLP 120 Holborn (62) Document number(s) of the earlier application(s) in London EC1N 2DY (GB) accordance with Art. 76 EPC: 05773820.5 / 1 776 455 Remarks: This application was filed on 25-08-2010 as a (71) Applicant: Danisco A/S divisional application to the application mentioned 1001 Copenhagen K (DK) under INID code 62. (72) Inventors: • Miasnikov, Andrei 10160 Degerby (FI) (54) Lipolytic Enzyme. Uses Thereof In The Food Industry (57) The invention also encompases theuse of a lipo- a galactolipid to one or more acyl acceptor substrates, lytic enzyme obtainable from one of the following genera: wherein the enzyme is obtainable fromSteptomyces Streptomyces, Corynebacterium and Thermobifida in species and includes a lipolytic enzyme comprising an various methods and uses, wherein said lipolytic enzyme amino acid sequence as shown in SEQ ID No.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,962,800 B2 Mathur Et Al
    USOO89628OOB2 (12) United States Patent (10) Patent No.: US 8,962,800 B2 Mathur et al. (45) Date of Patent: Feb. 24, 2015 (54) NUCLEICACIDS AND PROTEINS AND USPC .......................................................... 530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Naperville, IL (US) PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this Nolling etal (J. Bacteriol. 183: 4823 (2001).* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 0 days. Isolates of Pseudomonas aeruginosa J. Bacteriol. (2003) 185: 1316-1325. (21) Appl. No.: 13/400,365 2002.Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (22) Filed: Feb. 20, 2012 bor New York, 2001, pp. 382-393. O O Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (65) Prior Publication Data toxicology” Toxicol. Lett. (2000) 1.12: 365-370. US 2012/O266329 A1 Oct. 18, 2012 * cited by examiner Related U.S. Application Data - - - Primary Examiner — James Martinell (62) Division of application No. 1 1/817,403, filed as (74) Attorney, Agent, or Firm — DLA Piper LLP (US) application No. PCT/US2006/007642 on Mar. 3, 2006, now Pat. No. 8,119,385. (57) ABSTRACT (60) Provisional application No. 60/658,984, filed on Mar. The invention provides polypeptides, including enzymes, 4, 2005.
    [Show full text]
  • Microalgal Enzymes with Biotechnological Applications
    marine drugs Review Microalgal Enzymes with Biotechnological Applications Giorgio Maria Vingiani 1, Pasquale De Luca 2 , Adrianna Ianora 1, Alan D.W. Dobson 3,4 and Chiara Lauritano 1,* 1 Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy 2 Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy 3 School of Microbiology, University College Cork, College Road, T12 YN60 Cork, Ireland 4 Environmental Research Institute, University College Cork, Lee Road, T23XE10 Cork, Ireland * Correspondence: [email protected]; Tel.: +39-081-5833221 Received: 4 July 2019; Accepted: 1 August 2019; Published: 5 August 2019 Abstract: Enzymes are essential components of biological reactions and play important roles in the scaling and optimization of many industrial processes. Due to the growing commercial demand for new and more efficient enzymes to help further optimize these processes, many studies are now focusing their attention on more renewable and environmentally sustainable sources for the production of these enzymes. Microalgae are very promising from this perspective since they can be cultivated in photobioreactors, allowing the production of high biomass levels in a cost-efficient manner. This is reflected in the increased number of publications in this area, especially in the use of microalgae as a source of novel enzymes. In particular, various microalgal enzymes with different industrial applications (e.g., lipids and biofuel production, healthcare, and bioremediation) have been studied to date, and the modification of enzymatic sequences involved in lipid and carotenoid production has resulted in promising results. However, the entire biosynthetic pathways/systems leading to synthesis of potentially important bioactive compounds have in many cases yet to be fully characterized (e.g., for the synthesis of polyketides).
    [Show full text]
  • Chandran Et Al. Supporting Info.Pdf
    Supporting Information (SI) Appendix Part 1. Impact of tissue preparation, LMD, and RNA amplification on array output. p. 2 Text S1: Detailed Experimental Design and Methods Figure S1A: Correlation analysis indicates tissue preparation has minimal impact on ATH1 array output. Figure S1B: Correlation analysis indicates RNA degradation does not significantly impact array output. Figure S1C: Correlation analysis indicates two-round amplification does not significantly impact array output. Figure S1D: Independent biological replicates of LMD samples are highly correlated. Figure S1E: Validation of LMD array expression by qPCR. Table S1: Tissue preparation-associated genes Part 2. Analysis of LMD and parallel whole leaf array data. p. 13 Table S2A: Known PM-impacted genes enriched in LMD dataset Table S2B: Dataset of LMD and whole leaf genes with PM-altered expression Table S2C: LMD PM MapMan Results and Bins Table S2D: ics1 vs. WT LMD PM MapMan Results and Bins Table S2E: Infection site-specific changes for redox and calcium categories Table S2F: cis-acting regulatory element motif analysis Part 3. Process network construction p. 149 3A. Photosynthesis 3B. Cold/dehydration response Part 4. Powdery mildew infection of WT and myb3r4 mutants p. 173 Text S4: Detailed Experimental Design and Methods (supplement to manuscript) Figure S4A. Uninfected 4 week old WT and myb3r4 plants Figure S4B. myb3r4 mutants exhibit reduced visible PM growth and reproduction Figure S4C. PM-infected WT and myb3r4 mutants do not exhibit cell death Figure S4D. Endoreduplication occurs at site of PM infection not distal to infection Figure S4E. Ploidy correlates with nuclear size. Part 1. Impact of tissue preparation, LMD, and RNA amplification on array output.
    [Show full text]
  • And Fe(II)-Dependent Oxygenase Superfamily Protein(AT4G10500)
    AGI code Name At4g10500 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein(AT4G10500) GOTERM_BP_DIRECT defense response to oomycetes, response to oomycetes, response to bacterium, response to fungus, response to salicylic acid, leaf senescence, secondary metabolic process, salicylic acid catabolic process, oxidation-reduction process, GOTERM_MF_DIRECT oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors, metal ion binding, dioxygenase activity, At5g59540 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein(AT5G59540) GOTERM_BP_DIRECT oxidation-reduction process, GOTERM_CC_DIRECT cytoplasm, GOTERM_MF_DIRECT oxidoreductase activity, metal ion binding, dioxygenase activity, At3g55090 ABC-2 type transporter family protein(ABCG16) GOTERM_BP_DIRECT pollen wall assembly, GOTERM_CC_DIRECT plasma membrane, integral component of membrane, GOTERM_MF_DIRECT ATP binding, ATPase activity, coupled to transmembrane movement of substances, At2g37360 ABC-2 type transporter family protein(ABCG2) GOTERM_BP_DIRECT transport, suberin biosynthetic process, GOTERM_CC_DIRECT plasma membrane, integral component of membrane, GOTERM_MF_DIRECT ATP binding, ATPase activity, ATPase activity, coupled to transmembrane movement of substances, At3g47780 ABC2 homolog 6(ABCA7) GOTERM_BP_DIRECT lipid transport, GOTERM_CC_DIRECT plasma membrane, plasmodesma, integral component of membrane, intracellular
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]
  • Unraveling the ORE1 Regulon in Arabidopsis Thaliana : Molecular
    Max Planck-Institut für Molekulare Pflanzenbiologie und Universität Potsdam Arbeitsgruppe Prof. Dr. Bernd Mueller-Roeber Unraveling the ORE1 Regulon in Arabidopsis thaliana: Molecular and Functional Characterization of Up- and Down-stream Components Dissertation zur Erlangung des akademischen Grades “doctor rerum naturalium” (Dr. rer. nat.) in der Wissenschaftsdisziplin “Molekularbiologie” eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Lilian Paola Matallana-Ramírez Potsdam, den 11.04.2012 Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2012/6264/ URN urn:nbn:de:kobv:517-opus-62646 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62646 Lilian Paola Matallana-Ramírez Dedicated to my beloved deceased grandma Graciela “-Try not to become a man of success but rather to become a man of value”. A. Einstein ii Contents Summary Leaf senescence is an active process required for plant survival, and it is flexibly controlled, allowing plant adaptation to environmental conditions. Although senescence is largely an age-dependent process, it can be triggered by environmental signals and stresses. Leaf senescence coordinates the breakdown and turnover of many cellular components, allowing a massive remobilization and recycling of nutrients from senescing tissues to other organs (e.g., young leaves, roots, and seeds), thus enhancing the fitness of the plant. Such metabolic coordination requires a tight regulation of gene expression. One important mechanism for the regulation of gene expression is at the transcriptional level via transcription factors (TFs). The NAC TF family (NAM, ATAF, CUC) includes various members that show elevated expression during senescence, including ORE1 (ANAC092/AtNAC2) among others.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]