Design, Synthesis and Magnetism of Single-Molecule Magnets with Large Anisotropic Barriers
Total Page:16
File Type:pdf, Size:1020Kb
Design, Synthesis and Magnetism of Single-Molecule Magnets with Large Anisotropic Barriers Po-Heng Lin PhD. thesis submitted to the Faculty of Graduate and Postdoctoral Studies In partial fulfillment of the requirements For the PhD. Degree in the Faculty of Science, Department of Chemistry Supervisor: Dr. Muralee Murugesu Department of Chemistry Faculty of Science University of Ottawa © Po-Heng Lin, Ottawa, Canada, 2012 Page | i Abstract This thesis will present the synthesis, characterization and magnetic measurements of III III III lanthanide complexes with varying nuclearities (Ln, Ln2, Ln3 and Ln4). Eu , Gd , Tb , DyIII, HoIII and YbIII have been selected as the metal centers. Eight polydentate Schiff-base ligands have been synthesized with N- and mostly O-based coordination environments which chelate 7-, 8- or 9-coordinate lanthanide ions. The molecular structures were characterized by single crystal X-ray crystallography and the magnetic properties were measured using a SQUID magnetometer. Each chapter consists of crystal structures and magnetic measurements for complexes with the same nuclearity. There are eight DyIII SMMs in this thesis which are discrete molecules that act as magnets below a certain temperature called their blocking temperature. This phenomenon results from an appreciable spin ground state (S) as well as negative uni-axial anisotropy (D), both present in lanthanide ions owing to their f electron shell, generating an effective energy barrier for the reversal of the magnetization (Ueff). The ab initio calculations are also included for the SMMs with high anisotropic energy barriers to understand the mechanisms of slow magnetic relaxation in these systems. Page | ii Acknowledgements and Contributions There are many people who deserve a special mention for their invaluable help with this research project: First and foremost my supervisor Prof. Muralee Murugesu who taught me inorganic chemistry and molecular magnetism. Thanks for all your patience over the years and spent a lot of time on correcting my English. Thanks for the skating and snowboarding lessons, whiskey tastings, rum tastings and philosophy education. I would like to say if you did not push me so hard in these five years, I would not have this many results and publications. Wan-Jou Hsu for waiting for me in Taiwan for five years. You are my best support when I feel frustrated. Thanks for giving up your high salary job, marrying me and staying with me in my PhD. last year. Love you forever. Fatemah Habib for all the help with anything and everything not only in chemistry. Thanks for all your patience for correcting my writing and listening to my practices again and again. Thanks for letting me know that “women’s rights” are so important. Dr. Jérôme Long for all his help with theoretical aspects of molecular magnetism and teaching me how to use the SQUID. Moreover, I will never forget the awesome conference memories, especially the wheelchair. Dr. Ilia Korobkov and Dr. Tara J. Burchell for all the crystal structures presented in this thesis and for always finding that one crystal that worked. Dr. Cyril Cook for all his help with organic chemistry. Prof. Rodolphe Clérac for SQUID measurements and Dr. Wolfgang Wernsdorfer for micro-SQUID measurements. Prof. Liviu Chibtaru and Dr. Liviu Ungur in Belgium for all the ab initio calculations. Jennifer Le Roy for “some” beers and wonderful Canadian experience. Last but certainly not least, thanks to all the lab members, past and present, for making time in the lab enjoyable and fun. Page | iii Table of Contents Chapter 1: Introduction ................................................................................... 1 1.1 Magnetic properties of material .................................................................................... 2 1.1.1 Diamagnetism .............................................................................................. 2 1.1.2 Paramagnetism ............................................................................................. 3 1.1.3 Ferromagnetism ........................................................................................... 4 1.1.4 Anti-ferromagnetism .................................................................................... 5 1.1.5 Ferrimagnetism ............................................................................................ 5 1.2 Basic principle of magnetic properties .......................................................................... 6 1.2.1 Fundamental Physical Constants ............................................................... 6 1.2.2 Curie Law and Curie-Weiss Law .............................................................. 7 1.2.3 Van Vleck equation ................................................................................... 8 1.2.4 Derivation of magnetic susceptibility ...................................................... 10 1.2.5 Magnetic anisotropy ................................................................................ 13 1.2.6 Magnetometer .......................................................................................... 15 1.3 Single-Molecule Magnets (SMMs) ............................................................................. 17 1.4 Magnetic measurements for SMMs .......................................................................... 22 1.5 Lanthanide chemistry .................................................................................................. 30 1.6 Magnetic properties of LnIII ions ................................................................................. 32 1.7 Lanthanide SMMs ....................................................................................................... 35 1.8 Ligand design .............................................................................................................. 40 1.9 Thesis overview........................................................................................................... 47 Page | iv Chapter 2: Mononuclear lanthanide complexes ............................................ 48 2.1 Molecular structure of [Tb(Hhmi)(NO3)2(MeOH)2] (2-1) .......................................... 49 2.2 Molecular structure of [Ln(H2hmi)(DMF)2Cl2]Cl·2(CH3CN) (Ln: Tb(2-2) and Yb(2-3)) .. .............................................................................................................. 51 2.3 Molecular structure of [Dy(Hhmb)(DMF)2Cl2] (2-4·) .............................................. 53 2.4 Molecular structure of [Ln(Hhmb)(bp)(NO3)2]·MeCN (Ln: Tb(2-5), Dy(2-6) and Ho(2-7)) ................................................................................................................. 55 2.5 Molecular structure of [Dy(Hhma)(DMF)2Cl2] (2-8) ................................................. 58 2.6 Molecular structure of [Dy(hmf)(DETA)2]Cl·2CH2Cl2·MeOH (2-9) ......................... 61 2.7 Molecular structure and magnetism of [Dy(H2hmt)(NO3)4(DMF)2] (2-10) ............... 64 Chapter 3: Dinuclear complexes ................................................................... 77 3.1 Molecular structure and magnetism of [Dy2(Hhmb)2(NO3)4]·MeCN (3-1) ................ 78 3.2 Molecular structure and magnetism of [Dy2(Hhmb)2(NO3)4(N3)2(MeOH)]·2MeOH (3-2) ....................................................................................................................... 84 3.3 Molecular structure and magnetism of Dy2(Hhma)3(NO3)3·CH3CN·2MeOH (3-3) ... 93 3.4 Molecular structure of [Ln2(hmi)2(NO3)x(MeOH)y] (Ln: Eu, Gd, Tb and Dy, x = 2 and y = 2 or 4) ............................................................................................................ 99 3.5 Magnetic measurement of complexes 3-4 – 3-11 ..................................................... 119 3.5.1 DC measurement ..................................................................................... 119 3.5.2 AC measurement ..................................................................................... 127 Chapter 4: Trinuclear complexes ................................................................ 143 4.1 Molecular structure and magnetism of 3N(CH3)4·[Ln3(hmf)6]·2CH3OH·H2O (Ln: Dy(4-1), Tb(4-2)) ................................................................................................ 144 Page | v 4.2 Molecular structure and magnetism of 3N(CH3)4·[Dy3(hef)6]·2CH3OH·H2O (4-3) . 154 4.3 Structure and magnetism of [Dy3(3-OMe)(hbb)3(NO3)(CH3OH)2]·3(NO3)·5(CH3OH) (4-4) ..................................................................................................................... 164 4.4 Structure and magnetism of [Dy3(3-OH)2(-OMe)(hmi)2(MeOH)4(H2O)2]·Cl2 (4-5) ............................................................................................................................. 177 Chapter 5: Tetranuclear complexes ............................................................. 190 5.1 Molecular structure and magnetism of [Ln4(µ3-OH)2(bmh)2(msh)4Cl2] (Ln: Dy(5-1), Tb(5-2) and Ho(5-3)) ........................................................................................... 191 5.2 Molecular structure and magnetism of [Dy4(µ4-O)(µ-OMe)2(beh)2(esh)4]·3MeOH (5-4) ..................................................................................................................... 213 Chapter 6: Conclusion ................................................................................. 232 Chapter 7: Experimental ............................................................................. 243 Chapter