43 the Basal Ganglia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Surgical Management of Parkinson's Disease
SEMINAR PAPER DTM Chan Surgical management of Parkinson’s VCT Mok WS Poon disease: a critical review KN Hung XL Zhu ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ !"#$%&'()*+, Parkinson’s disease is a progressive disabling movement disorder that is characterised by three cardinal symptoms: resting tremor, rigidity, and bradykinesia. Before the availability of effective medical treatment with levodopa and stereotactic neurosurgery, the objective of surgical management was to alleviate symptoms such as tremor at the expense of motor deficits. Levodopa was the first effective medical treatment for Parkinson’s disease, and surgical treatment such as stereotactic thalamo- tomy became obsolete. After one decade of levodopa therapy, however, drug-induced dyskinesia had become a source of additional disability not amenable to medical treatment. Renewed interest in stereotactic functional neurosurgery to manage Parkinson’s disease has been seen since the 1980s. Local experience of deep-brain stimulation is presented and discussed in this paper. Deep-brain stimulation of the subthalamic nucleus is an effective treatment for advanced Parkinson’s disease, although evidence from randomised control trials is lacking. !"#$%&'()*+,-!./01$23456789:; Key words: !"#$%&'()*+,-./01'23456789:;< Electric stimulation; !"#$%&'()*+,-./01(23#45+6789: Globus pallidus/surgery; Parkinson disease; !"#$%&'()*+,-./012345678'9:;< Stereotactic techniques; !"#$%&'()*%+,-./0123)456789:; Subthalamic nuclei/surgery; !"#$%&'()*+,-.1980 !"#$%&'()* Thalamus/surgery !"#$%&'()*+,-./0123456789:;<= -
Levodopa Therapy for Parkinson Disease: a Look Backward and Forward
Henry Ford Health System Henry Ford Health System Scholarly Commons Neurology Articles Neurology 4-5-2016 Levodopa therapy for Parkinson disease: A look backward and forward Peter A. LeWitt Henry Ford Health System, [email protected] Stanley Fahn Henry Ford Health System Follow this and additional works at: https://scholarlycommons.henryford.com/neurology_articles Recommended Citation LeWitt PA, and Fahn S. Levodopa therapy for Parkinson disease: A look backward and forward. Neurology 2016; 86(14 Suppl 1):S3-s12. This Article is brought to you for free and open access by the Neurology at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Neurology Articles by an authorized administrator of Henry Ford Health System Scholarly Commons. Levodopa therapy for Parkinson disease A look backward and forward Peter A. LeWitt, MD ABSTRACT Stanley Fahn, MD Although levodopa is widely recognized as the most effective therapy for Parkinson disease (PD), its introduction 5 decades ago was preceded by several years of uncertainty and equivocal clin- ical results. The translation of basic neuroscience research by Arvid Carlsson and Oleh Hornykie- Correspondence to Dr. LeWitt: wicz provided a logical pathway for treating PD with levodopa. Yet the pioneering clinicians who [email protected] transformed PD therapeutics with this drug—among them Walther Birkmayer, Isamu Sano, Pat- rick McGeer, George Cotzias, Melvin Yahr, and others—faced many challenges in determining whether the concept and the method for replenishing deficient striatal dopamine was correct. This article reviews highlights in the early development of levodopa therapy. In addition, it pro- vides an overview of emerging drug delivery strategies that show promise for improving levodo- pa’s pharmacologic limitations. -
Pallidotomy and Thalamotomy
Pallidotomy and Thalamotomy Vancouver General Hospital 899 West 12th Avenue Vancouver BC V5Z 1M9 Tel: 604-875-4111 This booklet will provide information about the following Preparing for Surgey surgical procedures: Pallidotomy and Thalamotomy. Before Admission to Hospital What is a Pallidotomy? 1) Anticoagulants and other medications that thin your A pallidotomy is an operation for Parkinson’s disease blood such as Aspirin, Coumadin (Warfarin), Lovenox where a small lesion is made in the globus pallidum (an (Enoxaparin), Ticlid (Ticlopidine), Plavix (Clopidogrel) area of the brain involved with motion control). The lesion and Ginkgo must be discontinued 2 weeks before your is made by an electrode placed in the brain through a small surgery. Pradaxa (Dabigatran), Xarelto (Rivaroxaban) opening in the skull. The beneficial effects are seen on and Eliquis (Apixaban) must be discontinued 5 days the opposite side of the body, i.e. a lesion on the left side before your surgery. of your brain will help to control movement on the right 2) Since you will be having a MRI, it is important to inform side of your body. Pallidotomy will help reduce dyskinesia your neurosurgeon if you are claustrophobic, have metal (medication induced writhing), and will also improve fragments in your eye or have a pacemaker. bradykinesia (slowness). Admission to Hospital Risks Your surgeon’s office will contact you the day before your Risks include a rare chance of death (0.2%) and a low scheduled surgery to confirm the time to report to the Jim chance (7%) of weakness or blindness on the opposite side Pattison Pavilion Admitting Department. -
Basal Ganglia & Cerebellum
1/2/2019 This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the internet or on any personal websites. Your use of this resource is with the acknowledgment and acceptance of those restrictions. Basal Ganglia & Cerebellum – a quick overview MHD-Neuroanatomy – Neuroscience Block Gregory Gruener, MD, MBA, MHPE Vice Dean for Education, SSOM Professor, Department of Neurology LUHS a member of Trinity Health Outcomes you want to accomplish Basal ganglia review Define and identify the major divisions of the basal ganglia List the major basal ganglia functional loops and roles List the components of the basal ganglia functional “circuitry” and associated neurotransmitters Describe the direct and indirect motor pathways and relevance/role of the substantia nigra compacta 1 1/2/2019 Basal Ganglia Terminology Striatum Caudate nucleus Nucleus accumbens Putamen Globus pallidus (pallidum) internal segment (GPi) external segment (GPe) Subthalamic nucleus Substantia nigra compact part (SNc) reticular part (SNr) Basal ganglia “circuitry” • BG have no major outputs to LMNs – Influence LMNs via the cerebral cortex • Input to striatum from cortex is excitatory – Glutamate is the neurotransmitter • Principal output from BG is via GPi + SNr – Output to thalamus, GABA is the neurotransmitter • Thalamocortical projections are excitatory – Concerned with motor “intention” • Balance of excitatory & inhibitory inputs to striatum, determine whether thalamus is suppressed BG circuits are parallel loops • Motor loop – Concerned with learned movements • Cognitive loop – Concerned with motor “intention” • Limbic loop – Emotional aspects of movements • Oculomotor loop – Concerned with voluntary saccades (fast eye-movements) 2 1/2/2019 Basal ganglia “circuitry” Cortex Striatum Thalamus GPi + SNr Nolte. -
Neurocognitive and Psychosocial Correlates of Ventroposterolateral Pallidotomy Surgery in Parkinson's Disease
Neurocognitive and psychosocial correlates of ventroposterolateral pallidotomy surgery in Parkinson's disease Henry J. Riordan, Ph.D., Laura A. Flashman, Ph.D., and David W. Roberts, M.D. Department of Psychiatry and Section of Neurosurgery, Dartmouth Medical School, DartmouthHitchcock Medical Center, Lebanon, New Hampshire The purpose of this study was to characterize the neuropsychological and psychosocial profile of patients with Parkinson's disease before and after they underwent unilateral left or right pallidotomy, to assess specific cognitive and personality changes caused by lesioning the globus pallidus, and to predict favorable surgical outcome based on these measures. Eighteen patients underwent comprehensive neuropsychological assessment before and after left-sided pallidotomy (10 patients) or right-sided pallidotomy (eight patients). The findings support the presence of frontosubcortical cognitive dysfunction in all patients at baseline and a specific pattern of cognitive impairment following surgery, with side of lesion being an important predictor of pattern and degree of decline. Specifically, patients who underwent left-sided pallidotomy experienced a mild decline on measures of verbal learning and memory, phonemic and semantic verbal fluency, and cognitive flexibility. Patients who underwent right-sided pallidotomy exhibited a similar decline in verbal learning and cognitive flexibility, as well as a decline in visuospatial construction abilities; however, this group also exhibited enhanced performance on a delayed facial memory measure. Lesioning the globus pallidus may interfere with larger cognitive circuits needed for processing executive information with disruption of the dominant hemisphere circuit, resulting in greater deficits in verbal information processing. The left-sided pallidotomy group also reported fewer symptoms of depression and anxiety following surgery. -
Glutamate Binding in Primate Brain
Journal of Neuroscience Research 27512-521 (1990) Quisqualate- and NMDA-Sensitive [3H]Glutamate Binding in Primate Brain A.B. Young, G.W. Dauth, Z. Hollingsworth, J.B. Penney, K. Kaatz, and S. Gilman Department of Neurology. University of Michigan, Ann Arbor Excitatory amino acids (EAA) such as glutamate and Young and Fagg, 1990). Because EAA are involved in aspartate are probably the neurotransmitters of a general cellular metabolic functions, they were not orig- majority of mammalian neurons. Only a few previous inally considered to be likcl y neurotransmitter candi- studies have been concerned with the distribution of dates. Electrophysiological studies demonstrated con- the subtypes of EAA receptor binding in the primate vincingly the potency of these substances as depolarizing brain. We examined NMDA- and quisqualate-sensi- agents and eventually discerned specific subtypes of tive [3H]glutamate binding using quantitative autora- EAA receptors that responded preferentially to EAA an- diography in monkey brain (Macaca fascicularis). alogs (Dingledine et al., 1988). Coincident with the elec- The two types of binding were differentially distrib- trophysiological studies, biochemical studies indicated uted. NMDA-sensitive binding was most dense in that EAA were released from slice and synaptosome dentate gyrus of hippocampus, stratum pyramidale preparations in a calcium-dependent fashion and were of hippocampus, and outer layers of cerebral cortex. accumulated in synaptosomc preparations by a high-af- Quisqualate-sensitive binding was most dense in den- finity transport system. With these methodologies, EAA tate gyrus of hippocampus, inner and outer layers of release and uptake were found to be selectively de- cerebral cortex, and molecular layer of cerebellum. -
Basal Ganglia Anatomy, Physiology, and Function Ns201c
Basal Ganglia Anatomy, Physiology, and Function NS201c Human Basal Ganglia Anatomy Basal Ganglia Circuits: The ‘Classical’ Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum GPe GPi/SNr Dopamine + - GABA - Motor Thalamus SNc STN Analagous rodent basal ganglia nuclei Gross anatomy of the striatum: gateway to the basal ganglia rodent Dorsomedial striatum: -Inputs predominantly from mPFC, thalamus, VTA Dorsolateral striatum: -Inputs from sensorimotor cortex, thalamus, SNc Ventral striatum: Striatal subregions: Dorsomedial (caudate) -Inputs from vPFC, hippocampus, amygdala, Dorsolateral (putamen) thalamus, VTA Ventral (nucleus accumbens) Gross anatomy of the striatum: patch and matrix compartments Patch/Striosome: -substance P -mu-opioid receptor Matrix: -ChAT and AChE -somatostatin Microanatomy of the striatum: cell types Projection neurons: MSN: medium spiny neuron (GABA) •striatonigral projecting – ‘direct pathway’ •striatopallidal projecting – ‘indirect pathway’ Interneurons: FS: fast-spiking interneuron (GABA) LTS: low-threshold spiking interneuron (GABA) LA: large aspiny neuron (ACh) 30 um Cellular properties of striatal neurons Microanatomy of the striatum: striatal microcircuits • Feedforward inhibition (mediated by fast-spiking interneurons) • Lateral feedback inhibition (mediated by MSN collaterals) Basal Ganglia Circuits: The ‘Classical’ Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum GPe GPi/SNr Dopamine + - GABA - Motor Thalamus SNc STN The simplified ‘classical’ model of basal ganglia circuit function • Information encoded as firing rate • Basal ganglia circuit is linear and unidirectional • Dopamine exerts opposing effects on direct and indirect pathway MSNs Basal ganglia motor circuit: direct pathway Motor Cortex Premotor Cortex Glutamate Striatum GPe GPi/SNr Dopamine + GABA Motor Thalamus SNc STN Direct pathway MSNs express: D1, M4 receptors, Sub. -
Kchip4a: a Biophysical Modulator of Learning from Disappointment
KChIP4a: a biophysical modulator of learning from disappointment Dissertation for obtaining a doctorate degree in natural sciences presented to the Faculty of Biosciences of Goethe University by Kauê Machado Costa from Belém do Pará, Brazil Frankfurt am Main (2017) (D 30) Accepted by the Faculty of Biosciences of Goethe University as a PhD dissertation Dean: Prof. Dr. Sven Klimpel 1st expert assessor: Prof. Dr. Manfred Kössl 2nd expert assessor: Prof. Dr. Jochen Roeper 3rd expert assessor: Prof. Dr. Amparo Acker-Palmer 4st expert assessor: Prof. Dr. Bernd Grünewald Date of disputation: 19.04.2018 “Exploration is in our nature. We began as wanderers, and we are wanderers still.” ― Carl Sagan, Cosmos Acknowledgements I would like to express my enduring gratitude to: Prof. Dr. Jochen Roeper for providing unwavering, outstanding and continuous support, trust, motivation, funding and fun during my stay in his lab. Prof. Dr. Gilles Laurent for having me in his lab as a rotation student and for providing very instructive comments and support as a member of my thesis committee. Prof. Dr. Manfred Kössl for being my official PhD thesis supervisor at the Biological Sciences Faculty and for providing insightful comments as a member of my thesis committee. Prof. Dr. Gaby Schneider for the highly profitable, illuminating and friendly collaboration over the entire course of my thesis. Prof. Dr. Eleanor Simpson and Prof. Dr. Eric Kandel for, in a short conversation in Columbia, providing me with the crucial yet often forgotten insight that neuroscience always needs a solid grounding in behavior. Dr. Mahalakshmi Subramaniam for teaching me in vivo neuronal recordings. -
Contributions of the Hippocampus and the Striatum to Simple Association and Frequency-Based Learning
www.elsevier.com/locate/ynimg NeuroImage 27 (2005) 291 – 298 Contributions of the hippocampus and the striatum to simple association and frequency-based learning Dima Amso,a,b,* Matthew C. Davidson,a Scott P. Johnson,b Gary Glover,c and B.J. Caseya aSackler Institute for Developmental Psychobiology, Weill Medical College of Cornell University, 1300 York Avenue, Box 140, New York, NY 10021, USA bDepartment of Psychology, New York University, NY 10003, USA cDepartment of Radiology, Stanford University, CA 94305, USA Received 8 September 2004; revised 30 January 2005; accepted 8 February 2005 Available online 8 April 2005 Using fMRI and a learning paradigm, this study examined the result from how often an event is encountered or how often it is independent contributions of the hippocampus and striatum to simple presented in a particular context or paired with other events. association and frequency-based learning. We scanned 10 right-handed Understanding the neural bases of these types of learning is the young adult subjects using a spiral in/out sequence on a GE 3.0 T objective of this study. scanner during performance of the learning paradigm. The paradigm A common measure of learning, used in both human infant and consisted of 2 cues that predicted each of 3 targets with varying nonhuman animal research, is response to novelty. The theoretical probabilities. Simultaneously, we varied the frequency with which each target was presented throughout the task, independent of cue framework (Sokolov, 1963) underlying these novelty-preference associations. Subjects had shorter response latencies to frequently paradigms is that attention is oriented more toward novel, relative occurring and highly associated target stimuli and longer response to familiar, stimuli. -
Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: a Comparative in Situ Hybridization Analysis
The Journal of Neuroscience, March 1993. 73(3): 1258-1279 Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: A Comparative in situ Hybridization Analysis Martin K.-H. Schafer,i-a Robert Day,* William E. Cullinan,’ Michel Chri?tien,3 Nabil G. Seidah,* and Stanley J. Watson’ ‘Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0720 and J. A. DeSeve Laboratory of *Biochemical and 3Molecular Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada H2W lR7 Posttranslational processing of proproteins and prohor- The participation of neuropeptides in the modulation of a va- mones is an essential step in the formation of bioactive riety of CNS functions is well established. Many neuropeptides peptides, which is of particular importance in the nervous are synthesized as inactive precursor proteins, which undergo system. Following a long search for the enzymes responsible an enzymatic cascade of posttranslational processing and mod- for protein precursor cleavage, a family of Kexin/subtilisin- ification events during their intracellular transport before the like convertases known as PCl, PC2, and furin have recently final bioactive products are secreted and act at either pre- or been characterized in mammalian species. Their presence postsynaptic receptors. Initial endoproteolytic cleavage occurs in endocrine and neuroendocrine tissues has been dem- C-terminal to pairs of basic amino acids such as lysine-arginine onstrated. This study examines the mRNA distribution of (Docherty and Steiner, 1982) and is followed by the removal these convertases in the rat CNS and compares their ex- of the basic residues by exopeptidases. Further modifications pression with the previously characterized processing en- can occur in the form of N-terminal acetylation or C-terminal zymes carboxypeptidase E (CPE) and peptidylglycine a-am- amidation, which is essential for the bioactivity of many neu- idating monooxygenase (PAM) using in situ hybridization ropeptides. -
Pallidotomy: Effective and Safe in Relieving Parkinson's Disease Rigidity
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Pakistan Journal Of Neurological Surgery ORIGINAL ARTICLE Pallidotomy: Effective and Safe in Relieving Parkinson’s Disease Rigidity NABEEL CHOUDHARY, TALHA ABBASS, OMAIR AFZAL Khalid Mahmood Department of Neurosurgery, Lahore General Hospital, Lahore ABSTRACT Introduction: Parkinson's Disease (PD) is a progressive neurological disorder caused by a loss of pigmented dopaminergic neurons of the substantia nigra pars compacta. The major manifestations of the disease consist of resting tremor, rigidity, bradykinesia and gait disturbances. Before the advent of Levodopa surgery was main stay of treatment of PD. Medical therapy is still the mainstay of treatment for Parkinson's diseasebut its prolonged use results in side effects like drug induced dyskinesia. In 1952 Dr. Lars Leksell introduced Pallidotomy that was successful in relieving many Parkinsonian symptoms in patients. Later on thalamotomy became widely accepted, replacing pallidotomy as the surgical treatment of choice for Parkinson's Disease. Thalamotomy had an excellent effect on the tremor, was not quite as effective at reducing rigidity rather bradykinesia was often aggravated by the procedure. Objective: Effectiveness of Pallidotomy in rigidity in medically refractory Parkinson’s disease and its complications. Study Design: Descriptive prospective case series. Setting of study: Department of Neurosurgery, Lahore General Hospital, Lahore. Duration: June 2013 to April 2016. Materials and Methods: Patients of Parkinson’s disease with predominant component of muscular rigidity despite maximum medical therapy admitted through outdoor department. Detailed history and physical exami- nation was done. Grading of muscular rigidity was done by applying UPDRS score Rigidity part 22. -
Rhesus Monkey Brain Atlas Subcortical Gray Structures
Rhesus Monkey Brain Atlas: Subcortical Gray Structures Manual Tracing for Hippocampus, Amygdala, Caudate, and Putamen Overview of Tracing Guidelines A) Tracing is done in a combination of the three orthogonal planes, as specified in the detailed methods that follow. B) Each region of interest was originally defined in the right hemisphere. The labels were then reflected onto the left hemisphere and all borders checked and adjusted manually when necessary. C) For the initial parcellation, the user used the “paint over function” of IRIS/SNAP on the T1 template of the atlas. I. Hippocampus Major Boundaries Superior boundary is the lateral ventricle/temporal horn in the majority of slices. At its most lateral extent (subiculum) the superior boundary is white matter. The inferior boundary is white matter. The anterior boundary is the lateral ventricle/temporal horn and the amygdala; the posterior boundary is lateral ventricle or white matter. The medial boundary is CSF at the center of the brain in all but the most posterior slices (where the medial boundary is white matter). The lateral boundary is white matter. The hippocampal trace includes dentate gyrus, the CA3 through CA1 regions of the hippocamopus, subiculum, parasubiculum, and presubiculum. Tracing A) Tracing is done primarily in the sagittal plane, working lateral to medial a. Locate the most lateral extent of the subiculum, which is bounded on all sides by white matter, and trace. b. As you page medially, tracing the hippocampus in each slice, the superior, anterior, and posterior boundaries of the hippocampus become the lateral ventricle/temporal horn. c. Even further medially, the anterior boundary becomes amygdala and the posterior boundary white matter.