Diet of the Del Norte Salamander (Plethodon Elongatus): Differences by Age, Gender, and Season

Total Page:16

File Type:pdf, Size:1020Kb

Diet of the Del Norte Salamander (Plethodon Elongatus): Differences by Age, Gender, and Season NORTHWESTERN NATURALIST 88:85–94 AUTUMN 2007 DIET OF THE DEL NORTE SALAMANDER (PLETHODON ELONGATUS): DIFFERENCES BY AGE, GENDER, AND SEASON CLARA AWHEELER,NANCY EKARRAKER1,HARTWELL HWELSH,JR, AND LISA MOLLIVIER Redwood Sciences Laboratory, Pacific Southwest Research Station, USDA Forest Service, 1700 Bayview Drive, Arcata, California 95521 ABSTRACT—Terrestrial salamanders are integral components of forest ecosystems and the ex- amination of their feeding habits may provide useful information regarding various ecosystem processes. We studied the diet of the Del Norte Salamander (Plethodon elongatus) and assessed diet differences between age classes, genders, and seasons. The stomachs of 309 subadult and adult salamanders, captured in spring and fall, contained 20 prey types. Nineteen were inver- tebrates, and one was a juvenile Del Norte Salamander, representing the first reported evidence of cannibalism in this species. Mites and ants represented a significant component of the diet across all age classes and genders, and diets of subadult and adult salamanders were fairly similar overall. We detected, however, an ontogenetic shift with termites and ants becoming less important and spiders and mites becoming more important with age. These differences between subadults and adults can likely be attributed to the inability of subadults to consume larger prey items due in part to gape limitation. The diet of the Del Norte Salamander, like other plethodontids, consists of a high diversity of prey items making it an opportunistic, sit-and- wait predator. Key words: Del Norte Salamander, Plethodon elongatus, food habits, diet, northern California, southern Oregon Terrestrial salamanders represent a signifi- 2005), and may require ecological conditions cant component of vertebrate biomass in forest found primarily in late seral stage forests ecosystems (Burton and Likens 1975a) and (Welsh 1990; Welsh and Lind 1995; Jones and strongly influence nutrient dynamics and en- others 2005). However, Diller and Wallace ergy flow (Burton and Likens 1975b). They may (1994) observed dense populations of Del Norte play an important role in the regulation of food Salamanders in younger coastal redwood for- web dynamics and can greatly impact abun- ests and attributed this to the climatic differ- dances of soil invertebrates (reviewed by Davic ences between the habitats of coastal and more and Welsh 2004). Knowledge of the feeding inland populations. habits of terrestrial salamanders can provide Prior to June 2002, the Del Norte Salamander useful system-specific information on variation was listed as a Survey and Manage Species and in feeding behavior, food availability, prey spe- protected on federal forestlands under the cies diversity, and trophic dynamics. Northwest Forest Plan (USDA and USDI 1994). We examined the diet of the Del Norte Sala- Currently it is designated as a Species of Spe- mander (Plethodon elongatus), a species endemic cial Concern by the State of California (Jen- to northern California and southern Oregon nings and Hayes 1994) and a Species of Con- (Jones and others 2005; Welsh and Bury 2005). cern by the State of Oregon (Marshall 1992). This terrestrial plethodontid salamander is as- These categories provide limited or no protec- sociated with rocky substrates in low-elevation tions. Recent analyses suggest that this species mixed conifer-hardwood forests (Nussbaum and others 1983; Stebbins 2003; Welsh and Bury may be comprised of several genetically dis- tinct lineages. Our objectives were to describe the compo- 1 Present address: University of Hong Kong, Department sition of the Del Norte Salamander diet, to as- of Ecology and Biodiversity, Pokfulam Road, Hong Kong. sess differences in diet by age class, gender, 85 86 NORTHWESTERN NATURALIST 88(2) and season, and to evaluate any differences that TABLE 1. Common names for organisms in prey might occur based on capture method. types. Prey type Common name METHODS Araneae Spiders We captured and collected 309 Del Norte Sal- Chilopoda Centipedes Coleoptera Beetles amanders from 9 localities in Del Norte, Hum- Collembola Springtails boldt, and Trinity counties, California, in 1984 Diplopoda Millipedes and 1985. We captured 120 salamanders using Diplura Diplurans time-constrained searches (TCS) during spring Diptera Flies Formicidae (Order Hyme- Ants (March through May) and 189 salamanders us- noptera) ing pitfall traps (PF) during fall (October Gastropoda Snails and Slugs through November). These months corre- Hymenoptera (except Bees, Wasps, and Saw- sponded with the time periods when these sal- Formicidae) flies Isopoda Isopods amanders were active on the forest floor. On the Isoptera Termites day of capture, animals were transported to the Ixodidae (Order Acari) Ticks laboratory where they were euthanized in 0.2% Lepidoptera Butterflies and Moths chloretone, fixed in 10% formalin, and stored in Oligochaeta Earthworms 70% ethanol. We measured snout-vent length Orbatidae (Order Acari) Mites Orthoptera Grasshoppers, Crickets, (SVL) and total length to the nearest 1 mm and and Katydids mass to the nearest 0.1 g for each euthanized Plethodon elongatus (Order Del Norte Salamander specimen. Amphibia) In the laboratory, stomachs were removed Pseudoscorpiones Pseudoscorpions Trichoptera Caddisflies and contents were examined in ethanol using a 10x dissecting microscope. We examined the stomach contents of all salamanders captured: ϩ ϩ 126 males, 116 females, and 67 subadults-ju- ϭ (nxxx /N) (v /V) (f /F) Ix veniles. Gender and age class of specimens 3 were determined by dissection using maturity ϭ ϭ where nx number of a given prey type, N and condition of sex organs as indicators (see ϭ sum of numbers of all prey items, vx volume Ollivier and Welsh 2003). We combined juve- of a given prey type, V ϭ sum of volumes of all nile and subadult data (hereafter subadults) to ϭ prey items, fx frequency of a given prey type, obtain sufficient sample sizes. Because we and F ϭ sum of frequencies of all prey items. could not determine the gender of juvenile an- The importance value is an index that provides imals, we did not examine differences in diet a more complete analysis of an organism’s food between subadult males and females. We sort- habits by incorporating numbers, volumes, and ed and identified all prey items to order, or frequencies of prey types (Powell and others family when possible (Table 1), counted each 1990; Anderson and Mathis 1999). prey item, and measured the length, width, and Cumulative prey curves were constructed for depth of intact items of each prey type in a giv- each group to determine if adequate sample en specimen. sizes were obtained to describe the diet and We determined the number (total number of differences between age classes, genders, and a given prey type in a stomach), frequency seasons (Adams and Kay 2002). To generate (number of stomachs that contained each prey curves, the order in which stomachs were an- type), volume, and importance of each prey alyzed was randomized 100 times and the type by season for all salamanders, each age mean number of new prey species cumulated class, and adults of each gender. Volume of prey consecutively was plotted against the number type was calculated as V ϭ n ϫ l ϫ w ϫ d, of stomachs examined. An asymptotic relation- where n ϭ number, l ϭ prey length, w ϭ prey ship was considered to be an indication that a width, and d ϭ prey depth. We calculated the sufficient number of stomachs were analyzed importance value (Ix) for each prey type using to represent dietary habits (Cailliet and others the following equation (Anderson and Mathis 1986). 1999): We calculated prey richness (number of spe- AUTUMN 2007 WHEELER AND OTHERS:DEL NORTE SALAMANDER DIET 87 FIGURE 1. Cumulative prey curves for a) all salamander stomachs (n ϭ 207) containing identifiable prey items, representing the largest sample, and b) subadults collected in the fall (n ϭ 13), representing the small- est sample. Error bars denote standard deviations. Asymptotic cumulative prey curves for other groups are not shown. cies), prey evenness (equitability of species), compared with 2% and 3%, respectively, in the and Shannon index of prey diversity (a diver- spring. sity index that accounts for both evenness and Specimen stomachs contained a total of 2449 species richness) by season, age class, and gen- identifiable prey items (Table 2) representing 20 der (Magurran 1988). We compared diversity of prey types (19 invertebrate and 1 vertebrate). prey species between groups using t-tests (Ma- The mean number of prey items per salaman- gurran 1988) (␣ϭ0.017 after Bonferroni ad- der, for all age classes combined, was higher in justment). This allowed us to examine the pos- the spring (x¯ ϭ 13.7, s ϭ 24.5) than in the fall sible effects of capture method, season, and age (x¯ ϭ 4.5, s ϭ 17.0). Much of this difference be- class on diet diversity. We used t-tests to com- tween seasons was attributable to subadults. pare prey volume and number of prey items be- The number of adult stomachs that contained tween age classes, genders, and seasons (␣ϭ contents was comparable between the two sea- 0.017 after Bonferroni adjustment). Prey vol- sons (spring: n ϭ 73; fall: n ϭ 77), with ap- ume and number of prey items were log-trans- proximately 700 prey items observed in both formed prior to analysis. the spring and fall. However, the number of subadult stomachs that contained contents was RESULTS not comparable between seasons (spring: n ϭ Prey Items 13; fall: n ϭ 44). Approximately 3 times more Asymptotic cumulative prey curves indicat- prey items were observed in the spring than in ed that an adequate number of stomachs were the fall after correcting for the number of stom- examined to comprehensively describe and achs sampled (Table 2). Adult males contained compare food habits of all groups (Fig. 1a and almost twice as many prey items in the fall as 1b).
Recommended publications
  • 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon
    INFORMATION REPORTS NUMBER 2010-05 FISH DIVISION Oregon Department of Fish and Wildlife 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon Oregon Department of Fish and Wildlife prohibits discrimination in all of its programs and services on the basis of race, color, national origin, age, sex or disability. If you believe that you have been discriminated against as described above in any program, activity, or facility, or if you desire further information, please contact ADA Coordinator, Oregon Department of Fish and Wildlife, 3406 Cherry Drive NE, Salem, OR, 503-947-6000. This material will be furnished in alternate format for people with disabilities if needed. Please call 541-757-4263 to request 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon Sharon E. Tippery Brian L. Bangs Kim K. Jones Oregon Department of Fish and Wildlife Corvallis, OR November, 2010 This project was financed with funds administered by the U.S. Fish and Wildlife Service State Wildlife Grants under contract T-17-1 and the Oregon Department of Fish and Wildlife, Oregon Plan for Salmon and Watersheds. Citation: Tippery, S. E., B. L Bangs and K. K. Jones. 2010. 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon. Information Report 2010-05, Oregon Department of Fish and Wildlife, Corvallis. CONTENTS FIGURES.......................................................................................................................................
    [Show full text]
  • BACKGROUND ENVIRONMENTAL REPORT Existing Conditions | January 2020
    Thousand Oaks BACKGROUND ENVIRONMENTAL REPORT Existing Conditions | January 2020 EXISTING CONDITIONS REPORT: BACKGROUND ENVIRONMENTAL Age, including mastodon, ground sloth, and saber-toothed cat CHAPTER 1: CULTURAL (City of Thousand Oaks 2011). RESOURCES Native American Era The earliest inhabitants of Southern California were transient hunters visiting the region approximately 12,000 B.C.E., who were the cultural ancestors of the Chumash. Evidence of significant and Cultural Setting continuous habitation of the Conejo Valley region began around The cultural history of the City of Thousand Oaks and the 5,500 B.C.E. Specifically, during the Millingstone (5,500 B.C.E – surrounding Conejo Valley can be divided in to three major eras: 1,500 B.C.E.) and the Intermediate (1,500 B.C.E. – 500 C.E.) Native-American, Spanish-Mexican, and Anglo-American. periods, the Conejo Valley experienced a year-round stable Remnants from these unique eras exist in the region as a diverse population of an estimated 400-600 people. During this time, range of tribal, archaeological and architectural resources. The people typically lived in largely open sites along water courses Conejo Valley served as an integral part of the larger Chumash and in caves and rock shelters; however, a number of site types territory that extended from the coast and Channel Islands to have been discovered, including permanent villages, semi- include Santa Barbara, most of Ventura, parts of San Luis Obispo, permanent seasonal stations, hunting camps and gathering Kern and Los Angeles Counties. The late 18th and early 19th localities focused on plant resources (City of Thousand Oaks 2011).
    [Show full text]
  • Across Watersheds in the Klamath Mountains
    Diversity 2013, 5, 657-679; doi:10.3390/d5030657 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article Genetic Diversity of Black Salamanders (Aneides flavipunctatus) across Watersheds in the Klamath Mountains Sean B. Reilly 1,*, Mitchell F. Mulks 2, Jason M. Reilly 3, W. Bryan Jennings 4, and David B. Wake 1 1 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA 94720-3160, USA; E-Mail: [email protected] 2 Department of Ecology and Evolutionary Biology, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; E-Mail: [email protected] 3 Bureau of Land Management, Medford Interagency Office, Medford, OR 97504, USA; E-Mail: [email protected] 4 Museu Nacional, Departamento de Vertebrados, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ 20940-040, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-510-642-3567; Fax: +1-510-643-8238. Received: 31 May 2013; in revised form: 2 August 2013 / Accepted: 8 August 2013 / Published: 29 August 2013 Abstract: Here we characterize the genetic structure of Black Salamanders (Aneides flavipunctatus) in the Klamath Mountains of northwestern California and southwestern Oregon using mitochondrial and nuclear DNA sequences. We hypothesized that the Sacramento, Smith, Klamath, and Rogue River watersheds would represent distinct genetic populations based on prior ecological results, which suggest that Black Salamanders avoid high elevations such as the ridges that separate watersheds. Our mitochondrial results revealed two major lineages, one in the Sacramento River watershed, and another containing the Klamath, Smith, and Rogue River watersheds.
    [Show full text]
  • Geographic Variation, Genetic Structure, and Conservation Unit Designation in the Larch Mountain Salamander (Plethodon Larselli)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2005 Geographic Variation, Genetic Structure, and Conservation Unit Designation in the Larch Mountain Salamander (Plethodon larselli) R. Steven Wagner Central Washington University Mark P. Miller Utah State University, [email protected] Charles M. Crisafulli US Forest Service Susan M. Haig U.S. Geological Survey, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Wagner, R. Steven; Miller, Mark P.; Crisafulli, Charles M.; and Haig, Susan M., "Geographic Variation, Genetic Structure, and Conservation Unit Designation in the Larch Mountain Salamander (Plethodon larselli)" (2005). USGS Staff -- Published Research. 674. https://digitalcommons.unl.edu/usgsstaffpub/674 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 396 Geographic variation, genetic structure, and conservation unit designation in the Larch Mountain salamander (Plethodon larselli) R. Steven Wagner, Mark P. Miller, Charles M. Crisafulli, and Susan M. Haig Abstract: The Larch Mountain salamander (Plethodon larselli Burns, 1954) is an endemic species in the Pacific north- western United States facing threats related to habitat destruction. To facilitate development of conservation strategies, we used DNA sequences and RAPDs (random amplified polymorphic DNA) to examine differences among populations of this species. Phylogenetic analyses of cytochrome b revealed a clade of haplotypes from populations north of the Columbia River derived from a clade containing haplotypes from the river’s southwestern region.
    [Show full text]
  • A Guide to Priority Plant and Animal Species in Oregon Forests
    A GUIDE TO Priority Plant and Animal Species IN OREGON FORESTS A publication of the Oregon Forest Resources Institute Sponsors of the first animal and plant guidebooks included the Oregon Department of Forestry, the Oregon Department of Fish and Wildlife, the Oregon Biodiversity Information Center, Oregon State University and the Oregon State Implementation Committee, Sustainable Forestry Initiative. This update was made possible with help from the Northwest Habitat Institute, the Oregon Biodiversity Information Center, Institute for Natural Resources, Portland State University and Oregon State University. Acknowledgments: The Oregon Forest Resources Institute is grateful to the following contributors: Thomas O’Neil, Kathleen O’Neil, Malcolm Anderson and Jamie McFadden, Northwest Habitat Institute; the Integrated Habitat and Biodiversity Information System (IBIS), supported in part by the Northwest Power and Conservation Council and the Bonneville Power Administration under project #2003-072-00 and ESRI Conservation Program grants; Sue Vrilakas, Oregon Biodiversity Information Center, Institute for Natural Resources; and Dana Sanchez, Oregon State University, Mark Gourley, Starker Forests and Mike Rochelle, Weyerhaeuser Company. Edited by: Fran Cafferata Coe, Cafferata Consulting, LLC. Designed by: Sarah Craig, Word Jones © Copyright 2012 A Guide to Priority Plant and Animal Species in Oregon Forests Oregonians care about forest-dwelling wildlife and plants. This revised and updated publication is designed to assist forest landowners, land managers, students and educators in understanding how forests provide habitat for different wildlife and plant species. Keeping forestland in forestry is a great way to mitigate habitat loss resulting from development, mining and other non-forest uses. Through the use of specific forestry techniques, landowners can maintain, enhance and even create habitat for birds, mammals and amphibians while still managing lands for timber production.
    [Show full text]
  • Aneides Vagrans Residing in the Canopy of Old-Growth Redwood Forest 1 1 1 James C
    Herpetological Conservation and Biology 1(1):16-26 Submitted: June 15, 2006; Accepted: July 19, 2006 EVIDENCE OF A NEW NICHE FOR A NORTH AMERICAN SALAMANDER: ANEIDES VAGRANS RESIDING IN THE CANOPY OF OLD-GROWTH REDWOOD FOREST 1 1 1 JAMES C. SPICKLER , STEPHEN C. SILLETT , SHARYN B. MARKS , 2,3 AND HARTWELL H. WELSH, JR. 1Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA 2Redwood Sciences Laboratory, USDA Forest Service, 1700 Bayview Drive, Arcata, CA 95521, USA 3Corresponding Author, email: [email protected] Abstract.—We investigated habitat use and movements of the wandering salamander, Aneides vagrans, in an old-growth forest canopy. We conducted a mark-recapture study of salamanders in the crowns of five large redwoods (Sequoia sempervirens) in Prairie Creek Redwoods State Park, California. This represented a first attempt to document the residency and behavior of A. vagrans in a canopy environment. We placed litter bags on 65 fern (Polypodium scouleri) mats, covering 10% of their total surface area in each tree. Also, we set cover boards on one fern mat in each of two trees. We checked cover objects 2–4 times per month during fall and winter seasons. We marked 40 individuals with elastomer tags and recaptured 13. Only one recaptured salamander moved (vertically 7 m) from its original point of capture. We compared habitats associated with salamander captures using correlation analysis and stepwise regression. At the tree-level, the best predictor of salamander abundance was water storage by fern mats. At the fern mat-level, the presence of cover boards accounted for 85% of the variability observed in captures.
    [Show full text]
  • And the Siskiyou Mountains Salamander (P
    Heading 1 i Science Review for the Scott Bar Salamander (Plethodon asupak) and the Siskiyou Mountains Salamander (P. stormi): Biology, Taxonomy, Habitat, and Detection Probabilities/Occupancy Douglas J. DeGross and R. Bruce Bury Open-File Report 2007-1352 U.S. Department of the Interior U.S. Geological Survey ii Report Title U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: DeGross, D.J., and Bury, R.B., 2007, Science Review for the Scott Bar Salamander (Plethodon asupak) and the Sis- kiyou Mountains Salamander (P. stormi): Biology, Taxonomy, Habitat, and Detection Probabilities/Occupancy: Reston, Virginia, U.S. Geological Survey, Open-File Report 2007-1352, p. 14. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Heading 1 iii Contents Introduction.....................................................................................................................................................1
    [Show full text]
  • Management Indicator Species Review
    Management Indicator Species Review Public Wheeled Motorized Travel Management Six Rivers National Forest Mad River and Lower Trinity Ranger District March 2009 July 20, 2009 edits Jan. 15, 2010 edits Prepared by: ____Kary Schick____________ Date: ___July 7, 2009____________ Kary E. Schlick Wildlife Biologist Prepared by: ____Karen Kenfield__________ Date: ___July 7, 2009____________ Karen Kenfield Fisheries Biologist Introduction Under the National Forest Management Act (NFMA), the Forest Service is directed to “provide for diversity of plant and animal communities based on the suitability and capability of the specific land area in order to meet overall multiple-use objectives.” (P.L. 94-588, Sec 6 (g) (3) (B)). The 1982 regulations implementing NFMA require that “Fish and wildlife habitat shall be managed to maintain viable populations of existing native and desired non-native vertebrate species in the planning area.” (36 CFR 219.19) Management Indicator Species (MIS) is a concept used by the agency to serve as a barometer for species viability at the Forest level. The Six Rivers National Forest Land and Resource Management Plan (LRMP) uses Management Indicator Species (MIS) to assess potential effects of management activities on the various habitats and habitat assemblages with which these species are associated. There are seven habitat assemblages containing 41 fish and wildlife species on the Forest (LRMP IV-97). Detailed descriptions of the Travel Management alternatives are found in the Travel Management Environmental Impact Statement. For the analysis associated with this project, specific MIS were addressed based on their potential to occur within the Travel Management planning. Table 1 lists the MIS and assemblages occurring on the Six Rivers National Forest, and those known or thought to occur within the planning area based on habitat suitability, survey results, or incidental sighting records.
    [Show full text]
  • Biology 2 Lab Packet for Practical 4
    1 Biology 2 Lab Packet For Practical 4 2 CLASSIFICATION: Domain: Eukarya Supergroup: Unikonta Clade: Opisthokonts Kingdom: Animalia Phylum: Chordata – Chordates Subphylum: Urochordata - Tunicates Class: Amphibia – Amphibians Subphylum: Cephalochordata - Lancelets Order: Urodela - Salamanders Subphylum: Vertebrata – Vertebrates Order: Apodans - Caecilians Superclass: Agnatha Order: Anurans – Frogs/Toads Order: Myxiniformes – Hagfish Class: Testudines – Turtles Order: Petromyzontiformes – Lamprey Class: Sphenodontia – Tuataras Superclass: Gnathostomata – Jawed Vertebrates Class: Squamata – Lizards/Snakes Class: Chondrichthyes - Cartilaginous Fish Lizards Subclass: Elasmobranchii – Sharks, Skates and Rays Order: Lamniiformes – Great White Sharks Family – Agamidae – Old World Lizards Order: Carcharhiniformes – Ground Sharks Family – Anguidae – Glass Lizards Order: Orectolobiniformes – Whale Sharks Family – Chameleonidae – Chameleons Order: Rajiiformes – Skates Family – Corytophanidae – Helmet Lizards Order: Myliobatiformes - Rays Family - Crotaphytidae – Collared Lizards Subclass: Holocephali – Ratfish Family – Helodermatidae – Gila monster Order: Chimaeriformes - Chimaeras Family – Iguanidae – Iguanids Class: Sarcopterygii – Lobe-finned fish Family – Phrynosomatidae – NA Spiny Lizards Subclass: Actinistia - Coelocanths Family – Polychrotidae – Anoles Subclass: Dipnoi – Lungfish Family – Geckonidae – Geckos Class: Actinopterygii – Ray-finned Fish Family – Scincidae – Skinks Order: Acipenseriformes – Sturgeon, Paddlefish Family – Anniellidae
    [Show full text]
  • Ecological Role of the Salamander Ensatina Eschscholtzii: Direct Impacts on the Arthropod Assemblage and Indirect Influence on the Carbon Cycle
    Ecological role of the salamander Ensatina eschscholtzii: direct impacts on the arthropod assemblage and indirect influence on the carbon cycle in mixed hardwood/conifer forest in Northwestern California By Michael Best A Thesis Presented to The faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Masters of Science In Natural Resources: Wildlife August 10, 2012 ABSTRACT Ecological role of the salamander Ensatina eschscholtzii: direct impacts on the arthropod assemblage and indirect influence on the carbon cycle in mixed hardwood/conifer forest in Northwestern California Michael Best Terrestrial salamanders are the most abundant vertebrate predators in northwestern California forests, fulfilling a vital role converting invertebrate to vertebrate biomass. The most common of these salamanders in northwestern California is the salamander Ensatina (Ensatina eschsccholtzii). I examined the top-down effects of Ensatina on leaf litter invertebrates, and how these effects influence the relative amount of leaf litter retained for decomposition, thereby fostering the input of carbon and nutrients to the forest soil. The experiment ran during the wet season (November - May) of two years (2007-2009) in the Mattole watershed of northwest California. In Year One results revealed a top-down effect on multiple invertebrate taxa, resulting in a 13% difference in litter weight. The retention of more leaf litter on salamander plots was attributed to Ensatina’s selective removal of large invertebrate shedders (beetle and fly larva) and grazers (beetles, springtails, and earwigs), which also enabled small grazers (mites; barklice in year two) to become more numerous. Ensatina’s predation modified the composition of the invertebrate assemblage by shifting the densities of members of a key functional group (shredders) resulting in an overall increase in leaf litter retention.
    [Show full text]
  • Endangered Ecosystems of the United States: a Preliminary Assessment of Loss and Degradation
    Biological Report 28 February 1995 Endangered Ecosystems of the United States: A Preliminary Assessment of Loss and Degradation National Biological Service U.S. Department of the Interior Technical Report Series National Biological Service The National Biological Service publishes five technical report series. Manuscripts are accepted from Service employees or contractors, students and faculty associated with cooperative research units, and other persons whose work is sponsored by the Service. Manuscripts are received with the understanding that they are unpublished. Manuscripts receive anonymous peer review. The final decision to publish lies with the editor. Editorial Staff Series Descriptions MANAGING EDITOR Biological Report ISSN 0895-1926 Paul A. Opler Technical papers about applied research of limited scope. Subjects include new information arising from comprehensive studies, surveys and inventories, effects of land use on fish AsSISTANT BRANCH LEADER and wildlife, diseases of fish and wildlife, and developments Paul A. Vohs in technology. Proceedings of technical conferences and symposia may be published in this series. ISSN 0899-451X SCIENTIFIC EDITORS Fish and Wildlife Leafiet Summaries of technical information for readers of non­ Elizabeth D. Rockwell technical or semitechnical material. Subjects include topics of James R. Zuboy current interest, results of inventories and surveys, management techniques, and descriptions of imported fish TECHNICAL EDITORS and wildlife and their diseases. JerryD. Cox Fish and Wildlife Research ISSN 1040-2411 Deborah K. Harris Papers on experimental research, theoretical presentations, and interpretive literature reviews. North American Fauna ISSN 0078-1304 VISUAL INFORMATION SPECIALIST Monographs of long-term or basic research on faunal and Constance M . Lemos floral life histories, distributions, population dynamics, and taxonomy and on community ecology.
    [Show full text]
  • Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians
    STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L.
    [Show full text]