Measurement of the Mass of the Higgs Boson in the Two Photon Decay Channel with the CMS Experiment

Total Page:16

File Type:pdf, Size:1020Kb

Measurement of the Mass of the Higgs Boson in the Two Photon Decay Channel with the CMS Experiment Facolt`adi Scienze Matematiche Fisiche e Naturali Ph.D. Thesis Measurement of the mass of the Higgs Boson in the two photon decay channel with the CMS experiment. Candidate Thesis advisors Shervin Nourbakhsh Dott. Riccardo Paramatti Dott. Paolo Meridiani Matricola 1106418 Year 2012/2013 Contents Introduction i 1 Standard Model Higgs and LHC physics 1 1.1 StandardModelHiggsboson.......................... 1 1.1.1 Overview ................................ 2 1.1.2 Spontaneous symmetry breaking and the Higgs boson . 3 1.1.3 Higgsbosonproduction ........................ 5 1.1.4 Higgsbosondecays ........................... 5 1.1.5 Higgs boson property study in the two photon final state . 6 1.2 LHC ....................................... 11 1.2.1 The LHC layout............................. 12 1.2.2 Machineoperation ........................... 13 1.2.3 LHC physics (proton-proton collision) . 15 2 Compact Muon Solenoid Experiment 17 2.1 Detectoroverview................................ 17 2.1.1 Thecoordinatesystem . 18 2.1.2 Themagnet ............................... 18 2.1.3 Trackersystem ............................. 19 2.1.4 HadronCalorimeter. 21 2.1.5 Themuonsystem............................ 22 2.2 Electromagnetic Calorimeter . 24 2.2.1 Physics requirements and design goals . 24 I Contents II 2.2.2 ECAL design............................... 24 2.3 Triggeranddataacquisition . 26 2.3.1 CalorimetricTrigger . 27 2.4 CMS simulation ................................. 28 3 Electrons and photons reconstruction and identification 32 3.1 Energy measurement in ECAL ......................... 32 3.2 Energycalibration ............................... 33 3.2.1 Responsetimevariation . 34 3.2.2 Intercalibrations. 36 3.3 Clusteringandenergycorrections . 38 3.4 Algorithmic corrections to electron and photon energies ........... 39 3.4.1 Parametric electron and photon energy corrections . ....... 40 3.4.2 MultiVariate (MVA) electron and photon energy corrections . 41 3.5 Photonreconstruction ............................. 43 3.5.1 Reconstruction of conversions . 43 3.6 Electronreconstruction. 43 3.7 ECAL noiseandsimulation ........................... 46 3.7.1 Time dependent simulation . 48 4 Measurement of the energy scale and energy resolution 50 4.1 Intrinsic Electromagnetic Calorimeter (ECAL) energy resolution . 51 4.2 Measurement of the in situ energyresolution. 51 4.2.1 Contributions to the in situ energy resolution . 51 4.2.2 Energy scale and resolution with Z e+e− events . 54 → 4.2.3 Definition of electron energy for ECAL energy scale and resolution studies 57 4.2.4 Z e+e− eventselection ....................... 58 → 4.2.5 Simulation................................ 61 4.2.6 Comparison between data and Monte Carlo (MC) samples . 61 4.2.7 Pile-upre-weighting . 63 4.2.8 FitMethod ............................... 65 Contents III 4.2.9 Energy scale correction and experimental resolution estimation . 67 4.2.10 Uncertainties on peak position and experimental resolution . 67 4.3 Smearingmethod ................................ 69 4.3.1 Mitigation of the likelihood fluctuations . ..... 72 4.3.2 ET dependentenergyscale. 74 4.3.3 Minimizationalgorithm . 75 4.4 Energy scale corrections and additional smearing derivation......... 76 4.4.1 Energyscalecorrections . 77 4.4.2 Additionalsmearings . 84 4.4.3 ValidationwithtoyMCstudy . 90 4.4.4 Systematic uncertainties on additional smearings . ...... 90 5 Search for a Higgs boson in the H γγ channel 94 → 5.1 Introduction................................... 94 5.2 Trigger...................................... 95 5.3 Simulatedsamples ............................... 96 5.4 Diphoton vertex identification . 101 5.4.1 Basealgorithms.............................101 5.4.2 Per-event probability of correct diphoton vertex choice . 102 5.4.3 Preselection ...............................103 5.5 Cut-based selection and categorization: untagged categories . 105 5.5.1 Single photon identification . 105 5.5.2 Di-photon event selection . 105 5.5.3 Event classification . 106 5.6 MVA-based selection and categorization: untagged categories . 107 5.6.1 Single photon identification . 107 5.6.2 Di-photon event selection . 108 5.6.3 Event classification . 108 5.7 Exclusivemodes.................................112 5.7.1 Leptontag................................112 5.7.2 METtag ................................115 Contents IV 5.7.3 VBF...................................117 5.8 Statisticalanalysis ............................... 122 5.8.1 Exclusionlimits.............................122 5.8.2 Quantification of an excess . 123 5.9 Signalextraction ................................ 123 5.9.1 Background modelling (fb).......................124 5.9.2 Signalmodelling ............................125 5.10 Systematicuncertainties . 131 5.11Results......................................135 6 Higgs Mass measurement 143 6.1 Uncertainty on the photon energy scale . 144 6.1.1 Extrapolation from electrons to photons . 144 6.1.2 Extrapolation from Z to H (125) energies . 145 6.1.3 Summary of the systematic errors on the photon energy scale . 146 6.2 Propagation of energy scale and resolution uncertainties to the signal parametric model146 6.3 Results......................................146 Conclusion 149 Bibliography 150 List of acronyms 159 Introduction The Standard Model (SM) of particle physics describes elementary particles and their interactions in the contest of the Quantum Field Theory. It has been very successful in describing high energy measurements at the actual experimental limits. The electro-weak sector of the theory is spontaneously broken by an additional scalar field (the Higgs field) with a non void expectation value for the ground state. The mass of the particles is given by their interaction with the Higgs field, whose quantum is the Higgs boson. The Higgs boson of the SM is a scalar particle and with spin 0 with a coupling to the other particles proportional to their masses. The Higgs boson mass is instead a free parameter of the theory. The 4th July 2012, at the Large Hadron Collider (LHC) the A Toroidal LHC Appa- ratuS experiment (ATLAS) and the Compact Muon Solenoid (CMS) collaborations have announced the discovery of a new boson. In this thesis, the measurement of the properties of the new boson in the di-photon decay channel, with the CMS data, is presented. The objective of the analysis is the study of the new boson properties in order to assess the compatibility with the SM predictions. The objective of this thesis is to present the measurement of the parameters of the boson in the di-photon final state, with a special highlight to the close relation between the analysis sensitivity and the Electromagnetic Calorimeter (ECAL) performance, and illustrate in details the mass measurement and its uncertainties. The data collected in 2011 at 7 TeV center-of-mass energy and in 2012 at 8 TeV by the CMS experiment are used in this analysis. A theoretical introduction to the Higgs boson, its production mechanism at LHC and decay modes is given in the first chapter. An overview of the Higgs boson properties that i Contents ii is possible to study in the di-photon final state is presented. Notions about the LHC and the proton-proton physics environment are also given. Chapter 2 is focused on the CMS detector. Particular attention is devoted to the ECAL description given its central role in the H γγ analysis sensitivity. → The Higgs signal is expected as a resonance in the di-photon invariant mass over a smoothly falling background. According to the SM predictions, the natural width of the Higgs boson is negligible with respect to the experimental resolution. An excellent energy and direction resolution of the photons is therefore crucial. sensitivity. The electron and photon reconstruction is described in Chapter 3, starting from the ECAL energy measurement algorithms, the ECAL in situ calibration and the energy cor- rections for electrons and photons. My personal contribution to the ECAL calibration activities in the LHC Run1 is to validate, through the evaluation of the resolution improvements in Z e+e− events, → each step of the calibration procedure. The ECAL conditions for the legacy reprocessing of 7 and 8 TeV data have been validated with the tools I developed during this thesis. Chapter 4 is focused on the measurement of the energy scale and resolution for elec- trons and photons. The tools I developed are described and the results I obtained with the legacy reprocessing for the paper in preparation are reported. The origin of discrepancies between the data and the simulation are also discussed, and the corrections needed in the H γγ analysis to compensate such discrepancies are shown. → The strategy and the main details of the H γγ analysis are presented in Chapter 5 → with the corresponding results. Chapter 6 is dedicated to the mass measurement and the discussion of the results and uncertainties. I’ve contributed to estimate the uncertainties due to the energy scale and resolution and to reduced them improving the correction derivation described in Chapter 4. In this thesis, the most recent CMS public results on the H γγ analysis are shown, → whilst at the moment of writing, the reprocessing of the data with final calibration is being used in the H γγ analysis for final results to be published. The systematic uncertainties → presented in this thesis are however the one related to the most recent public results. Chapter 1 Standard Model Higgs and LHC physics 1.1 Standard Model Higgs boson The Standard Model (SM) [1, 2, 3] has been very successful in
Recommended publications
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • 1.1. Introduction the Phenomenon of Positron Annihilation Spectroscopy
    PRINCIPLES OF POSITRON ANNIHILATION Chapter-1 __________________________________________________________________________________________ 1.1. Introduction The phenomenon of positron annihilation spectroscopy (PAS) has been utilized as nuclear method to probe a variety of material properties as well as to research problems in solid state physics. The field of solid state investigation with positrons started in the early fifties, when it was recognized that information could be obtained about the properties of solids by studying the annihilation of a positron and an electron as given by Dumond et al. [1] and Bendetti and Roichings [2]. In particular, the discovery of the interaction of positrons with defects in crystal solids by Mckenize et al. [3] has given a strong impetus to a further elaboration of the PAS. Currently, PAS is amongst the best nuclear methods, and its most recent developments are documented in the proceedings of the latest positron annihilation conferences [4-8]. PAS is successfully applied for the investigation of electron characteristics and defect structures present in materials, magnetic structures of solids, plastic deformation at low and high temperature, and phase transformations in alloys, semiconductors, polymers, porous material, etc. Its applications extend from advanced problems of solid state physics and materials science to industrial use. It is also widely used in chemistry, biology, and medicine (e.g. locating tumors). As the process of measurement does not mostly influence the properties of the investigated sample, PAS is a non-destructive testing approach that allows the subsequent study of a sample by other methods. As experimental equipment for many applications, PAS is commercially produced and is relatively cheap, thus, increasingly more research laboratories are using PAS for basic research, diagnostics of machine parts working in hard conditions, and for characterization of high-tech materials.
    [Show full text]
  • 1 the LOCALIZED QUANTUM VACUUM FIELD D. Dragoman
    1 THE LOCALIZED QUANTUM VACUUM FIELD D. Dragoman – Univ. Bucharest, Physics Dept., P.O. Box MG-11, 077125 Bucharest, Romania, e-mail: [email protected] ABSTRACT A model for the localized quantum vacuum is proposed in which the zero-point energy of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated to the zero-point energy of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift; it also offers a new insight into the Zitterbewegung of material particles. 2 INTRODUCTION The zero-point energy (ZPE) of the quantum electromagnetic field is at the same time an indispensable concept of quantum field theory and a controversial issue (see [1] for an excellent review of the subject). The need of the ZPE has been recognized from the beginning of quantum theory of radiation, since only the inclusion of this term assures no first-order temperature-independent correction to the average energy of an oscillator in thermal equilibrium with blackbody radiation in the classical limit of high temperatures. A more rigorous introduction of the ZPE stems from the treatment of the electromagnetic radiation as an ensemble of harmonic quantum oscillators. Then, the total energy of the quantum electromagnetic field is given by E = åk,s hwk (nks +1/ 2) , where nks is the number of quantum oscillators (photons) in the (k,s) mode that propagate with wavevector k and frequency wk =| k | c = kc , and are characterized by the polarization index s.
    [Show full text]
  • Basic Four-Momentum Kinematics As
    L4:1 Basic four-momentum kinematics Rindler: Ch5: sec. 25-30, 32 Last time we intruduced the contravariant 4-vector HUB, (II.6-)II.7, p142-146 +part of I.9-1.10, 154-162 vector The world is inconsistent! and the covariant 4-vector component as implicit sum over We also introduced the scalar product For a 4-vector square we have thus spacelike timelike lightlike Today we will introduce some useful 4-vectors, but rst we introduce the proper time, which is simply the time percieved in an intertial frame (i.e. time by a clock moving with observer) If the observer is at rest, then only the time component changes but all observers agree on ✁S, therefore we have for an observer at constant speed L4:2 For a general world line, corresponding to an accelerating observer, we have Using this it makes sense to de ne the 4-velocity As transforms as a contravariant 4-vector and as a scalar indeed transforms as a contravariant 4-vector, so the notation makes sense! We also introduce the 4-acceleration Let's calculate the 4-velocity: and the 4-velocity square Multiplying the 4-velocity with the mass we get the 4-momentum Note: In Rindler m is called m and Rindler's I will always mean with . which transforms as, i.e. is, a contravariant 4-vector. Remark: in some (old) literature the factor is referred to as the relativistic mass or relativistic inertial mass. L4:3 The spatial components of the 4-momentum is the relativistic 3-momentum or simply relativistic momentum and the 0-component turns out to give the energy: Remark: Taylor expanding for small v we get: rest energy nonrelativistic kinetic energy for v=0 nonrelativistic momentum For the 4-momentum square we have: As you may expect we have conservation of 4-momentum, i.e.
    [Show full text]
  • List of Particle Species-1
    List of particle species that can be detected by Micro-Channel Plates and similar secondary electron multipliers. A Micro-Channel Plate (MCP) can detected certain particle species with decent quantum efficiency (QE). Commonly MCP are used to detect charged particles at low to intermediate energies and to register photons from VUV to X-ray energies. “Detection” means that a significant charge cloud is created in a channel (pore). Generally, a particle (or photon) can liberate an electron from channel surface atoms into the continuum if it carries sufficient momentum or if it can transfer sufficient potential energy. Therefore, fast-enough neutral atoms can also be detected by MCP and even exited atoms like He* (even when “slow”). At least about 10 eV of energy transfer is required to release an electron from the channel wall to start the avalanche. This number also determines the cut-off energy for photon detection which translates to a photon wave-length of about 200 nm (although there can be non- linear effects at extreme photon fluxes enhancing this cut-off wavelength). Not in all cases when ionization of a channel wall atom is possible, the electron will eventually be released to the continuum: the surface energy barrier has to be overcome and the electron must have the right emission direction. Also, the electron should be born close to surface because it may lose too much energy on its way out due to scattering and will be absorbed in the bulk. These effects reduce the QE at for VUV photons to about 10%. At EUV energies QE cannot improve much: although the primary electron energy increases, the ionization takes place deeper in the bulk on average and the electrons thus can hardly make it to the continuum.
    [Show full text]
  • Phenomenology Lecture 6: Higgs
    Phenomenology Lecture 6: Higgs Daniel Maître IPPP, Durham Phenomenology - Daniel Maître The Higgs Mechanism ● Very schematic, you have seen/will see it in SM lectures ● The SM contains spin-1 gauge bosons and spin- 1/2 fermions. ● Massless fields ensure: – gauge invariance under SU(2)L × U(1)Y – renormalisability ● We could introduce mass terms “by hand” but this violates gauge invariance ● We add a complex doublet under SU(2) L Phenomenology - Daniel Maître Higgs Mechanism ● Couple it to the SM ● Add terms allowed by symmetry → potential ● We get a potential with infinitely many minima. ● If we expend around one of them we get – Vev which will give the mass to the fermions and massive gauge bosons – One radial and 3 circular modes – Circular modes become the longitudinal modes of the gauge bosons Phenomenology - Daniel Maître Higgs Mechanism ● From the new terms in the Lagrangian we get ● There are fixed relations between the mass and couplings to the Higgs scalar (the one component of it surviving) Phenomenology - Daniel Maître What if there is no Higgs boson? ● Consider W+W− → W+W− scattering. ● In the high energy limit ● So that we have Phenomenology - Daniel Maître Higgs mechanism ● This violate unitarity, so we need to do something ● If we add a scalar particle with coupling λ to the W ● We get a contribution ● Cancels the bad high energy behaviour if , i.e. the Higgs coupling. ● Repeat the argument for the Z boson and the fermions. Phenomenology - Daniel Maître Higgs mechanism ● Even if there was no Higgs boson we are forced to introduce a scalar interaction that couples to all particles proportional to their mass.
    [Show full text]
  • Photon–Photon and Electron–Photon Colliders with Energies Below a Tev Mayda M
    Photon–Photon and Electron–Photon Colliders with Energies Below a TeV Mayda M. Velasco∗ and Michael Schmitt Northwestern University, Evanston, Illinois 60201, USA Gabriela Barenboim and Heather E. Logan Fermilab, PO Box 500, Batavia, IL 60510-0500, USA David Atwood Dept. of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA Stephen Godfrey and Pat Kalyniak Ottawa-Carleton Institute for Physics Department of Physics, Carleton University, Ottawa, Canada K1S 5B6 Michael A. Doncheski Department of Physics, Pennsylvania State University, Mont Alto, PA 17237 USA Helmut Burkhardt, Albert de Roeck, John Ellis, Daniel Schulte, and Frank Zimmermann CERN, CH-1211 Geneva 23, Switzerland John F. Gunion Davis Institute for High Energy Physics, University of California, Davis, CA 95616, USA David M. Asner, Jeff B. Gronberg,† Tony S. Hill, and Karl Van Bibber Lawrence Livermore National Laboratory, Livermore, CA 94550, USA JoAnne L. Hewett, Frank J. Petriello, and Thomas Rizzo Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 USA We investigate the potential for detecting and studying Higgs bosons in γγ and eγ collisions at future linear colliders with energies below a TeV. Our study incorporates realistic γγ spectra based on available laser technology, and NLC and CLIC acceleration techniques. Results include detector simulations.√ We study the cases of: a) a SM-like Higgs boson based on a devoted low energy machine with see ≤ 200 GeV; b) the heavy MSSM Higgs bosons; and c) charged Higgs bosons in eγ collisions. 1. Introduction The option of pursuing frontier physics with real photon beams is often overlooked, despite many interesting and informative studies [1].
    [Show full text]
  • Decay Rates and Cross Section
    Decay rates and Cross section Ashfaq Ahmad National Centre for Physics Outlines Introduction Basics variables used in Exp. HEP Analysis Decay rates and Cross section calculations Summary 11/17/2014 Ashfaq Ahmad 2 Standard Model With these particles we can explain the entire matter, from atoms to galaxies In fact all visible stable matter is made of the first family, So Simple! Many Nobel prizes have been awarded (both theory/Exp. side) 11/17/2014 Ashfaq Ahmad 3 Standard Model Why Higgs Particle, the only missing piece until July 2012? In Standard Model particles are massless =>To explain the non-zero mass of W and Z bosons and fermions masses are generated by the so called Higgs mechanism: Quarks and leptons acquire masses by interacting with the scalar Higgs field (amount coupling strength) 11/17/2014 Ashfaq Ahmad 4 Fundamental Fermions 1st generation 2nd generation 3rd generation Dynamics of fermions described by Dirac Equation 11/17/2014 Ashfaq Ahmad 5 Experiment and Theory It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree with experiment, it’s wrong. Richard P. Feynman A theory is something nobody believes except the person who made it, An experiment is something everybody believes except the person who made it. Albert Einstein 11/17/2014 Ashfaq Ahmad 6 Some Basics Mandelstam Variables In a two body scattering process of the form 1 + 2→ 3 + 4, there are 4 four-vectors involved, namely pi (i =1,2,3,4) = (Ei, pi) Three Lorentz Invariant variables namely s, t and u are defined.
    [Show full text]
  • The Concept of the Photon—Revisited
    The concept of the photon—revisited Ashok Muthukrishnan,1 Marlan O. Scully,1,2 and M. Suhail Zubairy1,3 1Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843 2Departments of Chemistry and Aerospace and Mechanical Engineering, Princeton University, Princeton, NJ 08544 3Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan The photon concept is one of the most debated issues in the history of physical science. Some thirty years ago, we published an article in Physics Today entitled “The Concept of the Photon,”1 in which we described the “photon” as a classical electromagnetic field plus the fluctuations associated with the vacuum. However, subsequent developments required us to envision the photon as an intrinsically quantum mechanical entity, whose basic physics is much deeper than can be explained by the simple ‘classical wave plus vacuum fluctuations’ picture. These ideas and the extensions of our conceptual understanding are discussed in detail in our recent quantum optics book.2 In this article we revisit the photon concept based on examples from these sources and more. © 2003 Optical Society of America OCIS codes: 270.0270, 260.0260. he “photon” is a quintessentially twentieth-century con- on are vacuum fluctuations (as in our earlier article1), and as- Tcept, intimately tied to the birth of quantum mechanics pects of many-particle correlations (as in our recent book2). and quantum electrodynamics. However, the root of the idea Examples of the first are spontaneous emission, Lamb shift, may be said to be much older, as old as the historical debate and the scattering of atoms off the vacuum field at the en- on the nature of light itself – whether it is a wave or a particle trance to a micromaser.
    [Show full text]
  • Search for a Higgs Boson Decaying Into a Z and a Photon in Pp
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-PH-EP/2013-037 2015/09/07 CMS-HIG-13-006 Search for a Higgs boson decayingp into a Z and a photon in pp collisions at s = 7 and 8 TeV The CMS Collaboration∗ Abstract A search for a Higgs boson decaying into a Z boson and a photon is described. The analysis is performed using proton-proton collision datasets recorded by the CMS de- tector at the LHC. Events were collected at center-of-mass energies of 7 TeV and 8 TeV, corresponding to integrated luminosities of 5.0 fb−1 and 19.6 fb−1, respectively. The selected events are required to have opposite-sign electron or muon pairs. No excess above standard model predictions has been found in the 120–160 GeV mass range and the first limits on the Higgs boson production cross section times the H ! Zg branch- ing fraction at the LHC have been derived. The observed limits are between about 4 and 25 times the standard model cross section times the branching fraction. The ob- served and expected limits for m``g at 125 GeV are within one order of magnitude of the standard model prediction. Models predicting the Higgs boson production cross section times the H ! Zg branching fraction to be larger than one order of magni- tude of the standard model prediction are excluded for most of the 125–157 GeV mass range. arXiv:1307.5515v3 [hep-ex] 4 Sep 2015 Published in Physics Letters B as doi:10.1016/j.physletb.2013.09.057.
    [Show full text]
  • Interactions with Matter Photons, Electrons and Neutrons
    Interactions with Matter Photons, Electrons and Neutrons Ionizing Interactions Jason Matney, MS, PhD Interactions of Ionizing Radiation 1. Photon Interactions Indirectly Ionizing 2. Charge Particle Interactions Directly Ionizing Electrons Protons Alpha Particles 3. Neutron Interactions Indirectly Ionizing PHOTON INTERACTIONS Attenuation Attenuation – When photons are “attenuated” they are removed from the beam. This can be due to absorption or scatter . Linear Attenuation Coefficient = μ . Fraction of incident beam removed per unit path-length Units: 1/cm Measurement of Linear Attenuation Coefficient - “Narrow Beam” No −µx Nx N(x) = N o e Khan, x Figure 5.1 Narrow beam of mono-energetic photons directed toward absorbing slab of thickness x. Small detector of size d placed at distance R >> d behind slab directly in beam line. Only photons that transverse slab without interacting are detected. −µx N(x) = N o e −µx I(x) = I o e Attenuation Equation(s) Mass Attenuation Coefficient Linear attenuation coefficient often expressed as the ratio of µ to the density, ρ = mass attenuation coefficient Know these 1 units! 3 2 µ cm 1 = cm = cm cm g g g ρ 3 cm Half Value Layer HVL = Thickness of material that reduces the beam intensity to 50% of initial value. For monoenergetic beam HVL1 = HVL2. I −µ (HVL) 1 = ⇒ e 2 I o Take Ln of both sides 1 Ln2 − µ(HVL) = Ln HVL = Important 2 µ relationship! Half Value Layer Polychromatic Beams After a polychromatic beam traverses the first HVL, it is Khan, Figure 5.3 hardened. low energy photons preferentially absorbed. Beam has higher effective energy after passing through first HVL.
    [Show full text]
  • Relativistic Kinematics & Dynamics Momentum and Energy
    Physics 106a, Caltech | 3 December, 2019 Lecture 18 { Relativistic kinematics & dynamics Momentum and energy Our discussion of 4-vectors in general led us to the energy-momentum 4-vector p with components in some inertial frame (E; ~p) = (mγu; mγu~u) with ~u the velocity of the particle in that inertial 2 −1=2 1 2 frame and γu = (1 − u ) . The length-squared of the 4-vector is (since u = 1) p2 = m2 = E2 − p2 (1) where the last expression is the evaluation in some inertial frame and p = j~pj. In conventional units this is E2 = p2c2 + m2c4 : (2) For a light particle (photon) m = 0 and so E = p (going back to c = 1). Thus the energy-momentum 4-vector for a photon is E(1; n^) withn ^ the direction of propagation. This is consistent with the quantum expressions E = hν; ~p = (h/λ)^n with ν the frequency and λ the wave length, and νλ = 1 (the speed of light) We are led to the expression for the relativistic 3-momentum and energy m~u m ~p = p ;E = p : (3) 1 − u2 1 − u2 Note that ~u = ~p=E. The frame independent statement that the energy-momentum 4-vector is conserved leads to the conservation of this 3-momentum and energy in each inertial frame, with the new implication that mass can be converted to and from energy. Since (E; ~p) form the components of a 4-vector they transform between inertial frames in the same way as (t; ~x), i.e. in our standard configuration 0 px = γ(px − vE) (4) 0 py = py (5) 0 pz = pz (6) 0 E = γ(E − vpx) (7) and the inverse 0 0 px = γ(px + vE ) (8) 0 py = py (9) 0 pz = pz (10) 0 0 E = γ(E + vpx) (11) These reduce to the Galilean expressions for small particle speeds and small transformation speeds.
    [Show full text]