Low-Speed Aerodynamics, Second Edition

Total Page:16

File Type:pdf, Size:1020Kb

Low-Speed Aerodynamics, Second Edition P1: JSN/FIO P2: JSN/UKS QC: JSN/UKS T1: JSN CB329-FM CB329/Katz October 3, 2000 15:18 Char Count= 0 Low-Speed Aerodynamics, Second Edition Low-speed aerodynamics is important in the design and operation of aircraft fly- ing at low Mach number and of ground and marine vehicles. This book offers a modern treatment of the subject, both the theory of inviscid, incompressible, and irrotational aerodynamics and the computational techniques now available to solve complex problems. A unique feature of the text is that the computational approach (from a single vortex element to a three-dimensional panel formulation) is interwoven throughout. Thus, the reader can learn about classical methods of the past, while also learning how to use numerical methods to solve real-world aerodynamic problems. This second edition, updates the first edition with a new chapter on the laminar boundary layer, the latest versions of computational techniques, and additional coverage of interaction problems. It includes a systematic treatment of two-dimensional panel methods and a detailed presentation of computational techniques for three- dimensional and unsteady flows. With extensive illustrations and examples, this book will be useful for senior and beginning graduate-level courses, as well as a helpful reference tool for practicing engineers. Joseph Katz is Professor of Aerospace Engineering and Engineering Mechanics at San Diego State University. Allen Plotkin is Professor of Aerospace Engineering and Engineering Mechanics at San Diego State University. i P1: JSN/FIO P2: JSN/UKS QC: JSN/UKS T1: JSN CB329-FM CB329/Katz October 3, 2000 15:18 Char Count= 0 ii P1: JSN/FIO P2: JSN/UKS QC: JSN/UKS T1: JSN CB329-FM CB329/Katz October 3, 2000 15:18 Char Count= 0 Cambridge Aerospace Series Editors: MICHAEL J. RYCROFT AND WEI SHYY 1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation 2. P. Berlin: The Geostationary Applications Satellite 3. M. J. T. Smith: Aircraft Noise 4. N. X. Vinh: Flight Mechanics of High-Performance Aircraft 5. W. A. Mair and D. L. Birdsall: Aircraft Performance 6. M. J. Abzug and E. E. Larrabee: Airplane Stability and Control 7. M. J. Sidi: Spacecraft Dynamics and Control 8. J. D. Anderson: A History of Aerodynamics 9. A. M. Cruise, J. A. Bowles, C. V.Goodall, and T. J. Patrick: Principles of Space Instrument Design 10. G. A. Khoury and J. D. Gillett (eds.): Airship Technology 11. J. Fielding: Introduction to Aircraft Design 12. J. G. Leishman: Principles of Helicopter Aerodynamics 13. J. Katz and A. Plotkin: Low Speed Aerodynamics, Second Edition iii P1: JSN/FIO P2: JSN/UKS QC: JSN/UKS T1: JSN CB329-FM CB329/Katz October 3, 2000 15:18 Char Count= 0 iv P1: JSN/FIO P2: JSN/UKS QC: JSN/UKS T1: JSN CB329-FM CB329/Katz October 3, 2000 15:18 Char Count= 0 Low-Speed Aerodynamics Second Edition JOSEPH KATZ San Diego State University ALLEN PLOTKIN San Diego State University v CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA www.cambridge.org Information on this title: www.cambridge.org/9780521665520 © Cambridge University Press 2001 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2001 10th printing 2010 A catalog record for this publication is available from the British Library. Library of Congress Cataloging in Publication Data Katz, Joseph, 1947– Low-speed aerodynamics / Joseph Katz, Allen Plotkin. – 2nd ed. p. cm. – (Cambridge aerospace series : 13) ISBN 0-521-66219-2 1. Aerodynamics. I. Plotkin, Allen. II. Title. III. Series. TL570 .K34 2000 629.132'3 – dc21 00-031270 ISBN 978-0-521-66219-2 Hardback ISBN 978-0-521-66552-0 Paperback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate. P1: JSN/FIO P2: JSN/UKS QC: JSN/UKS T1: JSN CB329-FM CB329/Katz October 3, 2000 15:18 Char Count= 0 Contents Preface page xiii Preface to the First Edition xv 1 Introduction and Background 1 1.1 Description of Fluid Motion 1 1.2 Choice of Coordinate System 2 1.3 Pathlines, Streak Lines, and Streamlines 3 1.4 Forces in a Fluid 4 1.5 Integral Form of the Fluid Dynamic Equations 6 1.6 Differential Form of the Fluid Dynamic Equations 8 1.7 Dimensional Analysis of the Fluid Dynamic Equations 14 1.8 Flow with High Reynolds Number 17 1.9 Similarity of Flows 19 2 Fundamentals of Inviscid, Incompressible Flow 21 2.1 Angular Velocity, Vorticity, and Circulation 21 2.2 Rate of Change of Vorticity 24 2.3 Rate of Change of Circulation: Kelvin’s Theorem 25 2.4 Irrotational Flow and the Velocity Potential 26 2.5 Boundary and Infinity Conditions 27 2.6 Bernoulli’s Equation for the Pressure 28 2.7 Simply and Multiply Connected Regions 29 2.8 Uniqueness of the Solution 30 2.9 Vortex Quantities 32 2.10 Two-Dimensional Vortex 34 2.11 The Biot–Savart Law 36 2.12 The Velocity Induced by a Straight Vortex Segment 38 2.13 The Stream Function 41 3 General Solution of the Incompressible, Potential Flow Equations 44 3.1 Statement of the Potential Flow Problem 44 3.2 The General Solution, Based on Green’s Identity 44 3.3 Summary: Methodology of Solution 48 3.4 Basic Solution: Point Source 49 3.5 Basic Solution: Point Doublet 51 3.6 Basic Solution: Polynomials 54 3.7 Two-Dimensional Version of the Basic Solutions 56 3.8 Basic Solution: Vortex 58 3.9 Principle of Superposition 60 vii P1: JSN/FIO P2: JSN/UKS QC: JSN/UKS T1: JSN CB329-FM CB329/Katz October 3, 2000 15:18 Char Count= 0 viii Contents 3.10 Superposition of Sources and Free Stream: Rankine’s Oval 60 3.11 Superposition of Doublet and Free Stream: Flow around a Cylinder 62 3.12 Superposition of a Three-Dimensional Doublet and Free Stream: Flow around a Sphere 67 3.13 Some Remarks about the Flow over the Cylinder and the Sphere 69 3.14 Surface Distribution of the Basic Solutions 70 4 Small-Disturbance Flow over Three-Dimensional Wings: Formulation of the Problem 75 4.1 Definition of the Problem 75 4.2 The Boundary Condition on the Wing 76 4.3 Separation of the Thickness and the Lifting Problems 78 4.4 Symmetric Wing with Nonzero Thickness at Zero Angle of Attack 79 4.5 Zero-Thickness Cambered Wing at Angle of Attack–Lifting Surfaces 82 4.6 The Aerodynamic Loads 85 4.7 The Vortex Wake 88 4.8 Linearized Theory of Small-Disturbance Compressible Flow 90 5 Small-Disturbance Flow over Two-Dimensional Airfoils 94 5.1 Symmetric Airfoil with Nonzero Thickness at Zero Angle of Attack 94 5.2 Zero-Thickness Airfoil at Angle of Attack 100 5.3 Classical Solution of the Lifting Problem 104 5.4 Aerodynamic Forces and Moments on a Thin Airfoil 106 5.5 The Lumped-Vortex Element 114 5.6 Summary and Conclusions from Thin Airfoil Theory 120 6 Exact Solutions with Complex Variables 122 6.1 Summary of Complex Variable Theory 122 6.2 The Complex Potential 125 6.3 Simple Examples 126 6.3.1 Uniform Stream and Singular Solutions 126 6.3.2 Flow in a Corner 127 6.4 Blasius Formula, Kutta–Joukowski Theorem 128 6.5 Conformal Mapping and the Joukowski Transformation 128 6.5.1 Flat Plate Airfoil 130 6.5.2 Leading-Edge Suction 131 6.5.3 Flow Normal to a Flat Plate 133 6.5.4 Circular Arc Airfoil 134 6.5.5 Symmetric Joukowski Airfoil 135 6.6 Airfoil with Finite Trailing-Edge Angle 137 6.7 Summary of Pressure Distributions for Exact Airfoil Solutions 138 6.8 Method of Images 141 6.9 Generalized Kutta–Joukowski Theorem 146 7 Perturbation Methods 151 7.1 Thin-Airfoil Problem 151 7.2 Second-Order Solution 154 7.3 Leading-Edge Solution 157 P1: JSN/FIO P2: JSN/UKS QC: JSN/UKS T1: JSN CB329-FM CB329/Katz October 3, 2000 15:18 Char Count= 0 Contents ix 7.4 Matched Asymptotic Expansions 160 7.5 Thin Airfoil between Wind Tunnel Walls 163 8 Three-Dimensional Small-Disturbance Solutions 167 8.1 Finite Wing: The Lifting Line Model 167 8.1.1 Definition of the Problem 167 8.1.2 The Lifting-Line Model 168 8.1.3 The Aerodynamic Loads 172 8.1.4 The Elliptic Lift Distribution 173 8.1.5 General Spanwise Circulation Distribution 178 8.1.6 Twisted Elliptic Wing 181 8.1.7 Conclusions from Lifting-Line Theory 183 8.2 Slender Wing Theory 184 8.2.1 Definition of the Problem 184 8.2.2 Solution of the Flow over Slender Pointed Wings 186 8.2.3 The Method of R. T. Jones 192 8.2.4 Conclusions from Slender Wing Theory 194 8.3 Slender Body Theory 195 8.3.1 Axisymmetric Longitudinal Flow Past a Slender Body of Revolution 196 8.3.2 Transverse Flow Past a Slender Body of Revolution 198 8.3.3 Pressure and Force Information 199 8.3.4 Conclusions from Slender Body Theory 201 8.4 Far Field Calculation of Induced Drag 201 9 Numerical (Panel) Methods 206 9.1 Basic Formulation 206 9.2 The Boundary Conditions 207 9.3 Physical Considerations 209 9.4 Reduction of the Problem to a Set of Linear Algebraic Equations 213 9.5 Aerodynamic Loads 216 9.6 Preliminary Considerations, Prior to Establishing Numerical Solutions 217 9.7 Steps toward Constructing a Numerical Solution 220 9.8 Example: Solution of Thin Airfoil with the Lumped-Vortex Element 222 9.9 Accounting for Effects of Compressibility and Viscosity 226 10 Singularity Elements and Influence Coefficients 230 10.1 Two-Dimensional Point Singularity Elements 230 10.1.1 Two-Dimensional
Recommended publications
  • Laws of Similarity in Fluid Mechanics 21
    Laws of similarity in fluid mechanics B. Weigand1 & V. Simon2 1Institut für Thermodynamik der Luft- und Raumfahrt (ITLR), Universität Stuttgart, Germany. 2Isringhausen GmbH & Co KG, Lemgo, Germany. Abstract All processes, in nature as well as in technical systems, can be described by fundamental equations—the conservation equations. These equations can be derived using conservation princi- ples and have to be solved for the situation under consideration. This can be done without explicitly investigating the dimensions of the quantities involved. However, an important consideration in all equations used in fluid mechanics and thermodynamics is dimensional homogeneity. One can use the idea of dimensional consistency in order to group variables together into dimensionless parameters which are less numerous than the original variables. This method is known as dimen- sional analysis. This paper starts with a discussion on dimensions and about the pi theorem of Buckingham. This theorem relates the number of quantities with dimensions to the number of dimensionless groups needed to describe a situation. After establishing this basic relationship between quantities with dimensions and dimensionless groups, the conservation equations for processes in fluid mechanics (Cauchy and Navier–Stokes equations, continuity equation, energy equation) are explained. By non-dimensionalizing these equations, certain dimensionless groups appear (e.g. Reynolds number, Froude number, Grashof number, Weber number, Prandtl number). The physical significance and importance of these groups are explained and the simplifications of the underlying equations for large or small dimensionless parameters are described. Finally, some examples for selected processes in nature and engineering are given to illustrate the method. 1 Introduction If we compare a small leaf with a large one, or a child with its parents, we have the feeling that a ‘similarity’ of some sort exists.
    [Show full text]
  • Notes on Earth Atmospheric Entry for Mars Sample Return Missions
    NASA/TP–2006-213486 Notes on Earth Atmospheric Entry for Mars Sample Return Missions Thomas Rivell Ames Research Center, Moffett Field, California September 2006 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical confer- NASA Scientific and Technical Information (STI) ences, symposia, seminars, or other meetings Program Office plays a key part in helping NASA sponsored or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the Lead Center for projects, and missions, often concerned with NASA’s scientific and technical information. The subjects having substantial public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of • TECHNICAL TRANSLATION. English- aeronautical and space science STI in the world. language translations of foreign scientific and The Program Office is also NASA’s institutional technical material pertinent to NASA’s mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office’s diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results . even • TECHNICAL PUBLICATION. Reports of providing videos. completed research or a major significant phase of research that present the results of NASA For more information about the NASA STI programs and include extensive data or theoreti- Program Office, see the following: cal analysis.
    [Show full text]
  • Chapter 5 Dimensional Analysis and Similarity
    Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences.
    [Show full text]
  • International Conference Euler's Equations: 250 Years on Program
    International Conference Euler’s Equations: 250 Years On Program of Lectures and Discussions (Dated: June 14, 2007) Schedule of the meeting Tuesday 19 June Wednesday 20 June Thursday 21 June Friday 22 June 08:30-08:40 Opening remarks 08:30-09:20 08:30-09:20 G. Eyink 08:30-09:20 F. Busse 08:40-09:10 E. Knobloch O. Darrigol/U. Frisch 09:30-10:00 P. Constantin 09:30-10:00 Ph. Cardin 09:20-10:10 J. Gibbon 09:20-09:50 M. Eckert 10:00-10:30 T. Hou 10:00-10:30 J.-F. Pinton 10:20-10:50 Y. Brenier 09:50-10:30 Coffee break 10:30-11:00 Coffee break 10:30-11:00 Coffee break 10:50-11:20 Coffee break 10:30-11:20 P. Perrier 11:00-11:30 K. Ohkitani 11:00-11:30 Discussion D 11:20-11:50 K. Sreenivasan 11:20-12:30 Poster session II 11:30-12:00 P. Monkewitz 11:30-12:30 Discussion C 12:00-12:30 C.F. Barenghi 12:00-12:30 G.J.F. van Heijst 12:30-14:00 Lunch break 12:30-14:00 Lunch break 12:30-14:00 Lunch break 12:30-14:00 Lunch break 14:00-14:50 I. Procaccia 14:00-14:30 G. Gallavotti 14:00-14:50 M. Ghil 14:00-14:30 N. Mordant 14:50-15:20 L. Biferale 14:40-15:10 L. Saint Raymond 14:50-15:20 A. Nusser 14:30-15:00 J.
    [Show full text]
  • Introduction to Aerodynamics < 1.7. Dimensional Analysis > Physical
    Introduction to Aerodynamics < 1.7. Dimensional analysis > Physical parameters Q: What physical quantities influence forces and moments? V A l Aerodynamics 2015 fall - 1 - Introduction to Aerodynamics < 1.7. Dimensional analysis > Physical parameters Physical quantities to be considered Parameter Symbol units Lift L' MLT-2 Angle of attack α - -1 Freestream velocity V∞ LT -3 Freestream density ρ∞ ML -1 -1 Freestream viscosity μ∞ ML T -1 Freestream speed of sound a∞ LT Size of body (e.g. chord) c L Generally, resultant aerodynamic force: R = f(ρ∞, V∞, c, μ∞, a∞) (1) Aerodynamics 2015 fall - 2 - Introduction to Aerodynamics < 1.7. Dimensional analysis > The Buckingham PI Theorem The relation with N physical variables f1 ( p1 , p2 , p3 , … , pN ) = 0 can be expressed as f 2( P1 , P2 , ... , PN-K ) = 0 where K is the No. of fundamental dimensions Then P1 =f3 ( p1 , p2 , … , pK , pK+1 ) P2 =f4 ( p1 , p2 , … , pK , pK+2 ) …. PN-K =f ( p1 , p2 , … , pK , pN ) Aerodynamics 2015 fall - 3 - < 1.7. Dimensional analysis > The Buckingham PI Theorem Example) Aerodynamics 2015 fall - 4 - < 1.7. Dimensional analysis > The Buckingham PI Theorem Example) Aerodynamics 2015 fall - 5 - < 1.7. Dimensional analysis > The Buckingham PI Theorem Aerodynamics 2015 fall - 6 - < 1.7. Dimensional analysis > The Buckingham PI Theorem Through similar procedure Aerodynamics 2015 fall - 7 - Introduction to Aerodynamics < 1.7. Dimensional analysis > Dimensionless form Aerodynamics 2015 fall - 8 - Introduction to Aerodynamics < 1.8. Flow similarity > Dynamic similarity Two different flows are dynamically similar if • Streamline patterns are similar • Velocity, pressure, temperature distributions are same • Force coefficients are same Criteria • Geometrically similar • Similarity parameters (Re, M) are same Aerodynamics 2015 fall - 9 - Introduction to Aerodynamics < 1.8.
    [Show full text]
  • Aerodynamic Force Measurement on an Icing Airfoil
    AerE 344: Undergraduate Aerodynamics and Propulsion Laboratory Lab Instructions Lab #13: Aerodynamic Force Measurement on an Icing Airfoil Instructor: Dr. Hui Hu Department of Aerospace Engineering Iowa State University Office: Room 2251, Howe Hall Tel:515-294-0094 Email:[email protected] Lab #13: Aerodynamic Force Measurement on an Icing Airfoil Objective: The objective of this lab is to measure the aerodynamic forces acting on an airfoil in a wind tunnel using a direct force balance. The forces will be measured on an airfoil before and after the accretion of ice to illustrate the effect of icing on the performance of aerodynamic bodies. The experiment components: The experiments will be performed in the ISU-UTAS Icing Research Tunnel, a closed-circuit refrigerated wind tunnel located in the Aerospace Engineering Department of Iowa State University. The tunnel has a test section with a 16 in 16 in cross section and all the walls of the test section optically transparent. The wind tunnel has a contraction section upstream the test section with a spray system that produces water droplets with the 10–100 um mean droplet diameters and water mass concentrations of 0–10 g/m3. The tunnel is refrigerated by a Vilter 340 system capable of achieving operating air temperatures below -20 C. The freestream velocity of the tunnel can set up to ~50 m/s. Figure 1 shows the calibration information for the tunnel, relating the freestream velocity to the motor frequency setting. Figure 1. Wind tunnel airspeed versus motor frequency setting. The airfoil model for the lab is a finite wing NACA 0012 with a chord length of 6 inches and a span of 14.5 inches.
    [Show full text]
  • Active Control of Flow Over an Oscillating NACA 0012 Airfoil
    Active Control of Flow over an Oscillating NACA 0012 Airfoil Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By David Armando Castañeda Vergara, M.S., B.S. Graduate Program in Aeronautical and Astronautical Engineering The Ohio State University 2020 Dissertation Committee: Dr. Mo Samimy, Advisor Dr. Datta Gaitonde Dr. Jim Gregory Dr. Miguel Visbal Dr. Nathan Webb c Copyright by David Armando Castañeda Vergara 2020 Abstract Dynamic stall (DS) is a time-dependent flow separation and stall phenomenon that occurs due to unsteady motion of a lifting surface. When the motion is sufficiently rapid, the flow can remain attached well beyond the static stall angle of attack. The eventual stall and dynamic stall vortex formation, convection, and shedding processes introduce large unsteady aerodynamic loads (lift, drag, and moment) which are undesirable. Dynamic stall occurs in many applications, including rotorcraft, micro aerial vehicles (MAVs), and wind turbines. This phenomenon typically occurs in rotorcraft applications over the rotor at high forward flight speeds or during maneuvers with high load factors. The primary adverse characteristic of dynamic stall is the onset of high torsional and vibrational loads on the rotor due to the associated unsteady aerodynamic forces. Nanosecond Dielectric Barrier Discharge (NS-DBD) actuators are flow control devices which can excite natural instabilities in the flow. These actuators have demonstrated the ability to delay or mitigate dynamic stall. To study the effect of an NS-DBD actuator on DS, a preliminary proof-of-concept experiment was conducted. This experiment examined the control of DS over a NACA 0015 airfoil; however, the setup had significant limitations.
    [Show full text]
  • Aerodyn Theory Manual
    January 2005 • NREL/TP-500-36881 AeroDyn Theory Manual P.J. Moriarty National Renewable Energy Laboratory Golden, Colorado A.C. Hansen Windward Engineering Salt Lake City, Utah National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 January 2005 • NREL/TP-500-36881 AeroDyn Theory Manual P.J. Moriarty National Renewable Energy Laboratory Golden, Colorado A.C. Hansen Windward Engineering Salt Lake City, Utah Prepared under Task No. WER4.3101 and WER5.3101 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • 6.2 Understanding Flight
    6.2 - Understanding Flight Grade 6 Activity Plan Reviews and Updates 6.2 Understanding Flight Objectives: 1. To understand Bernoulli’s Principle 2. To explain drag and how different shapes influence it 3. To describe how the results of similar and repeated investigations testing drag may vary and suggest possible explanations for variations. 4. To demonstrate methods for altering drag in flying devices. Keywords/concepts: Bernoulli’s Principle, pressure, lift, drag, angle of attack, average, resistance, aerodynamics Curriculum outcomes: 107-9, 204-7, 205-5, 206-6, 301-17, 301-18, 303-32, 303-33. Take-home product: Paper airplane, hoop glider Segment Details African Proverb and Cultural “The bird flies, but always returns to Earth.” Gambia Relevance (5min.) Have any of you ever been on an airplane? Have you ever wondered how such a heavy aircraft can fly? Introduce Bernoulli’s Principle and drag. Pre-test Show this video on Bernoulli’s Principle: (10 min.) https://www.youtube.com/watch?v=bv3m57u6ViE Note: To gain the speed so lift can be created the plane has to overcome the force of drag; they also have to overcome this force constantly in flight. Therefore, planes have been designed to reduce drag Demo 1 Use the students to demonstrate the basic properties of (10 min.) Bernoulli’s Principle. Activity 2 Students use paper airplanes to alter drag and hypothesize why (30 min.) different planes performed differently Activity 3 Students make a hoop glider to understand the effects of drag (20 min.) on different shaped objects. Post-test Word scramble. (5 min.) https://www.amazon.com/PowerUp-Smartphone-Controlled- Additional idea Paper-Airplane/dp/B00N8GWZ4M Suggested Interpretation of Proverb What comes up must come down Background Information Bernoulli’s Principle Daniel Bernoulli, an eighteenth-century Swiss scientist, discovered that as the velocity of a fluid increases, its pressure decreases.
    [Show full text]
  • Aerodynamics and Fluid Mechanics
    Aerodynamics and Fluid Mechanics Numerical modeling, simulation and experimental analysis of fluids and fluid flows n Jointly with Oerlikon AM GmbH and Linde, the Chair of Aerodynamics and Fluid Mechanics investigates novel manufacturing processes and materials for additive 3D printing. The cooperation is supported by the Bavarian State Ministry for Economic Affairs, Regional Development and Energy. In addition, two new H2020-MSCA-ITN actions are being sponsored by the European Union. The ‘UCOM’ project investigates ultrasound cavitation and shock-tissue interaction, which aims at closing the gap between medical science and compressible fluid mechanics for fluid-mechanical destruction of cancer tissue. With ‘EDEM’, novel technologies for optimizing combustion processes using alternative fuels for large-ship combustion engines are developed. In 2019, the NANOSHOCK research group published A highlight in the field of aircraft aerodynamics in 2019 various articles in the highly-ranked journals ‘Journal of was to contribute establishing a DFG research group Computational Physics’, ‘Physical Review Fluids’ and (FOR2895) on the topic ‘Research on unsteady phenom- ‘Computers and Fluids’. Updates on the NANOSHOCK ena and interactions at high speed stall’. Our subproject open-source code development and research results are will focus on ‘Neuro-fuzzy based ROM methods for load available for the scientific community: www.nanoshock.de calculations and analysis at high speed buffet’. or hwww.aer.mw.tum.de/abteilungen/nanoshock/news. Aircraft and Helicopter Aerodynamics Motivation and Objectives The long-term research agenda is dedi- cated to the continues improvement of flow simulation and analysis capa- bilities enhancing the efficiency of aircraft and helicopter configura- tions with respect to the Flightpath 2050 objectives.
    [Show full text]
  • Vorticity and Vortex Dynamics
    Vorticity and Vortex Dynamics J.-Z. Wu H.-Y. Ma M.-D. Zhou Vorticity and Vortex Dynamics With291 Figures 123 Professor Jie-Zhi Wu State Key Laboratory for Turbulence and Complex System, Peking University Beijing 100871, China University of Tennessee Space Institute Tullahoma, TN 37388, USA Professor Hui-Yang Ma Graduate University of The Chinese Academy of Sciences Beijing 100049, China Professor Ming-De Zhou TheUniversityofArizona,Tucson,AZ85721,USA State Key Laboratory for Turbulence and Complex System, Peking University Beijing, 100871, China Nanjing University of Aeronautics and Astronautics Nanjing, 210016, China LibraryofCongressControlNumber:2005938844 ISBN-10 3-540-29027-3 Springer Berlin Heidelberg New York ISBN-13 978-3-540-29027-8 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media. springer.com © Springer-Verlag Berlin Heidelberg 2006 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant pro- tective laws and regulations and therefore free for general use.
    [Show full text]
  • Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
    Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time.
    [Show full text]