The World's Forgotten Fishes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Panthera Leo) in Captivity?
J. Zoo Biol. 03 (01) 2020. 29-39 DOI: 10.33687/zoobiol.003.01.3279 Available Online at EScience Press Journal of Zoo Biology ISSN: 2706-9761 (Online), 2706-9753 (Print) https://esciencepress.net/journals/JZB Reproductive Cycle and Fecundity Tristramella simonies (Gunther, 1864) (Teleostei: Cichlidae) in the Northern Great River (Lattakia, Syria) aFadia Dib, bAdib A. Saad*, cAbdellatif Ali a Tishreen University, Faculty of Agriculture, Marine Sciences Laboratory and Aquatic Environment, P.O Box 1408, Lattakia, Syria. b Tishreen University, Faculty of Agriculture, Department of Basic Sciences, Laboratory of Marine Sciences and Aquatic Environment, P.O Box 1408, Lattakia, Syria. c General commission for Fisheries, Jable, Syria. A R T I C L E I N F O A B S T R A C T Article History This research was conducted to study the reproductive cycle and fecundity of the fish Received: May 24, 2020 Tristramella simonis in the Northern Great River (Nahr Alkabeer Alshmali) north of Revised: July 27, 2020 Lattakia city. 263 individuals were collected from the northern great river, during the Accepted: October 18, 2020 period between July 2017 and June 2018. Samples were collected every 15 days using gill nets, which its pores diameter ranged from 16 to 20 mm and using cages (1 × 1 × Keywords 1 m). The total length of the collected fish ranged from 9.5 to 16.5 cm, and their weights Tristramella simonis ranged from 19.5 to 112.27 g. Samples contained (128 females) and (88 males) and Cichlidae (47) undetected. Results of Gonado Somatic Index (GSI) showed that the reproduction Northern Great River period was between April and August with three obvious peaks of maturity. -
Assessing CITES Non-Detriment Findings Procedures for Arapaima In
Journal of Applied Ichthyology J. Appl. Ichthyol. (2009), 1–8 Received: February 19, 2009 Ó 2009 The Authors Accepted: June 22, 2009 Journal compilation Ó 2009 Blackwell Verlag, Berlin doi:10.1111/j.1439-0426.2009.01355.x ISSN 0175–8659 Assessing CITES non-detriment findings procedures for Arapaima in Brazil By L. Castello1,2 and D. J. Stewart3 1The Woods Hole Research Center, Falmouth, MA, USA; 2The Mamiraua´ Institute for Sustainable Development, Tefe´, Amazonas, Brazil; 3Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA Summary problems in making non-detrimental findings result mainly Arapaima are listed as endangered fishes according to the from lack of capacity and resources to implement monitoring Convention on International Trade of Endangered Species of schemes across the wide range of species in international Wild Fauna and Flora (CITES), thus their international trade trade.Õ Consequently, the CITES Secretariat has been seeking is regulated by non-detriment finding (NDF) procedures. The to improve existing NDF procedures: in 2008 an international authors critically assessed BrazilÕs regulations for NDF pro- workshop on the topic included a series of case studies cedures for Arapaima using IUCNÕs checklist for making covering various regions and taxa worldwide. The present NDFs, and found that those regulations cannot ensure the study was developed for that workshop, contributing to the sustainability of Arapaima populations. Arapaima are among implementation of more effective NDF procedures for tropical the largest fishes in the world, migrate short distances among fishes. several floodplain habitats, and are very vulnerable to fishing Tropical fishes are affected by the same broad range of during spawning. -
Oklahoma Aquatic Nuisance Species Management Plan
OKLAHOMA AQUATIC NUISANCE SPECIES MANAGEMENT PLAN Zebra Mussels White Perch Golden Alga Hydrilla TABLE OF CONTENTS Table of Contents……..................................................................................................... 3 Executive Summary......................................................................................................... 4 Introduction.......................................................................................................................6 Problem Definition..........................................................................................................10 Goals..............................................................................................................................23 Existing Authorities and Programs.................................................................................24 Objectives, Strategies, Actions & Cost Estimates..........................................................32 Objective 1: Coordinate and implement a comprehensive management plan..........32 Objective 2: Prevent the introduction of new ANS into Oklahoma............................35 Objective 3: Detect, monitor, and eradicate ANS......................................................38 Objective 4: Control & eradicate established ANS that have significant impacts…..40 Objective 5: Educate resource user groups..............................................................43 Objective 6: Conduct/support research.....................................................................45 -
The Status and Distribution of Freshwater Fish Endemic to the Mediterranean Basin
IUCN – The Species Survival Commission The Status and Distribution of The Species Survival Commission (SSC) is the largest of IUCN’s six volunteer commissions with a global membership of 8,000 experts. SSC advises IUCN and its members on the wide range of technical and scientific aspects of species conservation Freshwater Fish Endemic to the and is dedicated to securing a future for biodiversity. SSC has significant input into the international agreements dealing with biodiversity conservation. Mediterranean Basin www.iucn.org/themes/ssc Compiled and edited by Kevin G. Smith and William R.T. Darwall IUCN – Freshwater Biodiversity Programme The IUCN Freshwater Biodiversity Assessment Programme was set up in 2001 in response to the rapidly declining status of freshwater habitats and their species. Its mission is to provide information for the conservation and sustainable management of freshwater biodiversity. www.iucn.org/themes/ssc/programs/freshwater IUCN – Centre for Mediterranean Cooperation The Centre was opened in October 2001 and is located in the offices of the Parque Tecnologico de Andalucia near Malaga. IUCN has over 172 members in the Mediterranean region, including 15 governments. Its mission is to influence, encourage and assist Mediterranean societies to conserve and use sustainably the natural resources of the region and work with IUCN members and cooperate with all other agencies that share the objectives of the IUCN. www.iucn.org/places/medoffice Rue Mauverney 28 1196 Gland Switzerland Tel +41 22 999 0000 Fax +41 22 999 0002 E-mail: [email protected] www.iucn.org IUCN Red List of Threatened SpeciesTM – Mediterranean Regional Assessment No. -
(Colossoma Macropomum, Cuvier, 1818) Under Different Photoperiods
Revista Brasileira de Zootecnia © 2012 Sociedade Brasileira de Zootecnia ISSN 1806-9290 R. Bras. Zootec., v.41, n.6, p.1337-1341, 2012 www.sbz.org.br Morphometrical development of tambaqui (Colossoma macropomum, Cuvier, 1818) under different photoperiods Pedro Pierro Mendonça1*, Manuel Vazquez Vidal Junior2, Marcelo Fanttini Polese3, Monique Virães Barbosa dos Santos4, Fabrício Pereira Rezende5, Dalcio Ricardo de Andrade2 1 Doutorando em Ciência Animal - LZNA/CCTA/UENF. 2 LZNA/ CCTA/UENF, Campos dos Goytacazes, RJ, Brasil. 3 Mestrando em Ciência Animal - LZNA/CCTA/UENF. 4 Mestranda em Produção Animal - LZNA/CCTA/UENF. 5 Doutorando em Zootecnia/EMBRAPA Pesca e Aquicultura - Palmas, TO. ABSTRACT - The experiment was performed with 160 tambaqui (Colossoma macropomum) with average weight 11.01±2.08 g and total length 7.8±0.18 cm. Fishes were kept in sixteen aquariums with 56 L of water at 29.1±0.4 oC of temperature, initial stocking density 1.97 g/L and constant aeration. The objective of this study was to assess the influence of photoperiod on fish performance. Treatments consisted of four photoperiods: T1 = 6 hours; T2 = 12 hours; T3 = 18 hours and T4 = 24 hours, with four replicates each. Fishes were fed twice a day with commercial extruded feed (28% of crude protein). The experiment was developed in closed circulation system, with volume of water renewal for each experimental unit equivalent to 40 times daily. Fish biometry was performed at the beginning of the experiment and at every 16 days, in order to follow the effects of treatments on juvenile development. Final weight, total length, standard length, height, feed intake, weight gain, feed conversion, survival, specific growth rate, protein efficiency rate and protein retention efficiency were assessed. -
A Review of the Systematic Biology of Fossil and Living Bony-Tongue Fishes, Osteoglossomorpha (Actinopterygii: Teleostei)
Neotropical Ichthyology, 16(3): e180031, 2018 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20180031 Published online: 11 October 2018 (ISSN 1982-0224) Copyright © 2018 Sociedade Brasileira de Ictiologia Printed: 30 September 2018 (ISSN 1679-6225) Review article A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Eric J. Hilton1 and Sébastien Lavoué2,3 The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutio- nary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits. The phylogenetic relationships among most extant osteoglossomorph families are widely agreed upon. However, there is still much to discover about the systematic biology of these fishes, particularly with regard to the phylogenetic affinities of several fossil taxa, within Mormyridae, and the position of Pantodon. In this paper we review the state of knowledge for osteoglossomorph fishes. We first provide an overview of the diversity of Osteoglossomorpha, and then discuss studies of the phylogeny of Osteoglossomorpha from both morphological and molecular perspectives, as well as biogeographic analyses of the group. Finally, we offer our perspectives on future needs for research on the systematic biology of Osteoglossomorpha. Keywords: Biogeography, Osteoglossidae, Paleontology, Phylogeny, Taxonomy. Os peixes da Superordem Osteoglossomorpha têm sido foco de inúmeros estudos sobre a morfologia, sistemática e evo- lução, particularmente devido à sua posição basal dentre os peixes teleósteos. -
Arapaima Are the Jungle Equivalent of Tarpon and Are an Air-Breathing Fish
Arapaima are the jungle equivalent of tarpon and As a bonus, the Mamirauá Reserve is one of the are an air-breathing fish, resembling tarpon in top bird-watching destinations in the world with both size and shape, though with more coloration over 400 recorded species, including toucans and and distinctly prehistoric fins. They have a wide, harpy eagles. Every day you’ll see countless scaly, gray-hued body, an armor-plated tapered species of birds along the banks and within the head, and often display deep red coloration along dense jungle. their fins. When hooked, they are acrobatic fighters, leaping repeatedly out of the water in WE STILL HAVE SOME GREAT AVAILABILITY breathtaking explosions of water that leave FOR THE UPCOMING 2018 SEASON AT anglers in awe at their power and beauty. PIRARUCÚ : Sept 4 - 9 - 1 rod While fishing for a true river monster is appealing Sept 9 - 14 - 1 rod for a lot of adventure anglers, Pirarucú has much Sept 23 - 28 - 3 rods more to offer than just big, tackle-busting fish. Sept 30 - Oct 5 - 1 rod Mamirauá is also home to vibrant populations of Oct 9 - 14 - 1 rod “juvenile” arapaima from 20-60 pounds, which Oct 21 - 26 - 4 rods readily take large streamers on floating fly lines Nov 6 - 11 - 1 rod in the shallow lagoons of the reserve. There are Nov 13 - 18 - 2 rods also many arowana, a fish popular in aquariums Nov 18 - 23 - 6 rods in the US but which average 2-8 pounds in the Nov 25 - 30 - 3 rods wild, and attack poppers and terrestrials with reckless abandon, leaping acrobatically once 5 night, 4.5 Day Fishing Program: hooked. -
Species Composition and Invasion Risks of Alien Ornamental Freshwater
www.nature.com/scientificreports OPEN Species composition and invasion risks of alien ornamental freshwater fshes from pet stores in Klang Valley, Malaysia Abdulwakil Olawale Saba1,2, Ahmad Ismail1, Syaizwan Zahmir Zulkifi1, Muhammad Rasul Abdullah Halim3, Noor Azrizal Abdul Wahid4 & Mohammad Noor Azmai Amal1* The ornamental fsh trade has been considered as one of the most important routes of invasive alien fsh introduction into native freshwater ecosystems. Therefore, the species composition and invasion risks of fsh species from 60 freshwater fsh pet stores in Klang Valley, Malaysia were studied. A checklist of taxa belonging to 18 orders, 53 families, and 251 species of alien fshes was documented. Fish Invasiveness Screening Test (FIST) showed that seven (30.43%), eight (34.78%) and eight (34.78%) species were considered to be high, medium and low invasion risks, respectively. After the calibration of the Fish Invasiveness Screening Kit (FISK) v2 using the Receiver Operating Characteristics, a threshold value of 17 for distinguishing between invasive and non-invasive fshes was identifed. As a result, nine species (39.13%) were of high invasion risk. In this study, we found that non-native fshes dominated (85.66%) the freshwater ornamental trade in Klang Valley, while FISK is a more robust tool in assessing the risk of invasion, and for the most part, its outcome was commensurate with FIST. This study, for the frst time, revealed the number of high-risk ornamental fsh species that give an awareness of possible future invasion if unmonitored in Klang Valley, Malaysia. As a global hobby, fshkeeping is cherished by both young and old people. -
Development of a Revised Edna Assay for Tilapia (Oreochromis Mossambicus and Tilapia Mariae)
Development of a revised eDNA assay for tilapia (Oreochromis mossambicus and Tilapia mariae) Report by Richard C. Edmunds and Damien Burrows © James Cook University, 2019 Development of revised eDNA assay for tilapia (Oreochromis mossambicus and Tilapia mariae) is licensed by James Cook University for use under a Creative Commons Attribution 4.0 Australia licence. For licence conditions see creativecommons.org/licenses/by/4.0 This report should be cited as: Edmunds, R.C. and Burrows, D. 2019. Development of revised eDNA assay for tilapia (Oreochromis mossambicus and Tilapia mariae). Report 19/07, Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville. Cover photographs: Front cover: Mozambique tilapia (photo: Ammit Jack/Shutterstock.com) Back cover: Oreochromis mossambicus and Tilapia mariae in captivity (photo: Centre for Tropical Water and Aquatic Ecosystem Research). This report is available for download from the Northern Australia Environmental Resources (NAER) Hub website at nespnorthern.edu.au The Hub is supported through funding from the Australian Government’s National Environmental Science Program (NESP). The NESP NAER Hub is hosted by Charles Darwin University. ISBN 978-1-925800-31-9 June, 2019 Printed by Uniprint Contents Acronyms....................................................................................................................................iv Abbreviations ............................................................................................................................. -
View/Download
CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name -
December 11, 2012 London Aquaria Society Ho! Ho! Ho! Merry Christmas Everyone & Have a Safe and Happy New Year
Volume 56, Issue 4 December 11, 2012 London Aquaria Society Ho! Ho! Ho! www.londonaquariasociety.com Merry Christmas Everyone & have a safe and Happy New Year POECILIA RETICULATA This is a very prolific fish, must do the choosing for them. The Guppy/Millions Fish easily bred in the aquarium. If Guppies are a good com- proper attention has been paid bination along with your favour- By: S. Pollard to water conditions and diet, ite kind of plants in a show tank. January 1990, London Aquaria these fish reach sexual maturity While Guppies do pick away at Society in just a few months. The ges- the micro-food which flourishes Submitted by: Annette & Ron tation period, (depending on upon plant leaves they do not Bishop temp.) is from 4-6 weeks. The eat the plant itself; neither will spawn sizes range in number they move the gravel around the The original basic colour from 20-100, (another good way some other species do. of P. Reticulata was a brownish reason for a large tank). The Beautiful, lively, easily bred, olive but with a wide natural fry are large enough at birth to hardy and non-aggressive; all variance of the iridescent lateral accept newly hatched brine points in favour of the Guppy. scales. The intensive in/cross shrimp and should have the breeding by experts for many protection of dense vegetation There are many Guppies years has now produced Gup- as their parents often develop a Societies around the world and if pies of almost every conceiv- taste for them. you are a serious amateur who able colour, pattern and fin would like to learn more about As mentioned before, the this interesting fish; why not shape. -
Population Genetic Structure of Indigenous Ornamental Teleosts, Puntius Denisonii and Puntius Chalakkudiensis from the Western Ghats, India
POPULATION GENETIC STRUCTURE OF INDIGENOUS ORNAMENTAL TELEOSTS, PUNTIUS DENISONII AND PUNTIUS CHALAKKUDIENSIS FROM THE WESTERN GHATS, INDIA Thesis submitted in partial fulfillment of the requirement for the Degree of Doctor of Philosophy in Marine Sciences of the Cochin University of Science and Technology Cochin – 682 022, Kerala, India by LIJO JOHN (Reg. No. 3100) National Bureau of Fish Genetic Resources Cochin Unit CENTRAL MARINE FISHERIES RESEARCH INSTITUTE (Indian Council of Agricultural Research) P.B. No. 1603, Kochi – 682 018, Kerala, India. December, 2009. Declaration I do hereby declare that the thesis entitled “Population genetic structure of indigenous ornamental teleosts, Puntius denisonii and Puntius chalakkudiensis from the Western Ghats, India” is the authentic and bonafide record of the research work carried out by me under the guidance of Dr. A. Gopalakrishnan, Principal Scientist and SIC, National Bureau of Fish Genetic Resources (NBFGR) Cochin Unit, Central Marine Fisheries Research Institute, Cochin in partial fulfillment for the award of Ph.D. degree under the Faculty of Marine Sciences of Cochin University of Science and Technology, Cochin and no part thereof has been previously formed the basis for the award of any degree, diploma, associateship, fellowship or other similar titles or recognition. Cochin (Lijo John) 16th December 2009 ®É¹]ÅÒªÉ ¨ÉiºªÉ +ÉxÉÖÖ´ÉÆÆÎ¶ÉE ºÉÆÆºÉÉvÉxÉ ¤ªÉÚ®Éä NATIONAL BUREAU OF FISH GENETIC RESOURCES NBFGR Cochin Unit, CMFRI Campus, P.B. No. 1603, Cochin-682 018, Kerala, India Fax: (0484) 2395570; E-mail: [email protected] Dr. A. Gopalakrishnan, Date: 16.12.2009 Principal Scientist, Officer-in-Charge & Supervising Teacher Certificate This is to certify that this thesis entitled, “Population genetic structure of indigenous ornamental teleosts, Puntius denisonii and Puntius chalakkudiensis from the Western Ghats, India” is an authentic record of original and bonafide research work carried out by Mr.