COAL in Equity 01Oct20 CU

Total Page:16

File Type:pdf, Size:1020Kb

COAL in Equity 01Oct20 CU India Equity Research Metals & Mining October 1, 2020 COAL INDIA ANNUAL REPORT INSIGHTS KEY DATA Black diamond: Value at core Rating BUY Sector relative Price (INR) 116 12 month price target (INR) 165 We analysed Coal India’s FY20 annual report. Three points stand out: Market cap (INR bn/USD bn) 715/9.7 i) Larger subsidiaries outscore on profitability, productivity and Free float/Foreign ownership (%) 31.0/8.6 What’s Changed technological absorption. ii) Development of evacuation infrastructure Target Price ⚊ to handle 1bn tonnes of coal by FY24 is underway. iii) Working capital Rating/Risk Rating ⚊ unlocking might release cash in the near to medium term. INVESTMENT METRICS 60 Meanwhile, contingent liabilities, legacy issues at ECL and BCCL, and 35 diversification into unrelated fields are key overhangs. Furthermore, 10 -15 potential wage escalation may keep earnings growth muted. That said, -40 an undemanding valuation and attractive dividend yield are Sales Growth EPS Growth RoE PE (%) (%) (%) (x) formidable anchors. Retain ‘BUY’ with a TP of INR165 (7.2x FY22E EPS). Metals & Mining COAL IN Equity FINANCIALS (INR mn) Larger subsidiaries remain key Year to March FY20A FY21E FY22E FY23E We find that SECL, MCL and NCL continue to be key to CIL’s performance, accounting Revenue 9,60,803 8,58,634 9,20,232 10,21,944 for 66% of production and 76% of PBT. The company’s performance slipped in FY20, EBITDA 2,19,209 1,43,395 1,78,838 1,85,597 Adjusted profit 1,67,142 1,07,066 1,35,483 1,33,043 mainly due to non-execution of key contracts at MCL and weather-related Diluted EPS (INR) 27.1 17.4 22.0 21.6 disruptions at SECL. FY21 to date, MCL and NCL have fared better than other EPS growth (%) 23.3 (35.9) 26.5 (1.8) subsidiaries. Besides, these two subsidiaries outclass peers on both profitability and RoAE (%) 57.0 31.7 35.1 29.8 productivity. Hence, we expect MCL and NCL to provide a leg-up to CIL’s FY21 P/E (x) 4.7 7.3 5.8 5.9 financial performance. EV/EBITDA (x) 2.6 3.8 2.6 2.1 Dividend yield (%) 9.5 9.5 9.5 9.5 Evacuation infrastructure to complement production ramp-up We are upbeat about CIL’s focus on developing evacuation infrastructure; it is PRICE PERFORMANCE imperative to meet the FY24 production target of 1bn tonnes. While seven railway lines are crucial, we would also emphasise the importance of 35 First Mile 200 42,000 180 38,600 Connectivity (FMC) projects—they would not only reduce reliance on road transport, 160 35,200 but also improve mechanisation and reduce the carbon footprint. 140 31,800 120 28,400 Execution of evacuation infrastructure projects is taking place mostly near MCL’s and 100 25,000 SECL’s large mines, wherein evacuation is a constraint. In our view, this Oct-19 Jan-20 Apr-20 Jul-20 infrastructure will complement the 52 capacity enhancement projects currently COAL IN Equity Sensex underway. Outlook and valuation: Attractive dividend play Explore: In our view, evacuation infrastructure and production capacity enhancement provide long-term comfort on CIL’s earnings growth. Furthermore, we do not believe merchant mines would affect CIL’s market share materially. In the near term though, contingent liabilities—particularly relating to income tax—and environmental issues remain the key overhangs. We also do not view diversification into urea production Financial model Podcast as prudent capital allocation, and remain circumspect of its benefits. That said, there’s value beneath the surface: i) an undemanding valuation at 5.8x FY22E EPS that implies deep discount to CIL’s own trading average and that of peers’; and ii) a mouth-watering dividend yield: 12% at the CMP. The sustainability of yield Corporate access Video is least of concerns as CIL should continue to generate sufficient cash even after meeting its capex needs. Maintain ‘BUY/SO’ with a TP of INR165 at 7.2x FY22E EPS. Amit Dixit Meera Midha +91 (22) 6620 3160 +91 (22) 4088 5804 [email protected] Meera.Midha@edelweissfin. com Edelweiss Research is also available on www.edelweissresearch.com, Bloomberg EDEL <GO>, Thomson FirstCall, Reuters and Factset Edelweiss Securities Limited COAL INDIA Financial Statements Income Statement (INR mn) Balance Sheet (INR mn) Year to March FY20A FY21E FY22E FY23E Year to March FY20A FY21E FY22E FY23E Total operating income 9,60,803 8,58,634 9,20,232 10,21,944 Share capital 61,627 61,627 61,627 61,627 Raw Material Cost 60,836 52,834 68,398 71,817 Reserves 2,59,942 2,93,055 3,54,586 4,13,676 Employee costs 3,93,841 3,89,372 3,87,425 4,57,162 Shareholders funds 3,21,569 3,54,683 4,16,213 4,75,303 Other expenses 1,01,473 86,667 97,205 1,02,065 Minority interest 3,941 3,941 3,941 3,941 EBITDA 2,19,209 1,43,395 1,78,838 1,85,597 Borrowings 64,260 64,260 64,260 64,260 Depreciation 34,508 39,769 46,245 53,800 Trade payables 1,01,076 87,598 1,05,216 1,10,477 Less: Interest expense 5,029 4,092 4,092 4,092 Other liabs & prov 3,06,125 3,06,125 3,06,125 3,06,125 Add: Other income 61,054 45,150 54,584 52,083 Total liabilities 14,67,105 15,30,333 16,59,885 17,77,159 Profit before tax 2,40,713 1,44,684 1,83,086 1,79,788 Net block 3,67,455 3,97,686 4,61,441 5,07,641 Prov for tax 73,710 37,618 47,602 46,745 Intangible assets 953 953 953 953 Less: Other adj 0 0 0 0 Capital WIP 82,711 82,711 82,711 82,711 Reported profit 1,67,142 1,07,066 1,35,483 1,33,043 Total fixed assets 4,51,119 4,81,350 5,45,105 5,91,305 Less: Excp.item (net) 0 0 0 0 Non current inv 18,732 18,732 18,732 18,732 Adjusted profit 1,67,142 1,07,066 1,35,483 1,33,043 Cash/cash equivalent 2,85,465 3,16,534 3,92,835 4,75,215 Diluted shares o/s 6,163 6,163 6,163 6,163 Sundry debtors 1,44,082 1,46,767 1,38,665 1,25,993 Adjusted diluted EPS 27.1 17.4 22.0 21.6 Loans & advances 11,412 11,412 11,412 11,412 DPS (INR) 12.0 12.0 12.0 12.0 Other assets 4,00,548 3,99,790 3,97,388 3,98,755 Tax rate (%) 30.6 26.0 26.0 26.0 Total assets 14,67,105 15,30,333 16,59,885 17,77,159 Important Ratios (%) Free Cash Flow (INR mn) Year to March FY20A FY21E FY22E FY23E Year to March FY20A FY21E FY22E FY23E EBITDA (INR/t) 472.1 341.9 391.8 388.2 Reported profit 1,67,142 1,07,066 1,35,483 1,33,043 Staff Costs (% of sales) 41.0 45.3 42.1 44.7 Add: Depreciation 34,508 39,769 46,245 53,800 Output (t/worker) 2,192.0 2,145.9 2,416.9 2,671.3 Interest (net of tax) 5,029 4,092 4,092 4,092 EBITDA margin (%) 22.8 16.7 19.4 18.2 Others (2,40,799) 46,308 1,50,157 1,28,709 Net profit margin (%) 17.4 12.5 14.7 13.0 Less: Changes in WC 1,95,047 15,405 (28,122) (16,566) Revenue growth (% YoY) (3.5) (10.6) 7.2 11.1 Operating cash flow 41,465 1,75,022 2,60,253 2,56,333 EBITDA growth (% YoY) 3.8 (34.6) 24.7 3.8 Less: Capex 56,445 70,000 1,10,000 1,00,000 Adj. profit growth (%) 23.3 (35.9) 26.5 (1.8) Free cash flow (14,980) 1,05,022 1,50,253 1,56,333 Assumptions (%) Key Ratios Year to March FY20A FY21E FY22E FY23E Year to March FY20A FY21E FY22E FY23E GDP (YoY %) 4.8 (6.0) 7.0 6.0 RoE (%) 57.0 31.7 35.1 29.8 Repo rate (%) 4.4 3.5 3.5 4.0 RoCE (%) 55.8 26.5 30.1 26.4 USD/INR (average) 70.7 75.0 73.0 72.0 Inventory days 366 455 343 324 Production (mT) 602.2 560.0 599.2 629.2 Receivable days 38 62 57 47 Sales (mT) 581.8 546.9 585.1 614.4 Payable days 586 652 514 548 FSA Volumes (mT) 501.0 452.4 500.0 521.9 Working cap (% sales) 12.0 15.3 11.2 8.5 e-Auction (mT) 65.4 82.6 70.1 74.4 Gross debt/equity (x) 0.2 0.2 0.2 0.1 FSA Realisation (INR/t) 1,538.0 1,472.9 1,504.3 1,590.4 Net debt/equity (x) (0.7) (0.7) (0.8) (0.9) e-Auction Premium (%) 41.6 14.1 23.2 23.2 Interest coverage (x) 0 0 0 0 Valuation Metrics Valuation Drivers Year to March FY20A FY21E FY22E FY23E Year to March FY20A FY21E FY22E FY23E Diluted P/E (x) 4.7 7.3 5.8 5.9 EPS growth (%) 23.3 (35.9) 26.5 (1.8) Price/BV (x) 2.4 2.2 1.9 1.6 RoE (%) 57.0 31.7 35.1 29.8 EV/EBITDA (x) 2.6 3.8 2.6 2.1 EBITDA growth (%) 3.8 (34.6) 24.7 3.8 Dividend yield (%) 9.5 9.5 9.5 9.5 Payout ratio (%) 44.2 69.1 54.6 55.6 Source: Company and Edelweiss estimates 2 Edelweiss Research is also available on www.edelresearch.com, Bloomberg EDEL <GO>, Thomson FirstCall, Reuters and Factset Edelweiss Securities Limited COAL INDIA Coal India FY20 annual report: 13 key points Our analysis is based on the review of annual reports and financial statements of all the eight subsidiaries except NECL.
Recommended publications
  • CMPDI) Survey of India Is Going to Generate Up-To-Date Digital Topographical Maps of Major Indian Coal Fields Covering an Area of 30,488 Sq.Km
    Name of Project : COAL MINE PROJECT (CMPDI) Survey of India is going to generate up-to-date digital topographical maps of Major Indian Coal fields covering an area of 30,488 sq.km. in five years time for Central Mine Planning & Design Institute (CMPDI), a subsidiary of Coal India Limited using aerial photographs and adequate ground checks. To generate the Topographical maps of the major coalfields on 1:5000 scale with 2 meter contour interval in Plains (in case of hilly terrain contour interval may be 3-5 meter as practical) in GIS digital format based on Digital Photogrammetric Techniques using high resolution aerial photographs and adequate ground verification. Survey of India also impart on-job training on data processing and interpretation to 4 scientists of CMPDI for three months at the initial stage on preparation of Topographical maps based on aerial photographs using digital photogrammetric technique. Objective : Preparation of Updated Topographical Maps of major Indian coalfields based on remote sensing technique for better planning and optimal utilization of the coal resources. Role of Survey Of India : Survey of India is going to generate up-to-date digital topographical maps of 27 Major Indian Coal fields. Chhattisgarh, Jharkhand, Madhya Pradesh, Maharashtra & Goa, Meghalaya & Arunachal Pradesh, Orissa and W.B & Sikkim GDCs are involved in this project. Commenced : The commencing date of the project was 14.07.2009, which is likely to be completed by December 2016. Estimated cost : Rs. 110.53 crore Amount received from CMPDI is Rs. 38.30 crore Total expenditure upto FY 2014-15 is Rs. 56.96 crore.
    [Show full text]
  • Under Jurisdiction of Ranchi Court Only Central Mine Planning & Design Institute Ltd. (A Mini Ratna Company
    Under Jurisdiction of Ranchi Court Only Central Mine Planning & Design Institute Ltd. (A Mini Ratna Company - Subsidiary of Coal India Ltd.) Gondwana Place, Kanke Road, Ranchi – 834031, JHARKHAND, India Office of the General Manager (CMC) Phone: +91-8987788893 E-mail: [email protected] (Open Domestic Tender through e-Procurement Portal: https://coalindiatenders.nic.in for 3D Seismic Survey along with Exploration in the Saradhapur-Jalatap Block, Talcher Coalfield of Angul District in State of Odisha) TENDER REFERENCE NUMBER: CMPDI/CMC/2020/17 In order to enhance the Coal Resource base, Central Mine Planning & Design Institute Ltd. (CMPDIL), a subsidiary of Coal India Ltd., plans to take up 3D Seismic Survey along with Exploration in the Saradhapur-Jalatap Block, Talcher Coalfield of Angul District in State of Odisha. Tenders are invited on-line on the website https://coalindiatenders.nic.in from the eligible Bidders having Digital Signature Certificate (DSC) issued from any agency authorized by Controller of Certifying Authority (CCA), Govt. of India and which can be traced up to the chain of trust to the Root Certificate of CCA, for the following work: Description of work Quantity Estimated Earnest Period of Completion Contract Value Money (In Days) 3D Drilling (ECV) (In ) Mobilization For For Report Total Seismic (Meter) (In ) period for Field & Preparation (Square Excluding GST 3D Seismic Lab km) and Drilling Studies* 3D Geological Seismic Report (GR) and preparation Drilling incorporating 3D Seismic Report** 3D Seismic Survey 26 sq. 24000m 21,13,50,311.00 26,41,880.00 75 Days 240 180 Days 495 Days {(75 along with Exploration km days days- in the Saradhapur- Mobilization) + Jalatap Block, Talcher (240 days for 3D Coalfield as per Seismic & Scope of Work given Drilling) + 180 at Annexure-I, IA & IB.
    [Show full text]
  • Spontaneous Combustibility Characterisation of the Chirimiri Coals, Koriya District, Chhatisgarh, India
    International Journal of Geosciences, 2011, 2, 336-347 doi:10.4236/ijg.2011.23036 Published Online August 2011 (http://www.SciRP.org/journal/ijg) Spontaneous Combustibility Characterisation of the Chirimiri Coals, Koriya District, Chhatisgarh, India Durga Shankar Pattanaik1, Purnananda Behera2, Bijay Singh3 1,2P.G. Department of Geology, Utkal University, Bhubaneswar, Orissa, India 3University Department of Geology, Ranchi University, Ranchi, Jharkhand, India E-mail: [email protected], [email protected], [email protected] Received April 24, 2011; revised June 10, 2011; accepted July 19, 2011 Abstract Representative coal samples were collected from different coal seams of the Chirimiri coalfield which cov- ered the entire stratigraphic sequence. These samples were tested for Chemical analysis, Crossing Point Temperature (CPT), Petrography, Infrared studies (IR) and Differential Thermal Analysis (DTA). All the test results vindicated that the aforesaid parameters had a definite relationship with the stratigraphic disposition or the ranks of coal. The low rank coals found as younger seams in the stratigraphic sequence were more prone to spontaneous combustion whereas the higher rank coals found at the bottom of stratigraphic se- quence were less prone to spontaneous combustion. Through combustibility characterisation by different tests, it was found that the upper Duman and Kaperti seams placed as younger seams in the stratigraphic se- quence are highly prone to spontaneous combustion whereas the lower Karakoh and Sonawani seams seem to be least prone to spontaneous combustion. Keywords: Chirimiri Coalfield, Crossing Point Temperature (CPT), Infrared (IR) Studies, Differential Thermal Analysis (DTA), Spontaneous Combustion 1. Introduction raphy of Chirimiri coals. Panigrahi and Sahu [3] contrib- uted significantly on the nature of the spontaneous com- Spontaneous combustion of coal is a major hazard in bustibility in coals and found that seams having crossing coal mines.
    [Show full text]
  • How Coal Mining Is Trashing Tigerland
    Author Contact Ashish Fernandes Ashish Fernandes [email protected] Research coordination & North Karanpura case study Nandikesh Sivalingam Kanchi Kohli [email protected] Research Photo Editor Aishwarya Madineni, Vikal Samdariya, Arundhati Sudhanshu Malhotra Muthu and Preethi Herman Design GIS Analysis Aditi Bahri Ecoinformatics Lab, ATREE (Kiran M.C., Madhura Cover image Niphadkar, Aneesh A., Pranita Sambhus) © Harshad Barve / Greenpeace Acknowledgments Image Sudiep Shrivastava for detailed inputs on the Forests of Sanjay Dubri Tiger Hasdeo-Arand and Mandraigarh sections, Kishor Reserve near Singrauli coalfield Rithe for inputs on the Wardha and Kamptee © Dhritiman Mukherjee / Greenpeace sections, Bulu Imam and Justin Imam for their expertise on the North Karanpura section, Biswajit Printed on 100% recycled paper. Mohanty for feedback on the Talcher and Ib Valley sections and Belinda Wright for feedback on the Sohagpur and Singrauli sections. CONTENTS Executive Summary 01 9. Hasdeo-Arand (Chhattisgarh) 51 10. West Bokaro (Jharkhand) 55 Introduction 09 Central India,Tigers, Corridors and Coal 11. North Karanpura (Jharkhand) 60 How Coal is Trashing Tigerland 17 Case Study I 63 The North Karanpura Valley - On the edge Methodology 21 12. Wardha (Maharashtra) 00 Coalfield Analysis 25 13. Kamptee (Maharashtra) 00 1. Singrauli (Madhya Pradesh - Chhattisgarh) 27 Case Study II 87 2. Sohagpur (Madhya Pradesh - Chhattisgarh) 33 Chandrapur’s tigers - Encircled by coal 3. Sonhat (Chhattisgarh) 35 4. Tatapani (Chhattisgarh) 37 Alternatives: Efficiency and Renewables 101 5. Auranga (Jharkhand) 39 References 109 6. Talcher (Odisha) 41 Glossary 7. Ib Valley (Odisha) 47 110 8. Mandraigarh (Chhattisgarh) 49 Endnotes 111 EXECUTIVE SUMMARY As India’s national animal, the Royal Bengal Tiger Panthera tigris has ostensibly been a conservation priority for current and past governments.
    [Show full text]
  • Inventory of Geological Resource of Indian Coal I/ 1
    Table-1 INVENTORY OF GEOLOGICAL RESOURCE OF INDIAN COAL (As on 01.04.2010) (Resource in million tonne) State/ Coalfield/ Type of coal Depth Proved Indicated Inferred Inferred Total (Exploration) (Mapping) 1 2 3 4 5 6 7 WEST BENGAL 1.RANIGANJ COALFIELD MEDIUM COKING 0-300 194.70 1.60 0.00 196.30 300-600 15.30 16.90 0.00 32.20 MEDIUM COKING Total 210.00 18.50 0.00 228.50 SEMI-COKING 0-300 45.75 14.19 0.00 59.94 300-600 109.51 113.23 23.48 246.22 600-1200 32.79 305.07 144.75 482.61 SEMI-COKING Total 188.05 432.49 168.23 788.77 NON-COKING COAL 0-300 9544.54 1865.79 260.99 11671.32 300-600 1682.46 3444.57 2345.87 7472.90 600-1200 13.22 1887.28 1668.82 3569.32 NON-COKING Total 11240.22 7197.64 4275.68 22713.54 TOTAL FOR RANIGANJ 11638.27 7648.63 4443.91 23730.81 2.BARJORA COALFIELD NON-COKING COAL 0-300 114.27 0.00 0.00 114.27 NON-COKING Total 114.27 0.00 0.00 114.27 TOTAL FOR BARJORA 114.27 0.00 0.00 114.27 3.BIRBHUM COALFIELD NON-COKING COAL 0-300 0.00 609.96 40.01 649.97 300-600 0.00 3597.38 523.19 4120.57 600-1200 0.00 1173.64 48.58 1222.22 NON-COKING Total 0.00 5380.98 611.78 5992.76 TOTAL FOR BIRBHUM 0.00 5380.98 611.78 5992.76 4.DARJEELING COALFIELD NON-COKING COAL 0-300 0.00 0.00 15.00 15.00 NON-COKING Total 0.00 0.00 15.00 15.00 TOTAL FOR DARJEELING 0.00 0.00 15.00 15.00 TOTAL FOR WEST BENGAL 11752.54 13029.61 5070.69 29852.84 JHARKHAND 5.RANIGANJ COALFIELD MEDIUM COKING 0-300 220.00 8.87 0.00 228.87 300-600 49.23 8.30 0.00 57.53 MEDIUM COKING Total 269.23 17.17 0.00 286.40 SEMI-COKING 0-300 51.40 0.00 0.00 51.40 300-600 0.00 40.00
    [Show full text]
  • Possible Source-Sink Matching for CO2 Sequestration in Eastern India
    Available online at www.sciencedirect.com Energy Procedia 37 ( 2013 ) 3233 – 3241 GHGT-11 Possible source-sink matching for CO2 sequestration in Eastern India Priyank Jain1*, Khanindra Pathak1, Swarup Tripathy1 1Indian Institute of Technology, Department of Mining Engineering- Kharagpur 721302, West Bengal , India [email protected] Abstract In India, the current CO2 emission level is 2,069 Mt with many large point sources emitting more than 10 Mt per year of CO2. Also, there are large numbers of coal-fired power plants emitting huge quantum of CO2. The potential sites for storage of captured CO2 from these stations are however limited by the geological and geographical features of the country. In Eastern India, such possible sites are few. On the other hand there already exist thermal power plants and there are 4 UMPP (Ultra Mega Power Plants) in the pipeline. It is with this background that an attempt has been made to analyze the source-sink scenario of CO2 emissions in Eastern India. Present paper focussed on the analysis of LP based approach of CO2 source-sink matching has been presented. CO2 emissions from the thermal power plants in the region of UP, Bihar, and West Bengal (Eastern Indian states) and potential sites at Talcher Coalfield, IB Valley Coal Field, Krishna-Godavari Basin and Eastern Coalfields (Birbhum coal Field) are considered for source-sink matching. The spatial analysis is carried out on a GIS platform using ArcGIS 9.3 particularly for route plan of the pipelines. The behaviour of sequestration site, particularly the storage capacity is a diminishing function.
    [Show full text]
  • One Billion Tonne Strategy for Evacuation
    PRESENTATION One Billion Tonne Strategy for Coal Evacuation 17.02.2020 Coal Evacuation Smooth evacuation of Coal is very crucial for sustaining Coal production and meeting customer demand. Modes of evacuation of coal from Coal Mines: . Conveyor Belt (3%) . Merry Go Round (MGR) (18%) . Road (19%) . Railways (60%) Coal Evacuation Conveyor Belt and MGR is suited for pit head Power Plants. NTPC has MGR system for pit head Power Plants. Road is suitable for short distances in small quantity. It is costly and not environmental friendly. Railway is only suitable mode of transport for evacuation of coal for long distance Power Plants and Industrial Customers. Focus Area of Coal Evacuation • Development of Coal loading infrastructure i.e., Silos/Rapid Loading System (RLS) • Development of Private Siding connectivity i.e., Silo to Railway Main Line • Development of Railway Main Line on JV/PPP mode or Deposit Work • Monitoring Critical Capacity enhancement works by Railways • Rail cum Sea (Coastal) movement of Coal • Timely development of infrastructure for coal evacuation is as important as increasing production of Coal Coal Evacuation Coal Production of CIL is projected to increase from 630 Mt to 1000 Mt in next four years. Major increase in production will come from SECL (Korba Coalfields, Mand- Raigarh Coalfields,), MCL (IB Valley, Talcher), CCL (North Karanpura) and Captive Blocks. Coal Production from captive/Commercial Mining will also increase by 250 Mt in same areas. Coal Evacuation is going to be the biggest challenge for sustaining Coal Production and meeting Customer demand. SECL OUTLOOK SECL has undertaken major Rail Infrastructure development under PPP Model to meet challenges of Coal Evacuation.
    [Show full text]
  • (INDIAN SCHOOL of MINES), DHANBAD Phd Degrees Awarded by the Institute Since 1969 (After Declaration of the Status of Deemed University in 1967) Sl
    INDIAN INSTITUTE OF TECHNOLOGY (INDIAN SCHOOL OF MINES), DHANBAD PhD Degrees Awarded by the Institute since 1969 (after declaration of the status of Deemed University in 1967) Sl. Date of Department/ Name of the candidate Guide(s) Title of the thesis No Award Discipline TECTONIC ANALYSIS OF A PART OF FOLDED BAIJNATH NAPPE AND 1 Shrish 24-03-1969 Applied Geology Prof S. N. Sarkar KROL BELT IN BAIJNATH-KAUSHANI-SOMESHWAR AREA, U.P. STRUCTURAL, METAMORPHIC AND GRANITIZATION HISTORY OF A 2 Shantimoy Dutta 17-06-1969 Applied Geology Prof. S. N. Sarkar PART OF FOLDED GARHWALI NAPPE AROUND LANSDOWNE, U.P. 3 Kaulir Kishore Chatterjee 29-12-1969 Applied Geology Prof D Chandra PETROLOGY OF BALL COALS OF INDIA PALAEOMAGNETISM OF THE KAMTHI AND PARSORE RED 4 M S Bhalla 21-09-1971 Applied Geophysics Prof J Singh SANDSTONES FROM INDIA SOME STUDIES IN EXPLORATION OF GROUND WATER WITH SPECIAL 5 Amiya Kumar Sen 13-07-1972 Applied Geophysics Prof J Singh REFERENCE TO GEOELECTRICAL SOUNDINGS & ELECTRICAL PROPERTIES OF ROCKS Prof. J Singh & H K Gupta, STUDY OF RESERVOIR-ASSOCIATED SEISMIC ACTIVITIES AND 6 B K Rastogi 18-09-1972 Applied Geophysics NGRI MULTIPLE EARTH QUAKES A REGIONAL PETROLOGIC STUDY OF LOWER GONDWANA FORMATIONS IN PENCH-KANHAN VALLEY COALFIELD OF MADHYA 7 Kishan Lal Rai 21-04-1973 Applied Geology Dr R T Shukla PRADESH WITH SPECIAL REFERENCE TO BARAKAR MEASURES (INCLUDING COAL) Prof. J Singh & J G Negi, 8 S C Garde 22-06-1973 Applied Geophysics STUDIES ON REDUCTION AND INTERPRETATION OF GRAVITY DATA NGRI STRUCTURE & METAMORPHISM OF SINGHBHUM GROUP OF ROCKS 9 Anirudha Basu 25-03-1974 Applied Geology Prof S.
    [Show full text]
  • A Regional Assessment of the Potential for Co2 Storage in the Indian Subcontinent
    A REGIONAL ASSESSMENT OF THE POTENTIAL FOR CO2 STORAGE IN THE INDIAN SUBCONTINENT Technical Study Report No. 2008/2 May 2008 This document has been prepared for the Executive Committee of the IEA GHG Programme. It is not a publication of the Operating Agent, International Energy Agency or its Secretariat. INTERNATIONAL ENERGY AGENCY The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Co-operation and Development (OECD) to implement an international energy programme. The IEA fosters co-operation amongst its 26 member countries and the European Commission, and with the other countries, in order to increase energy security by improved efficiency of energy use, development of alternative energy sources and research, development and demonstration on matters of energy supply and use. This is achieved through a series of collaborative activities, organised under more than 40 Implementing Agreements. These agreements cover more than 200 individual items of research, development and demonstration. The IEA Greenhouse Gas R&D Programme is one of these Implementing Agreements. ACKNOWLEDGEMENTS AND CITATIONS This report was prepared as an account of the work sponsored by the IEA Greenhouse Gas R&D Programme. The views and opinions of the authors expressed herein do not necessarily reflect those of the IEA Greenhouse Gas R&D Programme, its members, the International Energy Agency, the organisations listed below, nor any employee or persons acting on behalf of any of them. In addition, none of these make any warranty, express or implied, assumes any liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product of process disclosed or represents that its use would not infringe privately owned rights, including any parties intellectual property rights.
    [Show full text]
  • COAL SEAMS No Thickness 7
    ProspectsProspects ofof CoalbedCoalbed MethaneMethane andand CoalCoal MineMine MethaneMethane inin IndiaIndia Ajay Kumar Singh CIMFR (CSIR), DHANBAD-826 015 National Research Conference on Climate Change IIT Delhi 5 March 2010 INTRODUCTION • India, third largest producer of coal. • Fourth in coal resources. • In two geological 9Gondwana Coal of drift origin 9Tertiary coal Genesis of CBM Fracture system, cleats in coal Butt cleats and face cleats Macropores (>500 Å), Mesopores (20 to 500 Å) Micropores (8 to 20 Å) Microscopic view of the Micropores structure of coal Transport of Gas WHY CONSIDER CBM? Cover Roof 4.2m 2m Floor NOT TO SCALE What about surface mines??? CH4 Emission Estimates in Tg - Coal Mining in India Year CH4 Emission 1994 0.650 1996 0.688 1998 0.703 2000 0.716 2010 ?? Trend of CH4 Emission 1.2 1 0.8 0.6 0.4 0.2 Methane Emission (Tg) 0 1970 1980 1990 2000 2010 2020 2030 Year Global CMM Emission Country 2000 2000 2010 2010 Methane CO2 Methane CO2 Released Equivalent Released Equivalent (M m3) (MMT) (M m3) (MMT) China 10,000 142.7 15,753 224.7 US 5,461 77.0 5,748 82.0 Russia 2,236 31.9 2,138 30.5 Australia 1,381 19.7 2,004 28.6 Ukraine 1,970 28.1 1,689 24.1 India 683 9.7 1,319 18.8 Poland 1,037 14.8 939 13.4 Germany 1,030 14.7 764 10.9 South Africa 496 7.1 506 7.2 Kazakhstan 488 7.0 447 6.4 UK 365 5.2 343 4.9 Czech Republic 351 5.0 266 3.8 Turkey 123 1.8 184 2.6 Japan 133 1.9 147 2.1 Canada 98 1.4 91 1.3 SOLUTION??? Tremendous Potential for CMM Emission Reduction • One CMM Project at one mine may: - Reduce emissions by 100,000
    [Show full text]
  • Brief Profile of Shri P.M. Prasad, CMD, BCCL
    Brief Profile of Shri P.M. Prasad, CMD, BCCL Shri P. M. Prasad took over the additional charge of Chairman-cum-Managing Director(CMD) of Bharat Coking Coal Limited(BCCL) w.e.f. 1st Feb 2021. Presently, he is serving Central Coalfields Ltd.(CCL) as Chairman-cum-Managing Director from 01.09.2020. Shri Prasad started his professional career by joining CIL in August 1984 after graduating in BE(Mining) from Osmania University in the year 1984 and since then has performed his duties at Western Coalfields Limited and Mahanadi Coalfields Limited in various capacities ranging from Executive Trainee to General Manager upto April 2015. Shri Prasad acquired M.Tech in Open Cast Mining from Indian School of Mines, Dhanbad in 1991. He also graduated in Law from Nagpur University in 1997. His various accolades of those times include reopening of underground fire area in 1994-95 at DRC mine in WCL in five stages. For this outstanding job, he was awarded Meritorious certificate as Best Mines Manager from Secretary to Govt. of India, MoC and Chairman, CIL in 1995. As GM, Lingaraj Area, MCL, he was responsible for successful opening & operation of Kaniha Opencast Coal Project from March’2010. Diversion of nallah at Hingula Opencast Area to unlock coal reverse of 26.00 MTe in the year 2014-15 and starting New Railway Siding No. 9 at Talcher Coalfield was highlight of his achievements as GM, Hingula Area, MCL. In May’2015, he joined NTPC as Executive Director (Coal Mining). He has been credited with expediting the process of award of MDO projects and awarded Pakribarwadih coal block (NTPC’s first project) and floated NITs for remaining coal blocks.
    [Show full text]
  • Change Detection Analysis of Talcher Coalfield Using Remote Sensing and Gis
    CHANGE DETECTION ANALYSIS OF TALCHER COALFIELD USING REMOTE SENSING AND GIS A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF TECHNOLOGY By SOURAV CHOUDHURY DEPARTMENT OF MINING ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA-769008 2011-12 CHANGE DETECTION ANALYSIS OF TALCHER COALFIELD USING REMOTE SENSING AND GIS A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF TECHNOLOGY By SOURAV CHOUDHURY Under the guidance of PROF: SK. MD. EQUEENUDDIN DEPARTMENT OF MINING ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA-769008 2011-12 i DEPARTMENT OF MINING ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA-769008 CERTIFICATE This is to certify that the thesis entitled “Change detection analysis of Talcher coalfield using Remote Sensing and GIS” submitted by Sourav Choudhury in partial fulfillment of the requirements for the award of Bachelor of Technology degree in Mining Engineering at National Institute of Technology, Rourkela is an authentic work carried out by him under my supervision and guidance. To the best of my knowledge, the matter embodied in the thesis has not been submitted to any other University/Institute for the award of any Degree or Diploma. Date: Prof: Sk. Md. Equeenuddin Dept. of Mining Engineering National Institute of Technology Rourkela, Orissa-769008 ii ACKNOWLEDGEMENT I express my heartfelt gratitude and indebtedness to Prof. Sk. Md. Equeenuddin, Department of Mining Engineering, N.I.T Rourkela and the Head of the Department of Mining Engineering, N.I.T. Rourkela for introducing the present topic and for their inspiring guidance, constructive criticism and valuable suggestion throughout the project.
    [Show full text]