Armand De Ricqles

Total Page:16

File Type:pdf, Size:1020Kb

Armand De Ricqles Biologie historique et Évolutionnisme M. Armand DE RICQLÈS, professeur ENSEIGNEMENTS 1. Au titre du Collège de France 1.a. — Cours (les vendredis 10, 17, 24, 31 janvier, 7, 14, 21, 28 février, 7 et 14 mars 2003, soit 20 heures) Crocodiles, Dinosaures, Oiseaux : le « Parc Jurassique » revisité (suite). Poursuivant cette année l’analyse de l’évolution et de la paléobiologie des Archosauriens, je me suis proposé de présenter un panorama aussi complet et précis que possible des Sauropodomorphes, le groupe-frère des dinosaures bipèdes carnivores ou Théropodes passés en revue l’année dernière. Les Sauropo- domorphes comprennent les Sauropodes (Diplodocus, Brachiosaurus...), fossiles célébrissimes du fait de leur statut de plus grands vertébrés terrestres, avec toutes les conséquences paléobiologiques intéressantes posées par ce gigantisme. On le sait (voir Annuaire 2000-2001 pp. 433-437), Théropodes (incl. oiseaux) et Sauropodomorphes constituent ensemble une unité naturelle ou clade (Sau- rischia ou Sauripelvia) au sein des Dinosauria, ceux-ci se situant parmi les Ornithosuchia au sein des Archosauria. L’autre grand rameau évolutif des Archo- saures, les Pseudosuchia, comprend les Crocodylia et se poursuit donc, avec ces derniers, dans la nature actuelle. Nous avons déjà envisagé (ibid. pp. 437-439) l’évolution initiale des Pseudosuchia au Trias, il nous restait donc à poursuivre l’analyse de l’évolution de cette ligné depuis la base du Jurassique jusqu’à l’actuel, ce par quoi j’ai commencé les leçons de cette année. Comme d’habitude, j’ai tenté, dans cette série d’exposés, de faire distinguer clairement les connaissances acquises des interprétations et inférences plus ou moins directes concernant la phylogénie comme la paléobiologie. Au-delà des données anatomiques factuelles présentées les exposés ont donc systématique- ment croisé trois composantes, dans une perspective critique : a/ d’une part, les 462 ARMAND DE RICQLÈS données paléogéographiques, stratigraphiques et paléoclimatologiques concernant le Mésozoïque et ses gisements à vertébrés continentaux, b/ d’autre part, les données d’histoire de la paléontologie et de la systématique portant sur la décou- verte, la compréhension, la classification et la nomenclature « traditionnelle » des groupes envisagés, c/ enfin, le renouveau des conceptions, accompli au cours des quinze dernières années grâce à l’application de la méthode cladistique, abou- tissant à des hypothèses phylogénétiques argumentées, sinon toujours robustes, renouveau désormais associéàcelui des principes et de la pratique de la nomen- clature systématique (définition phylogénétique des taxons). Pseudosuchia : Crocodyliforma : Mesoeucrocodylia. La suite de l’analyse de l’évolution de ce clade a occupé les cinq premières leçons. A` l’inverse du déroulement général des exposés selon le décours temporel « normal », je suis parti cette fois de la considération « herpétologique » de la faune actuelle des crocodiliens (biologie, éco-ethologie, répartition, systématique...) pour « remonter le temps » en direction des abondants documents fossiles relatant l’évolution des crocodiles « modernes » (Eusuchia) à partir du Crétacé supérieur et au cours du Cénozoïque. Cette approche a permis de confronter les données paléontologiques et néontologiques (particulièrement moléculaires) pour la reconstruction phylogé- nétique. A` la suite de quoi, j’ai repris le décours temporel « normal » pour traiter l’évolution des crocodiliens plus anciens (principalement Mesoeucrocodylia très divers d’âges Jurassique et Crétacé) succédant aux formes triasiques (Sphenosu- chia, etc.) déjàévoquées il y a deux ans. Dans la faune actuelle, les crocodiliens ne sont représentés que par une faible biodiversité : crocodiles, caïmans et gavials comprennent 22 espèces réparties dans 8 genres et 3 Familles. Écologiquement, ils constituent toutefois un groupe de superprédateurs très bien adaptés dans leurs environnements et seule la pres- sion humaine limite actuellement leur succès dans tous les milieux intertropicaux riches en eaux douces. J’ai d’abord passé en revue les principales caractéristiques anatomo-physiologiques du groupe (appareil circulatoire et respiratoire, système nerveux central, appareil locomoteur et locomotion...) dont certains aspects constituent des apomorphies soit au niveau des crocodiliens eux-mêmes, soit peut être plus généralement au niveau des Archosaures. La répartition géographique est liée à des caractéristiques spécifiques (adaptation au froid, tolérance à la salinité...). Morphologies crâniennes (brévi-, méso- ou longirostrie...) et dentaires sont manifestement liées à la fois à l’écologie (plus ou moins terrestre) et au régime alimentaire (plus ou moins piscivore). La reproduction, caractérisée par le déterminisme environnemental du sexe, fait intervenir des moeurs assez variées au niveau spécifique, avec construction de divers types de nids et des interactions importantes entre générations. La croissance montre une plasticité considérable, à la fois au plan génétique et en fonction des conditions de l’environnement. Compte tenu des défis actuels posés par la conservation de la biodiversité j’ai détaillé la situation, globalement très alarmante chez les crocodiliens, avec toute- BIOLOGIE HISTORIQUE ET ÉVOLUTIONNISME 463 fois quelques exemples assez encourageants de restauration (Gavial) ou d’exploi- tations raisonnées des populations. La systématique traditionnelle en Alligatoridés (4 genres, 7 espèces), Crocody- lidés (3 genres, 14 espèces) et Gavialidés (1 genre, une espèce), progressivement établie au XIXe siècle, a été confortée par les études morphologiques récentes mais pose toutefois des problèmes, compte tenu de l’enracinement ancien des taxons actuels (Crétacé) et de la complexité de leur histoire phylogénétique et biogéographique au cours du Cénozoïque. De fait, l’introduction depuis 15 ans des données moléculaires permet la constitution de nouveaux « jeux de données » indépendants de la morphologie. La confrontation, pour les mêmes taxons, de ces jeux de données indépendants est évidemment du plus haut intérêt aux plans théorique et méthodologique. J’ai largement exposé, à cet égard, la magistrale synthèse de Chr. Brochu (1997). On peut en retenir ici la remarquable similitude des résultats phylogénétiques issus de l’analyse indépendante des jeux de données morphologiques et moléculaires, sauf sur un seul point : la position du gavial. Le désaccord porte sur deux aspects : a/ un problème de topologie d’arbres : où se place le gavial (et ses parents éteints) sur le cladogramme des Crocodylia ? ; b/ un problème temporel : quand la lignée du gavial a-t-elle divergée de ses plus proches parents actuels ? Pour les morphologistes (et paléontologues) le gavial actuel représente une lignée indépendante détachéedèsleCrétacé supérieur (70 MA), et les Crocody- lidés et Alligatoridés sont plus proches parents les uns des autres que chacun d’eux ne l’est des Gavialidés. Pour les molécularistes, au contraire, le gavial forme un clade avec le faux gavial (Tomistoma), clade plus apparenté aux Croco- dylidésqu’aux Alligatoridés. De plus Gavialis et Tomistoma n’auraient divergé qu’au Pliocène, au plus tôt au Miocène (15 MA). Du fait de la qualité et de la quantité des jeux de données morphologiques (y compris paléontologiques) et moléculaires, par ailleurs d’accord sur l’ensemble du cladogramme, la « non congruence » (contradiction) entre résultats issus de ces jeux de données différents à propos du gavial constitue un véritable cas d’école, illustrant bon nombre de problèmes et biais méthodologiques en recons- truction phylogénétique, que l’on a détaillé au cours des exposés. Dans le cas présent, la combinaison de l’ensemble des données en une seule matrice (Poe 1996) semble discutable. En effet, la combinaison de jeux de données contradic- toires mais chacun solidement soutenu est incapable de produire une phylogénie fiable. En l’occurrence, la permanence et la force avec lesquelles les divers jeux de données sont en contradiction quant à la place de Gavialis et son temps de divergence indiquent un conflit lié aux données elles-mêmes. A` l’heure actuelle, le problème ne peut être considéré comme résolu. Les Pseudosuchia post-Triasiques appartiennent tous au groupe apical des Cro- codyliformes. La systématique évolutionniste y distinguait traditionnellement trois « grades » ou « paliers évolutifs » de plus en plus « progressifs » : Protosu- 464 ARMAND DE RICQLÈS chia, Mesosuchia et Eusuchia se succédant du Trias supérieur à l’actuel, point de vue réfuté par l’analyse cladistique, du fait de la paraphylie intrinsèque au concept de Mesosuchia. Comme on l’a vu (ibid. p. 438), les Protosuchia semblent bien constituer un petit groupe naturel ou clade, connu du Trias supérieur et du Jurassique inférieur. Ils s’opposent à l’ensemble plus dérivé des « Mesoeucroco- dylia », incluant tous les autres Crocodyliformes dont les formes actuelles. L’ana- lyse phylogénétique des Mesoeucrocodylia est très complexe et un consensus général n’est pas encore établi. On se bornera ici à un canevas simplifié (Fig. 1), sans entrer dans la discussion des nombreuses hypothèses alternatives qui ont été présentées au cours des exposés. Figure 1 : Cladogramme « consensus » (simplifié) des Crocodyliformes. Les taxons monophylétiques 1 — 5 (ouvertures de parenthèses) sont définis phylogénétiquement comme branches (« stem defined »), voir texte : 1 = Mesoeucrocodylia, 2 = Thalattosu- chia, 3 = Metasuchia, 4 = Neosuchia, 5 = Eusuchia, (*) = taxons longirostres
Recommended publications
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • Dinosaurs British Isles
    DINOSAURS of the BRITISH ISLES Dean R. Lomax & Nobumichi Tamura Foreword by Dr Paul M. Barrett (Natural History Museum, London) Skeletal reconstructions by Scott Hartman, Jaime A. Headden & Gregory S. Paul Life and scene reconstructions by Nobumichi Tamura & James McKay CONTENTS Foreword by Dr Paul M. Barrett.............................................................................10 Foreword by the authors........................................................................................11 Acknowledgements................................................................................................12 Museum and institutional abbreviations...............................................................13 Introduction: An age-old interest..........................................................................16 What is a dinosaur?................................................................................................18 The question of birds and the ‘extinction’ of the dinosaurs..................................25 The age of dinosaurs..............................................................................................30 Taxonomy: The naming of species.......................................................................34 Dinosaur classification...........................................................................................37 Saurischian dinosaurs............................................................................................39 Theropoda............................................................................................................39
    [Show full text]
  • The Anatomy and Phylogenetic Relationships of Antetonitrus Ingenipes (Sauropodiformes, Dinosauria): Implications for the Origins of Sauropoda
    THE ANATOMY AND PHYLOGENETIC RELATIONSHIPS OF ANTETONITRUS INGENIPES (SAUROPODIFORMES, DINOSAURIA): IMPLICATIONS FOR THE ORIGINS OF SAUROPODA Blair McPhee A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2013 i ii ABSTRACT A thorough description and cladistic analysis of the Antetonitrus ingenipes type material sheds further light on the stepwise acquisition of sauropodan traits just prior to the Triassic/Jurassic boundary. Although the forelimb of Antetonitrus and other closely related sauropododomorph taxa retains the plesiomorphic morphology typical of a mobile grasping structure, the changes in the weight-bearing dynamics of both the musculature and the architecture of the hindlimb document the progressive shift towards a sauropodan form of graviportal locomotion. Nonetheless, the presence of hypertrophied muscle attachment sites in Antetonitrus suggests the retention of an intermediary form of facultative bipedality. The term Sauropodiformes is adopted here and given a novel definition intended to capture those transitional sauropodomorph taxa occupying a contiguous position on the pectinate line towards Sauropoda. The early record of sauropod diversification and evolution is re- examined in light of the paraphyletic consensus that has emerged regarding the ‘Prosauropoda’ in recent years. iii ACKNOWLEDGEMENTS First, I would like to express sincere gratitude to Adam Yates for providing me with the opportunity to do ‘real’ palaeontology, and also for gladly sharing his considerable knowledge on sauropodomorph osteology and phylogenetics. This project would not have been possible without the continued (and continual) support (both emotionally and financially) of my parents, Alf and Glenda McPhee – Thank you.
    [Show full text]
  • PAL E1059.Pdf
    Downloaded from rspb.royalsocietypublishing.org on November 23, 2010 A new transitional sauropodomorph dinosaur from the Early Jurassic of South Africa and the evolution of sauropod feeding and quadrupedalism Adam M. Yates, Matthew F. Bonnan, Johann Neveling, Anusuya Chinsamy and Marc G. Blackbeard Proc. R. Soc. B 2010 277, 787-794 first published online 11 November 2009 doi: 10.1098/rspb.2009.1440 Supplementary data "Data Supplement" http://rspb.royalsocietypublishing.org/content/suppl/2009/11/09/rspb.2009.1440.DC1.h tml References This article cites 24 articles, 5 of which can be accessed free http://rspb.royalsocietypublishing.org/content/277/1682/787.full.html#ref-list-1 Subject collections Articles on similar topics can be found in the following collections palaeontology (132 articles) taxonomy and systematics (296 articles) evolution (2213 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Proc. R. Soc. B go to: http://rspb.royalsocietypublishing.org/subscriptions This journal is © 2010 The Royal Society Downloaded from rspb.royalsocietypublishing.org on November 23, 2010 Proc. R. Soc. B (2010) 277, 787–794 doi:10.1098/rspb.2009.1440 Published online 11 November 2009 A new transitional sauropodomorph dinosaur from the Early Jurassic of South Africa and the evolution of sauropod feeding and quadrupedalism Adam M. Yates1,*, Matthew F. Bonnan2, Johann Neveling3, Anusuya Chinsamy4 and Marc G. Blackbeard1 1Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Johannesburg 2050, South Africa 2Department of Biological Sciences, Western Illinois University, Macomb, IL 61455, USA 3Council for Geoscience, Pretoria 0001, South Africa 4Zoology Department, University of Cape Town, Private Bag X3, Rhodes Gift 7700, South Africa Aardonyx celestae gen.
    [Show full text]
  • Body-Size Evolution in the Dinosauria
    8 Body-Size Evolution in the Dinosauria Matthew T. Carrano Introduction The evolution of body size and its influence on organismal biology have received scientific attention since the earliest decades of evolutionary study (e.g., Cope, 1887, 1896; Thompson, 1917). Both paleontologists and neontologists have attempted to determine correlations between body size and numerous aspects of life history, with the ultimate goal of docu- menting both the predictive and causal connections involved (LaBarbera, 1986, 1989). These studies have generated an appreciation for the thor- oughgoing interrelationships between body size and nearly every sig- nificant facet of organismal biology, including metabolism (Lindstedt & Calder, 1981; Schmidt-Nielsen, 1984; McNab, 1989), population ecology (Damuth, 1981; Juanes, 1986; Gittleman & Purvis, 1998), locomotion (Mc- Mahon, 1975; Biewener, 1989; Alexander, 1996), and reproduction (Alex- ander, 1996). An enduring focus of these studies has been Cope’s Rule, the notion that body size tends to increase over time within lineages (Kurtén, 1953; Stanley, 1973; Polly, 1998). Such an observation has been made regarding many different clades but has been examined specifically in only a few (MacFadden, 1986; Arnold et al., 1995; Jablonski, 1996, 1997; Trammer & Kaim, 1997, 1999; Alroy, 1998). The discordant results of such analyses have underscored two points: (1) Cope’s Rule does not apply universally to all groups; and (2) even when present, size increases in different clades may reflect very different underlying processes. Thus, the question, “does Cope’s Rule exist?” is better parsed into two questions: “to which groups does Cope’s Rule apply?” and “what process is responsible for it in each?” Several recent works (McShea, 1994, 2000; Jablonski, 1997; Alroy, 1998, 2000a, 2000b) have begun to address these more specific questions, attempting to quantify patterns of body-size evolution in a phylogenetic (rather than strictly temporal) context, as well as developing methods for interpreting the resultant patterns.
    [Show full text]
  • The Femoral Anatomy of Pampadromaeus Barberenai Based
    This article was downloaded by: [New York University] On: 19 February 2015, At: 11:22 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Historical Biology: An International Journal of Paleobiology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ghbi20 The femoral anatomy of Pampadromaeus barberenai based on a new specimen from the Upper Triassic of Brazil Rodrigo Temp Müllera, Max Cardoso Langerb, Sérgio Furtado Cabreirac & Sérgio Dias-da- Silvad a Programa de Pós Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil b Laboratório de Paleontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Click for updates SP, Brazil c Museu de Ciências Naturais, Universidade Luterana do Brasil, Canoas, RS, Brazil d Centro de Apoio a Pesquisa Paleontológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil Published online: 19 Feb 2015. To cite this article: Rodrigo Temp Müller, Max Cardoso Langer, Sérgio Furtado Cabreira & Sérgio Dias-da-Silva (2015): The femoral anatomy of Pampadromaeus barberenai based on a new specimen from the Upper Triassic of Brazil, Historical Biology: An International Journal of Paleobiology, DOI: 10.1080/08912963.2015.1004329 To link to this article: http://dx.doi.org/10.1080/08912963.2015.1004329 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content.
    [Show full text]
  • The South African Mesozoic: Advances in Our Understanding of the Evolution, Palaeobiogeography, and Palaeoecology of Sauropodomorph Dinosaurs
    The South African Mesozoic: Advances in our understanding of the evolution, palaeobiogeography, and palaeoecology of sauropodomorph dinosaurs Blair W. McPhee A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 2016 i I declare that the vast majority of this thesis is my own, unaided work. It is being submitted for the Degree of Doctor of Philosophy at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other University. As this thesis is primarily comprised of multiple-authored published papers, the contributions of each co-author are stated clearly within section five of the introduction. ________23rd______day of ________May___________2016____________at_____Wits________ ii ABSTRACT The Palaeontological record of South Africa is remarkable in that it preserves the two major temporal transitions of the Mesozoic: The Triassic–Jurassic boundary (the Elliot Formation) and the earliest depositional stages of the Cretaceous (the Kirkwood Formation). Work within the Elliot Formation has reiterated the importance of this horizon for our understanding of the early evolution and subsequent radiation/diversification of basal sauropodomorph dinosaurs. Moreover, inextricably contained within this radiation is the early evolution of the columnar-limbed, long necked sauropods, the largest terrestrial animals to have ever evolved. The Elliot Formation therefore imparts vital information on the genesis of the group that would become the dominant dinosaurian herbivores throughout most of the Mesozoic. However, several outstanding issues obscure a full understanding of this important radiation. Of primary concern is the complicated taxonomy of the sauropodomorphs of the Upper Triassic lower Elliot Formation and a lack of current consensus as to what precisely constitutes a true sauropod.
    [Show full text]
  • Download a PDF of This Web Page Here. Visit
    Dinosaur Genera List Page 1 of 42 You are visitor number— Zales Jewelry —as of November 7, 2008 The Dinosaur Genera List became a standalone website on December 4, 2000 on America Online’s Hometown domain. AOL closed the domain down on Halloween, 2008, so the List was carried over to the www.polychora.com domain in early November, 2008. The final visitor count before AOL Hometown was closed down was 93661, on October 30, 2008. List last updated 12/15/17 Additions and corrections entered since the last update are in green. Genera counts (but not totals) changed since the last update appear in green cells. Download a PDF of this web page here. Visit my Go Fund Me web page here. Go ahead, contribute a few bucks to the cause! Visit my eBay Store here. Search for “paleontology.” Unfortunately, as of May 2011, Adobe changed its PDF-creation website and no longer supports making PDFs directly from HTML files. I finally figured out a way around this problem, but the PDF no longer preserves background colors, such as the green backgrounds in the genera counts. Win some, lose some. Return to Dinogeorge’s Home Page. Generic Name Counts Scientifically Valid Names Scientifically Invalid Names Non- Letter Well Junior Rejected/ dinosaurian Doubtful Preoccupied Vernacular Totals (click) established synonyms forgotten (valid or invalid) file://C:\Documents and Settings\George\Desktop\Paleo Papers\dinolist.html 12/15/2017 Dinosaur Genera List Page 2 of 42 A 117 20 8 2 1 8 15 171 B 56 5 1 0 0 11 5 78 C 70 15 5 6 0 10 9 115 D 55 12 7 2 0 5 6 87 E 48 4 3
    [Show full text]
  • Sarahsaurus Aurifontanalis from the Early Jurassic Kayenta Formation
    RESEARCH ARTICLE Anatomy and systematics of the sauropodomorph Sarahsaurus aurifontanalis from the Early Jurassic Kayenta Formation 1,2 1 Adam D. MarshID *, Timothy B. Rowe 1 The Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, United States of America, 2 Division of Science and Resource Management, Petrified Forest National Park, Arizona, United States of America * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Sarahsaurus aurifontanalis, from the Kayenta Formation of Arizona, is one of only three sauropodomorph dinosaurs known from the Early Jurassic of North America. It joins Anchi- saurus polyzelus, from the older Portland Formation of the Hartford Basin, and Seitaad reussi, from the younger Navajo Sandstone of Utah, in representing the oldest North Ameri- OPEN ACCESS can sauropodomorphs. If it is true that sauropodomorphs were absent from North America Citation: Marsh AD, Rowe TB (2018) Anatomy and during the Late Triassic, the relationship among these three dinosaurs offers a test of the systematics of the sauropodomorph Sarahsaurus mechanisms that drove recovery in North American biodiversity following the end-Triassic aurifontanalis from the Early Jurassic Kayenta extinction event. Here we provide the first thorough description of Sarahsaurus aurifontana- Formation. PLoS ONE 13(10): e0204007. https:// doi.org/10.1371/journal.pone.0204007 lis based on completed preparation and computed tomographic imaging of the holotype and referred specimens. With new anatomical data, our phylogenetic analysis supports the con- Editor: William Oki Wong, Indiana University Bloomington, UNITED STATES clusion that Sarahsaurus aurifontanalis is nested within the primarily Gondwanan clade Massospondylidae, while agreeing with previous analyses that the three North American Received: December 4, 2017 sauropodomorphs do not themselves form an exclusive clade.
    [Show full text]
  • Dinosaur Genera
    DINOSAUR GENERA since: 28-October-1995 / last updated: 29-September-2021 Thank you to George Olshevsky ("Mesozoic Meanderings #3") for the original listing on 23-October-1995 and the help to keep this list current; and also to all the other contributors from the Dinosaur Mailing List. NOW available: d-genera.pdf Genera count = 1742 (including 114 not presently considered to be dinosaurian) [nomen ex dissertatione] = name appears in a dissertation [nomen manuscriptum] = unpublished name in a manuscript for publication [nomen dubium] = name usually based on more than one type specimen [nomen nudum] = name lacking a description and/or a type specimen [nomen oblitum] = name forgotten for at least 50 years [nomen rejectum] = name rejected by the ICZN non = incorrect reference by the first to a name by the second author vide = name attributed to the first author by the second author / = name preoccupied by the second author JOS → Junior Objective Synonym of the indicated genus JSS → Junior Subjective Synonym of the indicated genus PSS → Possible Subjective Synonym of the indicated genus SSS → Suppressed Senior Synonym of the indicated genus • Aardonyx: A.M. Yates, M.F. Bonnan, J. Neveling, A. Chinsamy & M.G. Blackbeard, 2009 • "Abdallahsaurus": G. Maier, 2003 [nomen nudum → Giraffatitan] • Abdarainurus: A.O. Averianov & A.V. Lopatin, 2020 • Abelisaurus: J.F. Bonaparte & F.E. Novas, 1985 • Abrictosaurus: J.A. Hopson, 1975 • Abrosaurus: Ouyang H, 1989 • Abydosaurus: D. Chure, B.B. Britt, J.A. Whitlock & J.A. Wilson, 2010 • Acantholipan: H.E. Rivera-Sylva, E. Frey, W. Stinnesbeck, G. Carbot-Chanona, I.E. Sanchez-Uribe & J.R. Guzmán-Gutiérrez, 2018 • Acanthopholis: T.H.
    [Show full text]
  • Progressive Palaeontology 2007
    Progressive Palaeontology 2007 Thursday 12th – Saturday 14th April Department of Earth Sciences, University of Bristol 2 Welcome and acknowledgements We are pleased to welcome you to the Department of Earth Sciences at the University of Bristol for this year’s Progressive Palaeontology meeting. This appears to be the best attended and most presentation-packed Progressive Palaeontology on record – we are just shy of 60 delegates and there are 30 presentations in total (24 oral and 6 poster). As always Progressive Palaeontology’s aim is to provide a framework in which to present ideas and discuss work with those at a similar stage in their career. In order to achieve this the Friday presentation session is supplemented by two social events and a field trip. On Thursday evening there is a pre-conference gathering at the Berkeley pub (opposite the department on Queen’s Road) and following the presentation sessions on Friday there will also be an evening reception/dinner at Bristol Zoo. This year’s field trip will be to Aust Cliff (a site famous for its Late Triassic fish fossils – see the brief guide at the end of this booklet). We are lucky to have two experts on this site joining us on the day and we have scheduled a reasonably late start so please do come along if you have registered! We would also like to take this opportunity to thank the following individuals who have helped in supporting, preparing and running this year’s meeting: The Palaeontological Association and the University of Bristol Alumni Foundation for providing sponsorship.
    [Show full text]