Recent Advances in Sulfur–Nitrogen Bond Formation Via Cross-Dehydrogenative Coupling Cite This: RSC Adv.,2018,8, 18456 Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Recent Advances in Sulfur–Nitrogen Bond Formation Via Cross-Dehydrogenative Coupling Cite This: RSC Adv.,2018,8, 18456 Reactions RSC Advances View Article Online REVIEW View Journal | View Issue Recent advances in sulfur–nitrogen bond formation via cross-dehydrogenative coupling Cite this: RSC Adv.,2018,8, 18456 reactions Fatemeh Alsadat Hosseini Nasab,a Leila Zare Fekri,b Aazam Monfared,b *c b Received 12th January 2018 Akram Hosseinian and Esmail Vessally Accepted 12th April 2018 This focus-review surveys literature methods for the construction of sulfur–nitrogen bonds through cross- DOI: 10.1039/c8ra00356d dehydrogenative coupling reactions between thiols and N–H compounds with a particular emphasis on the rsc.li/rsc-advances mechanistic aspects of the reactions. The literature has been surveyed until the end of 2017. 1. Introduction 2 with trade name Topamax is a promising anticonvulsant medicine available in a number of countries worldwide. The 8 Needless to say, organosulfur compounds play a very important drug is also used for migraine prevention in adults. Folpet 3 is Creative Commons Attribution-NonCommercial 3.0 Unported Licence. role in various elds such as organic synthesis, materials a fungicide used for broad-spectrum control of fungal patho- 9 science, agriculture, and medicinal chemistry.1–4 Among them, gens. Sulfoxaor 4 is an insecticide with a sulfoximine motif, compounds bearing sulfur–nitrogen bonds are important this compound is very active against a wide range of sap-feeding 10 building blocks in a variety of biologically active substances. For insect pests and widely used around the world. Thus, instance, sultiame 1 (Fig. 1) with brand name Ospolot is construction of biologically and synthetically important sulfur– a synthetic sulfa-based drug marketed worldwide for the treat- nitrogen bonds is one of the essential transformations in ment of epilepsy.5,6 The drug works by reducing the activity of organic synthesis. Conventional methods to achieve such link- carbonic anhydrase, an enzyme responsible for catalyzing the ages involve cross-coupling of S-halo compounds and N–H 11 This article is licensed under a interconversion of carbon dioxide and water to carbonic acid by compounds in the presence of strong bases or metal-catalyzed using a metal hydroxide nucleophilic mechanism.7 Topiramate cross-coupling reactions between N-halogenated compounds and thiols/disuldes.12 However, the limited availability of Open Access Article. Published on 21 May 2018. Downloaded 9/24/2021 8:20:04 PM. commercial starting materials, the formation of undesired by- aDepartment of Chemistry, Hormozgan University, P. O. Box 3995, Bandar Abbas, Iran bDepartment of Chemistry, Payame Noor University, P. O. Box 19395-1697, Tehran, products and/or harsh reaction conditions are the main draw- Iran backs of these methods. Therefore, the search for novel cDepartment of Engineering Science, College of Engineering, University of Tehran, P. O. straightforward and eco-friendly green approaches to the Box 11365-4563, Tehran, Iran. E-mail: [email protected] Fatemeh Alsadat Hosseini Leila Zare Fekri was born in Nasab was born in Sirjan, Rasht, Iran, in 1980. She Kerman, Iran, in 1980. She received her B.Sc. degree in Pure received her B.S. degree in Pure Chemistry from Guilan Univer- Chemistry from University of sity, Rasht, Iran, and her M.Sc. Shahid Bahonar, Kerman, Iran, degree in Organic Chemistry and her M.S. degree in Organic from Guilan University, Rasht, Chemistry from Shahid Bahonar Iran, in 2006 under the super- University, Kerman, Iran, in vision of Prof. N. Mahmoodi. 2006 under the supervision of She received her Ph.D. degree in Dr M. Eslami. Now she is 2010 under the supervision N. working at Hormozgan Univer- Mahmoodi in Guilan University, sity of Bandar Abbas, as an Rasht, Iran. Now she is working Instructor. Her research interests include organic synthesis and at Payame Noor University of Guilan as Assistant Professor. Her new nanochemistry. research interests include organic synthesis, green chemistry, one- pot reaction, new nanochemistry and calculated chemistry. 18456 | RSC Adv.,2018,8,18456–18469 This journal is © The Royal Society of Chemistry 2018 View Article Online Review RSC Advances synthesis of sulfur–nitrogen bond-containing compounds presented in this mini-review with a particular emphasis on the remains a challenge. mechanistic aspects of the reactions. It is noted that the reac- Metal-catalyzed and metal-free cross-coupling reactions have tions were classied according to the type of products (Fig. 2). been shown to be one of the most powerful methods for the Literature has been surveyed until the end of 2017. construction of C–C, C–X, and X–X0 bonds (X, X0 ¼ hetero- atom).13–15 Cross-dehydrogenative coupling (oen called oxida- tive coupling) reactions are green and sustainable alternatives 2. Synthesis of sulfenamides to traditional coupling procedures which rely on the use of two 15,16 unmodied coupling partners. Indeed, in these reactions In 2010, N. Taniguchi reported the rst example of Cu(I)-cata- 5 the relatively inactive C(X)–H bonds can be treated as a func- lyzed cross-dehydrogenative coupling of aryl thiols with 6 0 tional group, similar to the traditionally used C(X)–(pseudo) amines in the presence of Cu(I)/bpy (2,2 -bipyridine) combi- halide bonds. Along this line, recently, oxidative coupling of nation as a catalytic system in air as the terminal oxidant, which 7 thiols and N–H compounds has gained a lot of attention allows for preparation of a broad range of sulfenamides in 17a because of the atom-economic and waste-minimization char- moderate to excellent yields (Scheme 1). The reaction is acters. The most obvious benet of this route for construction noteworthy in that both primary and secondary amines are of sulfur–nitrogen bond is that there is no need for preparation tolerated. The results demonstrated that aliphatic amines and isolation of halogenated reagents, thus improving pot, generally gave higher yields than arylamines. It should be atom, and step economy. An overview of this emerging area is mentioned that the electronic character of the substituents in aryl thiols had a strong effect on the facility of reaction. While electron-donating, mild electron-withdrawing and unsub- stituted thiophenol gave the desired products in good yields, Aazam Monfared was born in the strongly electron-withdrawing nitro-substituted thiophenol Tehran, Iran, in 1965. She failed to afford the product. Interestingly, when the reaction was Creative Commons Attribution-NonCommercial 3.0 Unported Licence. received her B.S. degree in Pure carried out under the oxygen atmosphere, the corresponding Chemistry from University of sulfonamides were obtained in moderate to high yields. Shahid Beheshti, Tehran, Iran, Furthermore, the author observed that using PdCl2/CuI binary and her M.S. degree in Organic catalyst, the reaction of aryl thiols with primary amines in air Chemistry from Shahid Beheshti selectively afforded sulnamides derivatives. The author University, Tehran, Iran, in 1991 proposed mechanism for the formation of sulfenamides is under the supervision of Prof. A. shown in Scheme 2. A possible process for the formation of Rustaiyan. She received her Ph.D. sulfenamides 7 should involve the formation of intermediate B This article is licensed under a degree in 1999 under the super- via oxidative addition of starting aryl thiol 5 with copper catalyst vision of Prof. A. Rustaiyan in A, followed by oxidation of this intermediate with air oxygen to Shahid Beheshti University, Teh- give the intermediate C, which aer reaction with amine 6 ran, Iran. Now, she is working at Payame Noor University of Tehran delivers the intermediate D. Finally, reductive elimination of Open Access Article. Published on 21 May 2018. Downloaded 9/24/2021 8:20:04 PM. as Associate Professor. Her research interests include organic intermediate D affords the desired product 7 (cycle A, Scheme synthesis, phytochemistry, drug synthesis, nano chemistry, meth- 2). In another possibility, oxidative homocoupling of thiol 5 can odologies and theoretical chemistry. happen to give the disulde E, which aer reaction with amine Akram Hosseinian was born in Esmail Vessally was born in Ahar, Iran, in 1973. She received Sharabiyan, Sarab, Iran, in her B.S. degree in Pure Chem- 1973. He received his B.S. degree istry from University of Tehran, in Pure Chemistry from Univer- Iran, and her M.S. degree in sity of Tabriz, Tabriz, Iran, and Inorganic Chemistry from Tarb- his M.S. degree in Organic iat Modares University, Tehran, Chemistry from Tehran Univer- Iran, in 2000 under the super- sity, Tehran, Iran, in 1999 under vision of Prof. A. R. Mahjoub. the supervision of Prof. H. Pir- She completed her Ph.D. degree elahi. He completed his Ph.D. in 2007 under the supervision of degree in 2005 under the super- Prof. A. R. Mahjoub. Now she is vision of Prof. M. Z. Kassaee. working at University of Tehran Now he is working at Payame as Associate Professor. Her research interests include inorganic Noor University as full Professor of Organic Chemistry. His and organic synthesis, new methodologies in nano material research interests include theoretical organic chemistry, new synthesis. methodologies in organic synthesis and spectral studies of organic compounds. This journal is © The Royal Society of Chemistry 2018 RSC Adv.,2018,8,18456–18469 | 18457 View Article Online RSC Advances Review Fig. 1 Selected examples of biologically active sulfur–nitrogen bond-containing organosulfur compounds. 6 affords sulfenamide 7 with the generation of intermediate C reported some limitations in their methodology, since consider- (cycle B, Scheme 2).17 able difficulties were found when they attempted to react the Four years later, the group of Wacharasindhu studied the sterically hindered tert-butylamine and the less nucleophilic possibility of synthesizing heterocyclic sulfenamides 10 through aniline. In these cases, they observed only disulde products with hypervalent iodine-catalyzed cross-dehydrogenative coupling of N- no formation of sulfenamide product. The mechanism shown in 18 Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Recommended publications
  • Vulcanization & Accelerators
    Vulcanization & Accelerators Vulcanization is a cross linking process in which individual molecules of rubber (polymer) are converted into a three dimensional network of interconnected (polymer) chains through chemical cross links(of sulfur). The vulcanization process was discovered in 1839 and the individuals responsible for this discovery were Charles Goodyear in USA and Thomas Hancock in England. Both discovered the use of Sulfur and White Lead as a vulcanization system for Natural Rubber. This discovery was a major technological breakthrough for the advancement of the world economy. Vulcanization of rubbers by sulfur alone is an extremely slow and inefficient process. The chemical reaction between sulfur and the Rubber Hydrocarbon occurs mainly at the C = C (double bonds) and each crosslink requires 40 to 55 sulphur atoms (in the absence of accelerator). The process takes around 6 hours at 140°C for completion, which is uneconomical by any production standards. The vulcanizates thus produced are extremely prone to oxidative degradation and do not possess adequate mechanical properties for practical rubber applications. These limitations were overcome through inventions of accelerators which subsequently became a part of rubber compounding formulations as well as subjects of further R&D. Following is the summary of events which led to the progress of ‘Accelerated Sulfur Vulcanization'. Event Year Progress - Discovery of Sulfur Vulcanization: Charles Goodyear. 1839 Vulcanizing Agent - Use of ammonia & aliphatic ammonium derivatives: Rowley. 1881 Acceleration need - Use of aniline as accelerator in USA & Germany: Oenslager. 1906 Accelerated Cure - Use of Piperidine accelerator- Germany. 1911 New Molecules - Use of aldehyde-amine & HMT as accelerators in USA & UK 1914-15 Amine Accelerators - Use of Zn-Alkyl Xanthates accelerators in Russia.
    [Show full text]
  • 1,2,4-Triazine Sulfonamides: Synthesis by Sulfenamide Intermediates, in Vitro Anticancer Screening, Structural Characterization, and Molecular Docking Study
    molecules Article 1,2,4-Triazine Sulfonamides: Synthesis by Sulfenamide Intermediates, In Vitro Anticancer Screening, Structural Characterization, and Molecular Docking Study Danuta Branowska 1, Zbigniew Karczmarzyk 1,*, Ewa Woli ´nska 1, Waldemar Wysocki 1, Maja Morawiak 2 , Zofia Urba ´nczyk-Lipkowska 2 , Anna Bielawska 3 and Krzysztof Bielawski 3 1 Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland; [email protected] (D.B.); [email protected] (E.W.); [email protected] (W.W.) 2 Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; [email protected] (M.M.); zofi[email protected] (Z.U.-L.) 3 Medical University of Bialystok, Department of Medicinal Chemistry and Drug Technology, J. Kilinskiego 1, 15-089 Bialystok, Poland; [email protected] (A.B.); [email protected] (K.B.) * Correspondence: [email protected]; Tel.: +48-25-643-1017 Received: 24 March 2020; Accepted: 14 May 2020; Published: 16 May 2020 Abstract: In this study, we synthesized novel sulfonamides with a 1,2,4-triazine moiety according to pharmacophore requirements for biological activity. All the synthesized compounds were tested in vitro to verify whether they exhibited anticancer activity against the human breast cancer cell lines MCF-7 and MDA-MB-231. Among them, two most active ones, having IC50 values of 50 and 42 µM, respectively, were found to show higher anticancer activity than chlorambucil used as the reference in the in vitro tests. In addition, two other compounds, which had IC50 values of 78 and 91 µM, respectively, exhibited a similar level of activity as chlorambucil.
    [Show full text]
  • THE CHEMISTRY of SULFENIMIDES by Barbara Ann Orwig a Thesis
    THE CHEMISTRY OF SULFENIMIDES by Barbara Ann Orwig A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Master of Science Department of Chemistry McGill University Montreal, P.Q. Canada May 1971 @) Barbara Ann Orwig 1972 Dedicated to My Parents Il Thanx Il i ACKNOWLEDGEMENTS 3l MY thanks to Dr. D.F.R. Gilson for the p nmr spectra, to Victor Yu for the A-60 nmr spectra, and to Peter Currie for the mass spectra. For helpful discussions and worthwhile suggestions l thank David Ash 1 Errol Chang 1 and John Gleason. For his guidance and help as my research director l thank Dr. David N. Harpp. And to Elva and Hermann Heyge go special thanks for their help and for "putting up wi th œil. TABLE OF CONTENTS Page ACKNOWLEDGEMENTS i INTRODUcrION 1 EXPERIMENTAL SECTION 22 RESULTS AND DISCUSSION 42 TABLES 1 Preparation of Sulfenyl Chlorides 72 2 Preparation of N-(alkyl/aryl thio)phthalimides 73 3 Desulfurization Reactions of N-(alkyl/aryl thio)phthalimides 76 4 Mass Spectra of N-(alkyl/aryl thio)phthalimides 77 FIGURES (Spectra) 78 - 87 BIBLIOGRAPHY 88 INTRODUcrION AND BACKGROUND Sulfenic acids Cl), in which sulfur exists in its R-S-OH l lcwest oxidation state, are highly lmstable compolmds and only a few l have been isolated. The derivatives of sulfenic acid {~.> however, are generally isolable and usually stable. 2 R-S-Y 2 When Y is -NH ' -~HR, or -NR ' the resulting class of compolmds is 2 2 ter.med sulfenamides.
    [Show full text]
  • United States Patent Office
    3,454,590 United States Patent Office Patented July 8, 1969 2 3,454,590 New compounds that can be produced by the process BENZOTHAZO-LE-2-SULFNAMIDES are benzothiazole-2-sulfinamides where R and R in the Alan Jeffrey Neale, Llangollen, Wales, and Terence above formula each represent an aliphatic or cyclo James Rawlings, Penicuik, Scotland, assignors to aliphatic group and the total number of carbon atoms Monsanto Chemicals Limited, London, England, in R and R' is at least four, and sulfinamides where R a British company No Drawing. Filed June 1, 1967, Ser. No. 642,717 and R are linked to form a saturated cyclic system with Claims priority, application Great Britain, June 17, 1966, the nitrogen atom. 27,184/66 The invention includes a process in which a new com nt. C. C07d 91/44, 29/34 pound as defined above is employed as an accelerator U.S. CI. 260-306.6 3 Claims O for the Vulcanization of rubber. Sulfinamides that can be produced by oxidation of the corresponding sulfenamides in the process defined above ABSTRACT OF THE DISCLOSURE can also be obtained by reaction of a benzothiazole-2-sul finyl halide with an appropriate amine. In particular, sul This disclosure is benzothiazole-2-sulfinamides of the 5 finamides in which the sulfinamide grouping is represented formula by the formula: S N R R C-S-N -s-N Né y 20 R. can be obtained by reaction of the sulfinyl halide with where R and R' are each an aliphatic or cycloaliphatic an amine having the formula HNRR.
    [Show full text]
  • UNDERSTANDING SULFUR BASED REDOX BIOLOGY THROUGH ADVANCEMENTS in CHEMICAL BIOLOGY by THOMAS POOLE a Dissertation Submitted to T
    UNDERSTANDING SULFUR BASED REDOX BIOLOGY THROUGH ADVANCEMENTS IN CHEMICAL BIOLOGY BY THOMAS POOLE A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Chemistry May 2017 Winston-Salem, North Carolina Approved By: S. Bruce King, Ph.D., Advisor Leslie B. Poole, Ph.D., Chair Patricia C. Dos Santos, Ph.D. Paul B. Jones, Ph.D. Mark E. Welker, Ph.D. ACKNOWLEDGEMENTS First and foremost I would like to thank professor S. Bruce King. His approach to science makes him an excellent role model that I strive to emulate. He is uniquely masterful at parsing science into important pieces and identifying the gaps and opportunities that others have missed. I thank him for the continued patience and invaluable insight as I’ve progressed through my graduate studies. This work would not have been possible without his insight and guiding suggestions. I would like to thank our collaborators who have proven invaluable in their support. Cristina Furdui has provided the knowledge, context, and biochemical support that allowed our work to be published in esteemed journals. Leslie Poole has provided the insight into redox biology and guidance towards appropriate experiments. I thank my committee members, Mark Welker and Patricia Dos Santos who have guided my graduate work from the beginning. Professor Dos Santos provided the biological perspective to evaluate my redox biology work. In addition, she helped guide the biochemical understanding required to legitimize my independent proposal. Professor Welker provided the scrutinizing eye for my early computational work and suggested validating the computational work with experimental data.
    [Show full text]
  • 2-Nitrophenylsulfenyl Chloride Into New Compounds with Potential Pesticidal Activity
    Synthesis and transformation of 4-dichloromethylsulfonyl-2-nitrophenylsulfenyl... 5 Pestycydy/Pesticides, 2009, (1-4), 5-14. ISSN 0208-8703 Synthesis and transformation of 4-dichloromethylsulfonyl- 2-nitrophenylsulfenyl chloride into new compounds with potential pesticidal activity Zbigniew OCHAL, Wojciech BIAŁKOWSKI and Łukasz BANACH Warsaw University of Technology, Faculty of Chemistry, 3 Noakowskiego St., 00-664 Warsaw, Poland e-mail: [email protected] Abstract: The synthesis of 4-dichloromethylsulfonyl-2-nitrophenylsulfenyl chloride and its transformation into new compounds with promising pesticidal activity is reported. The title compounds were obtained by a three-step synthesis, starting from 4-dichloromethylchlorophenyl sulfone. It was nitrated and then subjected to the SNAr reaction with sodium disulfide to give proper diphenyl disulfide, which was next chlorinated by chlorine. The obtained phenylsulfenyl chloride was transformed into sulfenamide derivatives by reactions with amines. Keywords: 4-chlorophenyldichloromethyl sulfone, sulfenyl chloride, sulfenamides, pesticides INTRODUCTION Some sulfenamide derivatives are known as the non-systemic fungicides widely used to control foliage and fruit diseases of tomatoes, coffee berry, potato and many other fruits and vegetables [1, 2]. Galactofuranosyl-N,N-dialkyl sulfenamides displayed an antimycobacterial activity [3]. Some N-sulfenyl heterocycles are effective sulfenylating agents of aromatic amines [4]. In addition, they are the important intermediates in many reactions, promising in the prodrug technologies [5, 6]. On the other hand, it is well known that chemical compounds with chloromethyl groups show an interesting biological activity [1]. We have proved in our previous investigations that chloro- and dichloromethylsulfonyl 6 Z. Ochal, W. Białkowski, Ł. Banach groups in aromatic compounds were favorable to pesticidal activities [7-11].
    [Show full text]
  • United States Patent Office Patented Apr
    3,658,828 United States Patent Office Patented Apr. 25, 1972 2 3,658,828 R R UNSYMMETRICAL DIALKYL THAZOLE / SULFENAMIDES T-S -N-ce John Joseph D'Amico, Akron, Ohio, assignor to R3 Monsanto Company, St. Louis, Mo. 5 wherein T is benzothiazolyl or substituted benzothiazolyl, No Drawing. Filed Nov. 19, 1969, Ser. No. 878,243 where the substituents are chloro, bromo, fluoro, iodo, ni Int, C. C07d 91/44 tro or lower alkoxy, R is tertiary-alkyl of 4-12 carbon U.S. C. 260-306.6A 5 Claims atoms, R2 and R3 are alkyl of 1-8 carbon atoms or to gether with the carbon atom to which they are attached O form cycloalkyl of 5-8 carbon atoms. ABSTRACT OF THE DISCLOSURE Examples of tertiary-alkyl radicals suitable for the prac Unsymmetrical dialkyl thiazole sulfenamides of the tice of this invention are tertiary-butyl, tertiary-amyl, formula tertiary-hexyl, tertiary-octyl, tertiary-nonyl, tertiary-decyl and tertiary-dodecyl. A tertiary-alkyl radical has its first 5 carbon atom linked to three other carbon atoms. The aliphatic groups from which R2 and R can be Selected include alkyl groups containing from 1-8 car bon atoms having straight or branched chains, for ex wherein T is benzothiazolyl or substituted benzothiazolyl, ample, methyl, ethyl, propyl, isopropyl, butyl, secondary where the substituents are chloro, bromo, fluoro, iodo, 20 butyl, amyl, hexyl and octyl. Cyclopentyl, cyclohexyl and nitro or lower alkoxy, R is tertiary-alkyl of 4-12 carbon cyclooctyl are examples of radicals when R2 and R3 to atoms, R2 and R3 are alkyl of 1-8 carbon atoms or to gether with the carbon to which they are attached form gether with the carbon atom to which they are attached cycloalkyl.
    [Show full text]
  • Insight Into Vulcanization Mechanism of Novel Binary Accelerators for Natural Rubber*
    Chinese Journal of Polymer Science Vol. 32, No. 8, (2014), 1077−1085 Chinese Journal of Polymer Science © Chinese Chemical Society Institute of Chemistry, CAS Springer-Verlag Berlin Heidelberg 2014 Insight into Vulcanization Mechanism of Novel Binary Accelerators for * Natural Rubber Shu-yan Yanga, Zhi-xin Jiab**, Lan Liub, Wei-wen Fub, De-min Jiab and Yuan-fang Luob a Chemical Industrial Cleaner Production and Green Chemical R&D Center of Guang Dong Universities, Dongguan University of Technology, Dongguan 523808, China b College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China Abstract A novel TU derivative, N-phenyl-N′-(γ-triethoxysilane)-propyl thiourea (STU), is prepared and its binary accelerator system is investigated in detail. Compared to the control references, the optimum curing time of NR compounds with STU is the shortest, indicating a more nucleophilic reaction occurs. The Py-GC/MS results present that the phenyl iso- thiocyanate fragment still remains in the NR/STU compounds with or without extracting treatment, but no silane segment can be found in the vulcanizate with extracting treatment. Vibrations of C=S, NH and aromatic ring in FTIR experiments and a new methyne carbon peak, as well as the peaks of phenyl group of STU, in the solid state 13C-NMR experiments are found in the NR/STU vulcanizate with extracting treatment. Moreover, the crosslinking density of vulcanizates with STU evolves to lower level, indicating the sulfur atom of STU does not contribute to the sulfur crosslinking. Therefore, a new vulcanization kinetic mechanism of STU is propounded that the thiourea groups can graft to the rubber main chains as pendant groups by chemical bonds during the vulcanization process, which is in accordance with the experimental observations quite well.
    [Show full text]
  • An Apparent Binary Choice in Biochemistry: Mutual Reactivity Implies Life Chooses Thiols Or Nitrogen-Sulfur Bonds, but Not Both
    An apparent binary choice in biochemistry: mutual reactivity implies life chooses thiols or nitrogen-sulfur bonds, but not both The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Petkowski, Janusz J., William Bains, and Sara Seager, "An apparent binary choice in biochemistry: mutual reactivity implies life chooses thiols or nitrogen-sulfur bonds, but not both." Astrobiology 19, 4 (March 2019): p. 579-613 doi 10.1089/AST.2018.1831 ©2019 Author(s) As Published 10.1089/AST.2018.1831 Publisher Mary Ann Liebert Inc Version Final published version Citable link https://hdl.handle.net/1721.1/124665 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. ASTROBIOLOGY Volume 19, Number 4, 2019 Hypothesis Article ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2018.1831 An Apparent Binary Choice in Biochemistry: Mutual Reactivity Implies Life Chooses Thiols or Nitrogen-Sulfur Bonds, but Not Both Janusz J. Petkowski,1 William Bains,2 and Sara Seager1,3 Abstract A fundamental goal of biology is to understand the rules behind life’s use of chemical space. Established work focuses on why life uses the chemistry that it does. Given the enormous scope of possible chemical space, we postulate that it is equally important to ask why life largely avoids certain areas of chemical space. The nitrogen-sulfur bond is a prime example, as it rarely appears in natural molecules, despite the very rich N-S bond chemistry applied in various branches of industry (e.g., industrial materials, agrochemicals, pharmaceu- ticals).
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,421,352 SUBSTITUTED TOCARBAMO SULFENAMOES Philip T
    Patiented May 27, 1947 242,352 UNITED STATES PATENT OFFICE 2,421,352 SUBSTITUTED TOCARBAMO SULFENAMOES Philip T. Paul and Byron A. Hunter, Naugatuck, Conn., assignors to United States Rubber Com pany, New York, N. Y., a corporation of New Jersey No Drawing. Original application March 9, 1944, Serial No. 525,774. Divided and this applica tion April 26, 1944, Serial No. 532,881 5 Claims. (C. 260-551) 2 . This invention relates to new chemical com phatic groups (saturated or unsaturated) such pounds which are useful as vulcanization accel as methyl, ethyl, propyl, methallyl, amyl, hexyl, erators in the Vulcanization of rubbers, both nat allyl, butyl, benzyl, lauryl, etc., exemplified by ural and synthetic, such as Hevea brasiliensis N',N'-dimethyl thiocarbamo sulfenamide, N',N'- and Various polymerS Such as butadiene-styrene 5 diethyl thiocarbamo sulfenamide, N',N'-dipropyl copolymer, butadiene - acrylonitrile copolymer, thiocarbamosulfenamide, N',N'-dimethallylthio isoprene-isobutylene copolymer, etc. carbamo sulfenamide, N',N'-diamyl thiocarbamo This application is a division of our copending sulfenamide, N',N'-dihexyl thiocarbamo Sulfen application Serial No. 525,774, filed March 9, 1944. amide, N',N'-diallyl thiocarbamo sulfenamide, The new class of rubber vulcanization accel O N',N' - dibutyl thiocarbamo sulfenamide, N'- erators are N,N'-disubstituted thiocarbamo Sul methyl N-benzyl thiocarbamo sulfenamide, N'- fenamides in which the sulfenamide nitrogen is ethyl N-benzyl thiocarbamo Sulfenamide, N',N'- directly attached to each of
    [Show full text]
  • Sulfur Vulcanization of Natural Rubber for Benzothiazole Accelerated Formulations: from Reaction Mechanisms to a Rational Kinetic Model
    Y 592 03-R-19 8/18/03 3:21 PM Page 592 SULFUR VULCANIZATION OF NATURAL RUBBER FOR BENZOTHIAZOLE ACCELERATED FORMULATIONS: FROM REACTION MECHANISMS TO A RATIONAL KINETIC MODEL PRASENJEET GHOSH,+ SANTHOJI KATARE,PRIYAN PATKAR JAMES M. CARUTHERS,* VENKAT VENKATASUBRAMANIAN SCHOOL OF CHEMICAL ENGINEERING,PURDUE UNIVERSITY WEST LAFAYETTE, IN 47906-1283 KENNETH A. WALKER CHEMICAL PRODUCTS BUSINESS UNIT,CATERPILLAR,INC. P.O. BOX 400, MOSSVILLE,IL 61552-4000 ABSTRACT The chemistry of accelerated sulfur vulcanization is reviewed and a fundamental kinetic model for the vulcaniza- tion process is developed. The vulcanization of natural rubber by the benzothiazolesulfenamide class of accelerators is studied, where 2-(morpholinothio) benzothiazole (MBS) has been chosen as the representative accelerator. The reaction mechanisms that have been proposed for the different steps in vulcanization chemistry are critically evaluated with the objective of developing a holistic description of the governing chemistry, where the mechanisms are consistent for all reaction steps in the vulcanization process. A fundamental kinetic model has been developed for accelerated sulfur vul- canization, using population balance methods that explicitly acknowledge the polysulfidic nature of the crosslinks and various reactive intermediates. The kinetic model can accurately describe the complete cure response including the scorch delay, curing and the reversion for a wide range of compositions, using a single set of rate constants. In addition, the concentration profiles of all the reaction intermediates as a function of polysulfidic lengths are predicted. This detailed information obtained from the population balance model is used to critically examine various mechanisms that have been proposed to describe accelerated sulfur vulcanization.
    [Show full text]
  • Wo 2008/033466 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 20 March 2008 (20.03.2008) WO 2008/033466 A2 (51) International Patent Classification: [US/US]; 1750 Washington Street, Boston, MA 021 18 A61K 31/4704 (2006.01) (US). ALTMEYER, RaIf [DE/SG]; 19 Cairnhill Circle, Apartment 17-06, Singapore 229768 (SG). (21) International Application Number: PCT/US2007/019932 (74) Agent: BELLIVEAU, Michael, J.; Clark & Elbing LLP, 101 Federal Street, Boston, MA 021 10 (US). (22) International Filing Date: 13 September 2007 (13.09.2007) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) Filing Language: English AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, (26) Publication Language: English ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (30) Priority Data: LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, 60/844,463 14 September 2006 (14.09.2006) US MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, 60/874,061 11 December 2006 (11.12.2006) US PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (71) Applicant (for all designated States except US): COM- ZM, ZW BINATORX (SINGAPORE) PRE.
    [Show full text]