Brain-Derived Neurotrophic Factor Increases the Electrical Activity Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Myth of the LOVE HORMONE SIGNE CANE
the myth of the LOVE HORMONE SIGNE CANE There is a molecule intimately involved in your sex life. However, its effects are not as straightforward as some would make you think. t has been touted as a love hormone, a diet aid, a A/Prof Adam Guastella of the University of Sydney’s Brain generosity increaser, pain reliever and antidepressant. & Mind Research Institute agrees. “I don’t think there is a love Oxytocin has such a sunny reputation that it sounds hormone on its own,” he says. While oxytocin is definitely an almost like a too-good-to-be-true drug. This hormone, important player when we meet that special someone, lose released in the brain when we have sex, hug, shake hands, appetite and start writing bad poetry, there is more to love than Inurse babies and have other kinds of social contact, has been the oxytocin. And there is more to oxytocin, too. subject of a vast array of scientific studies over the past decade. News stories on all the great things oxytocin can do for us Bonding Rather Than Loving crop up rather often. The claim is that all you have to do is take In evolutionary terms, oxytocin is the molecule that helps a a whiff from a nasal spray or put a drop under your tongue and mother bond with her babies and become more nurturing. In the “love hormone” will fix a multitude of issues and dramati - the beginning of the 20th century scientists figured out that cally improve your life. You can even buy it on Amazon and keep the hormone, released in the woman’s brain in large amounts it in your fridge for daily use. -
Neurochemical Function in Schizophrenia: a Case Study Ana Gomez
Southern Adventist University KnowledgeExchange@Southern Senior Research Projects Southern Scholars 2002 Neurochemical Function in Schizophrenia: A Case Study Ana Gomez Follow this and additional works at: https://knowledge.e.southern.edu/senior_research Part of the Neuroscience and Neurobiology Commons Recommended Citation Gomez, Ana, "Neurochemical Function in Schizophrenia: A Case Study" (2002). Senior Research Projects. 58. https://knowledge.e.southern.edu/senior_research/58 This Article is brought to you for free and open access by the Southern Scholars at KnowledgeExchange@Southern. It has been accepted for inclusion in Senior Research Projects by an authorized administrator of KnowledgeExchange@Southern. For more information, please contact [email protected]. Neurochemical Function in Schizophrenia 1 Running head: NEUROCHEMICAL FUNCTION IN SCHIZOPHRENIA Neurochemical Function in Schizophrenia: A Case Study Ana Gomez Southern Adventist University Neurochemical Function in Schizophrenia 2 Abstract This research project addresses the topic of schizophrenia. Because of the vast amount of information available regarding schizophrenia, this paper will only focus on a few aspects of the disease. In particular the symptoms, brain abnormalities, hypotheses, and treatment strategies associated with brain abnormalities in schizophrenia will be presented. These emphases were chosen because they are of particular interest to the researcher. The intent ofthis paper is to discover what brain abnormalities, both physiological and chemical, are associated with schizophrenia. The intent is also to discuss treatment strategies and assess how this information may apply to a case study. Neurochemical Function in Schizophrenia 3 Neurochemical Function in Schizophrenia: A Case Study Schizophrenia is a multi-faceted disease. It would be an immense task to attempt to capture all the intricacies of the disorder in one research project. -
Brain-Derived Neurotrophic Factor Augments Rotational Behavior and Nigrostriatal Dopamine Turnover in Vivo (Nigrostratal Neurons/Parknon Dsease/Neostratum) C
Proc. Natl. Acad. Sci. USA Vol. 89, pp. 11347-11351, December 1992 Neurobiology Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo (nigrostratal neurons/Parknon dsease/neostratum) C. ANTHONY ALTAR*, CAROLYN B. BOYLAN*, CARL JACKSON*, SUSAN HERSHENSONt, JAMES MILLERt, STANLEY J. WIEGAND*, RONALD M. LINDSAY*, AND CAROLYN HYMAN* *Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591; and tAmgen, Inc., 1900 Oak Terrace Lane, Thousand Oaks, CA 91320 Communicated by Norman Davidson, August 4, 1992 (receivedfor review April 6, 1992) ABSTRACT Brain-derived neurotrophic factor (BDNF), a embryonic dopaminergic neurons in the absence of glia and member of the nerve growth factor (NGF)-related family of in serum-free conditions (5, 11, 13, 14). Several mitogenic neurotrophins, promotes the survival and differentiation of growth factors, including epidermal growth factor and basic cultured ngal dopamine neurons. Two-week infusions of fibroblast growth factor, also promote the growth of cultured BDNF were made above the right pars compacta of the sub- or transplanted mesencephalic dopamine neurons (15-19). stantia nigra in adult rats. Systemic injection of these a s However, these in vitro and in vivo effects appear to be with (+)-amphetamine, a dopamine-releasing drug, induced 3 mediated via astrocytes (15, 16). or 4 body rotations per minute directed away from the nil It remains unknown whether BDNF exerts neurotrophic infuson site. Neither supranigral NGF nor neocortical BDNF effects on central nervous system neurons in vivo. Injections nfusions induced rotational behavior. Systemic i jections ofthe of 17-I-labeled BDNF into the rat neostriatum (area of ni- postsynaptic dopaine receptor agonist apomorphine did not grostriatal dopamine neuron terminals) result in a pharma- induce rotations in these animals, demonstrating a presynaptic cologically specific retrograde transport of 125I-BDNF to dopamine neuron locus for BDNF action. -
Neurochemical Mechanisms Underlying Alcohol Withdrawal
Neurochemical Mechanisms Underlying Alcohol Withdrawal John Littleton, MD, Ph.D. More than 50 years ago, C.K. Himmelsbach first suggested that physiological mechanisms responsible for maintaining a stable state of equilibrium (i.e., homeostasis) in the patient’s body and brain are responsible for drug tolerance and the drug withdrawal syndrome. In the latter case, he suggested that the absence of the drug leaves these same homeostatic mechanisms exposed, leading to the withdrawal syndrome. This theory provides the framework for a majority of neurochemical investigations of the adaptations that occur in alcohol dependence and how these adaptations may precipitate withdrawal. This article examines the Himmelsbach theory and its application to alcohol withdrawal; reviews the animal models being used to study withdrawal; and looks at the postulated neuroadaptations in three systems—the gamma-aminobutyric acid (GABA) neurotransmitter system, the glutamate neurotransmitter system, and the calcium channel system that regulates various processes inside neurons. The role of these neuroadaptations in withdrawal and the clinical implications of this research also are considered. KEY WORDS: AOD withdrawal syndrome; neurochemistry; biochemical mechanism; AOD tolerance; brain; homeostasis; biological AOD dependence; biological AOD use; disorder theory; biological adaptation; animal model; GABA receptors; glutamate receptors; calcium channel; proteins; detoxification; brain damage; disease severity; AODD (alcohol and other drug dependence) relapse; literature review uring the past 25 years research- science models used to study with- of the reasons why advances in basic ers have made rapid progress drawal neurochemistry as well as a research have not yet been translated Din understanding the chemi- reluctance on the part of clinicians to into therapeutic gains and suggests cal activities that occur in the nervous consider new treatments. -
GABA and the GABA a Receptor
NEUROTRANSMITTER REVIEW campus. Journal of Neurochemistry 62:1635–1638, 1994. their receptors reduce neuronal excitability. For optimal TRUJILLO, K.A., AND AKIL, H. Excitatory amino acids and drugs of abuse: A functioning, the brain must balance the excitatory and role for N-methyl-D-aspartate receptors in drug tolerance, sensitization and inhibitory influences: Excessive excitation can lead to physical dependence. Drug and Alcohol Dependence 38:139–154, 1995. seizures, whereas excessive neuronal inhibition can result TSAI, G.; GASTFRIEND, D.R.; AND COYLE, J.T. The glutamatergic basis of in incoordination, sedation, and anesthesia. human alcoholism. American Journal of Psychiatry 152:332–340, 1995. Gamma-aminobutyric acid (GABA) is the primary in- hibitory neurotransmitter in the central nervous system. WOODWARD, J.J., AND GONZALES, R.A. Ethanol inhibition of N-methyl-D- aspartate-stimulated endogenous dopamine release from rat striatal slices: Because alcohol intoxication is accompanied by the incoor- Reversal by glycine. Journal of Neurochemistry 54:712–715, 1990. dination and sedation indicative of neuronal inhibition, re- searchers have investigated alcohol’s effects on GABA and its receptors. This article summarizes findings that alcohol significantly alters GABA-mediated neurotransmission and GABA AND THE GABAA RECEPTOR presents some evidence that the primary GABA receptor (called the GABAA receptor) may play a crucial role in the S. John Mihic, Ph.D., and R. Adron Harris, Ph.D. development of tolerance to and dependence on alcohol as well as contribute to the predisposition to alcoholism. The neurotransmitter gamma-aminobutyric acid (GABA) inhibits the activity of signal-receiving neurons THE GABAA RECEPTOR by interacting with the GABAA receptor on these cells. -
BDNF and NGF Protein Levels in the Brains of Rats Neonatally Treated with Methamphetamine: Implications for Spatial Learning and Memory Deficits
UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Interaction of Brain Derived Neurotrophic Factor and the HPA Axis Stress Response System with Neonatal d-Methamphetamine Induced Spatial Learning and Memory Deficits. A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In the Graduate Program in Molecular and Developmental Biology of the College of Medicine of the University of Cincinnati 2005 by Carrie A. Brown-Strittholt B.A., A.A., Thomas More College, 1999 Committee Chair: Charles V. Vorhees, Ph.D. Committee Members: Floyd R. Sallee, MD, Ph.D. James P. Herman, Ph.D. Michael T. Williams, Ph.D. Renu Sah, Ph.D. This research was supported by NIH grant DA06733 (CVV), and training grant ES07051 (CAS). ABSTRACT Neonatal methamphetamine (MA) exposure P11-20 or P11-15 in rats is known to produce long-term spatial learning and memory deficits. However, little is known concerning the mechanism by which this results. Data from experiments exploring behavior indicate a role for neurotrophins and corticosterone (CORT) in learning and memory processes. It is hypothesized that neonatal MA alters levels of neurotrophins and/or alters the stress/CORT response resulting in impaired spatial learning and memory deficits in the Morris water maze (MWM). The current set of experiments explored first the levels of brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) during the neonatal dosing period and in adulthood. -
Distribution of Dopamine D3 Receptor Expressing Neurons in the Human Forebrain: Comparison with D2 Receptor Expressing Neurons Eugenia V
Distribution of Dopamine D3 Receptor Expressing Neurons in the Human Forebrain: Comparison with D2 Receptor Expressing Neurons Eugenia V. Gurevich, Ph.D., and Jeffrey N. Joyce, Ph.D. The dopamine D2 and D3 receptors are members of the D2 important difference from the rat is that D3 receptors were subfamily that includes the D2, D3 and D4 receptor. In the virtually absent in the ventral tegmental area. D3 receptor rat, the D3 receptor exhibits a distribution restricted to and D3 mRNA positive neurons were observed in sensory, mesolimbic regions with little overlap with the D2 receptor. hormonal, and association regions such as the nucleus Receptor binding and nonisotopic in situ hybridization basalis, anteroventral, mediodorsal, and geniculate nuclei of were used to study the distribution of the D3 receptors and the thalamus, mammillary nuclei, the basolateral, neurons positive for D3 mRNA in comparison to the D2 basomedial, and cortical nuclei of the amygdala. As revealed receptor/mRNA in subcortical regions of the human brain. by simultaneous labeling for D3 and D2 mRNA, D3 mRNA D2 binding sites were detected in all brain areas studied, was often expressed in D2 mRNA positive neurons. with the highest concentration found in the striatum Neurons that solely expressed D2 mRNA were numerous followed by the nucleus accumbens, external segment of the and regionally widespread, whereas only occasional D3- globus pallidus, substantia nigra and ventral tegmental positive-D2-negative cells were observed. The regions of area, medial preoptic area and tuberomammillary nucleus relatively higher expression of the D3 receptor and its of the hypothalamus. In most areas the presence of D2 mRNA appeared linked through functional circuits, but receptor sites coincided with the presence of neurons co-expression of D2 and D3 mRNA suggests a functional positive for its mRNA. -
NEUROSURGICAL FOCUS Neurosurg Focus 49 (1):E6, 2020
NEUROSURGICAL FOCUS Neurosurg Focus 49 (1):E6, 2020 Clinical applications of neurochemical and electrophysiological measurements for closed-loop neurostimulation J. Blair Price, PhD,1 Aaron E. Rusheen, BSc,1,2 Abhijeet S. Barath, MBBS,1 Juan M. Rojas Cabrera, BSc,1 Hojin Shin, PhD,1 Su-Youne Chang, PhD,1 Christopher J. Kimble, MA,3 Kevin E. Bennet, PhD, MBA,1,3 Charles D. Blaha, PhD,1 Kendall H. Lee, MD, PhD,1,4 and Yoonbae Oh, PhD1,4 1Department of Neurologic Surgery, 2Medical Scientist Training Program, 3Division of Engineering, and 4Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota The development of closed-loop deep brain stimulation (DBS) systems represents a significant opportunity for innova- tion in the clinical application of neurostimulation therapies. Despite the highly dynamic nature of neurological diseases, open-loop DBS applications are incapable of modifying parameters in real time to react to fluctuations in disease states. Thus, current practice for the designation of stimulation parameters, such as duration, amplitude, and pulse frequency, is an algorithmic process. Ideal stimulation parameters are highly individualized and must reflect both the specific disease presentation and the unique pathophysiology presented by the individual. Stimulation parameters currently require a lengthy trial-and-error process to achieve the maximal therapeutic effect and can only be modified during clinical visits. The major impediment to the development of automated, adaptive closed-loop systems involves the selection of highly specific disease-related biomarkers to provide feedback for the stimulation platform. This review explores the disease relevance of neurochemical and electrophysiological biomarkers for the development of closed-loop neurostimulation technologies. -
University of Groningen Oxytocin: the Neurochemical Mediator of Social Life Calcagnoli, Federica
University of Groningen Oxytocin: the neurochemical mediator of social life Calcagnoli, Federica IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Calcagnoli, F. (2014). Oxytocin: the neurochemical mediator of social life: A pharmaco-behavioral and neurobiological study in male rats. [S.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 08-10-2021 OXYTOCIN: THE NEUROCHEMICAL MEDIATOR OF SOCIAL LIFE A pharmaco-behavioral and neurobiological study in male rats Federica Calcagnoli The research reported in this thesis was carried out at the Department of Behavioral Physiology, University of Groningen, The Netherlands. -
Motor Systems Basal Ganglia
Motor systems 409 Basal Ganglia You have just read about the different motor-related cortical areas. Premotor areas are involved in planning, while MI is involved in execution. What you don’t know is that the cortical areas involved in movement control need “help” from other brain circuits in order to smoothly orchestrate motor behaviors. One of these circuits involves a group of structures deep in the brain called the basal ganglia. While their exact motor function is still debated, the basal ganglia clearly regulate movement. Without information from the basal ganglia, the cortex is unable to properly direct motor control, and the deficits seen in Parkinson’s and Huntington’s disease and related movement disorders become apparent. Let’s start with the anatomy of the basal ganglia. The important “players” are identified in the adjacent figure. The caudate and putamen have similar functions, and we will consider them as one in this discussion. Together the caudate and putamen are called the neostriatum or simply striatum. All input to the basal ganglia circuit comes via the striatum. This input comes mainly from motor cortical areas. Notice that the caudate (L. tail) appears twice in many frontal brain sections. This is because the caudate curves around with the lateral ventricle. The head of the caudate is most anterior. It gives rise to a body whose “tail” extends with the ventricle into the temporal lobe (the “ball” at the end of the tail is the amygdala, whose limbic functions you will learn about later). Medial to the putamen is the globus pallidus (GP). -
III. Biochemical and Developmental Dissociation of Patch-Matrix Mesostriatal Systems
The Journal of Neuroscience, December 1987. 7(12): 39353944 The Neostriatal Mosaic: III. Biochemical and Developmental Dissociation of Patch-Matrix Mesostriatal Systems Charles R. Gerfen,’ Ken G. Baimbridge,2 and Jean Thibault3 ‘Laboratory of Neurophysiology and Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, Maryland 20892, ‘Department of Physiology, University of British Columbia, Vancouver, BC, Canada, and 3Department of Cellular Biochemistry, Collkge de France, Paris In the previous paper (Gerfen et al., 1987) mesostriatal do- ically distinct. For example, following pharmacologic treat- paminergic neurons were shown to be subdivided into dorsal ments that deplete dopamine stores in mesostriatal terminals, and ventral tiers that project to the striatal matrix and patch there is a more rapid replenishment of dopamine in patch than compartments, respectively. The present study provides ex- in matrix areas (Olson et al., 1972; Fuxe et al., 1979; Fukui et perimental evidence that these patch-matrix mesostriatal al., 1986). Also, chronic apomorphine treatment results in an dopaminergic systems are biochemically and develop- increase in dynorphin immunoreactivity in patch and not matrix mentally distinct. A 28 kDa calcium-binding protein (CaBP, striatonigral neurons (Li et al., 1986). The manner in which the or calbindin-D 28LDa) is expressed in dorsal tier mesostriatal patch- and matrix-directed mesostriatal dopaminergic neurons dopaminergic neurons. The distribution of such neurons, lo- may be differentially regulated by the compartmental organi- cated in the ventral tegmental area, dorsal tier of the sub- zation of striatonigral projections (Gerfen, 1984, 1985) was dis- stantia nigra pars compacta, and retrorubral area, matches cussed in the previous paper (Gerfen et al., 1987). -
Long-Term Dopamine Neurochemical Monitoring in Primates
Long-term dopamine neurochemical monitoring in primates Helen N. Schwerdta,b,c, Hideki Shimazua,b, Ken-ichi Amemoria,b, Satoko Amemoria,b, Patrick L. Tierneya,b, Daniel J. Gibsona,b, Simon Honga,b, Tomoko Yoshidaa,b, Robert Langerc,d, Michael J. Cimac,e, and Ann M. Graybiela,b,1 aMcGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; cKoch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; dDepartment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and eDepartment of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Contributed by Ann M. Graybiel, November 1, 2017 (sent for review August 4, 2017; reviewed by Richard Courtemanche, Paul W. Glimcher, and Christopher I. Moore) Many debilitating neuropsychiatric and neurodegenerative disor- acute dopamine measurements (5–8), with stable measurements ders are characterized by dopamine neurotransmitter dysregula- only for a few hours. The lack of chronic chemical sensors exists tion. Monitoring subsecond dopamine release accurately and for despite great progress in the chronic electrophysiological re- extended, clinically relevant timescales is a critical unmet need. cording of spike and local field potential activity in behaving Especially valuable has been the development of electrochemical nonhuman primates. Chronic measurements of dopamine will fast-scan cyclic voltammetry implementing microsized carbon fiber aid in the identification of dopamine’s contribution to complex probe implants to record fast millisecond changes in dopamine behaviors degraded in human disorders, and to aid in testing the concentrations. Nevertheless, these well-established methods have clinical feasibility of treatments.