(19) TZZ Z¥_T

(11) EP 2 420 593 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C23C 18/20 (2006.01) H05K 3/42 (2006.01) 03.04.2013 Bulletin 2013/14 C23C 18/32 (2006.01) C23C 18/38 (2006.01) H05K 3/38 (2006.01) H05K 3/46 (2006.01) (2006.01) (2006.01) (21) Application number: 11173897.7 C25D 5/12 C25D 5/56 H05K 3/18 (2006.01) (22) Date of filing: 14.07.2011

(54) Metalized Articles and Methods Thereof Metallisierte Kunststoffartikel und Verfahren dafür Articles plastiques métallisés et procédés associés

(84) Designated Contracting States: •ZHOU,Liang AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 518118 Shenzhen (CN) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • MIAO, Weifeng PL PT RO RS SE SI SK SM TR 518118 Shenzhen (CN) • ZHANG, Xiong (30) Priority: 19.08.2010 CN 201010260236 518118 Shenzhen (CN)

(43) Date of publication of application: (74) Representative: Gulde Hengelhaupt Ziebig & 22.02.2012 Bulletin 2012/08 Schneider Patentanwälte - Rechtsanwälte (73) Proprietor: BYD Company Limited Wallstrasse 58/59 Shenzhen 518118 (CN) 10179 Berlin (DE)

(72) Inventors: (56) References cited: • GONG, Qing EP-A1- 1 650 249 US-A- 3 546 011 518118 Shenzhen, (CN) US-A- 4 767 665 US-A- 5 162 144

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 420 593 B1

Printed by Jouve, 75001 PARIS (FR) 1 EP 2 420 593 B1 2

Description CuFe204-δ, Ca0.25Cu0.75TiO3-β, and Ti02-σ, wherein δ, β, σ is deemed to be 0.05 ≤δ≤0.8, 0.05≤β≤0.5, and [0001] The present disclosure relates generally to 0.05≤σ≤1.0; plastic articles and a manufacturing method thereof. In removing plastic material in a determined area of a more particularity, the present disclosure relates to a sur- 5 surface of the plastic substrate; and face metallization method for the plastic article. plating the exposed surface of the plastic substrate to form a first metal layer; plating the first metal layer BACKGROUND OF THE PRESENT DISCLOSURE to form a second metal layer.

[0002] Plastic substrates having a metalized layer on 10 [0005] Optionally, further metal layers may be subse- theirsurfaces as pathways of electromagnetic signal con- quently plated. duction are widely used in automobiles, industries, com- [0006] According to another aspect of the present in- puters and telecommunications etc. Selectively forming vention, there is provided a plastic substrate being made a metalized layer is one of the important processes for of a plastic material, in which a plurality of accelerator preparing such plastic products. The method for forming 15 particles are dispersed, the accelerator particles being a metalized layer in prior art is usually practiced by form- made of a compound selected from the group consisting ing a metal core as a catalytic center on the plastic sup- of: CuFe2O4-δ, Ca0.25Cu0.75TiO3-β, and TiO2-σ, wherein port surface so that chemical plating may be performed. δ, β σ is deemed to be 0.05≤δ≤0.8, 0.05≤β≤0.5, and However, processes related thereto are complex where 0.05≤σ≤1.0; and a metalized surface directly disposed strict demand on equipment is needed whereas the en- 20 on the plastic substrate and being composed of a plurality ergy consumption is high. Further, there is a low adhesive of metal layers. force between the coating and the plastic support. [0007] Another aspect of the present invention refers [0003] One example in US patent No. US2003031803 to a plastic substrate being made of a plastic material, in A1 discloses a process for metalizing a substrate part, which a plurality of accelerator particles are dispersed, including the following three steps: coating said part with 25 the accelerator particles being made of a compound se- a precursor composite material layer consisting of a pol- lected from the group consisting of: CuFe2O4-δ, Ca0.25 ymer matrix doped with photoreducer material dielectric Cu0.75TiO3-β, and TiO2-σ, wherein δ, β , σ is deemed to particles, irradiating the surface to be metalized of said be 0.05≤δ≤0.8, 0.05≤β≤0.5, and 0.05≤σ≤1.0. substrate part with a light beam emitted by a laser, im- [0008] Further embodiments of the invention could be mersing the irradiated part in an autocatalytic bath con- 30 learned from the claims and the following description of taining metal ions, with deposition of the latter in a layer the invention. on the irradiated surface, and wherein the dimension of said dielectric particles is less than or equal to 0.5 mi- DETAILED DISCRIPTION OF THE EMBODIMENT crons. Another example in US patent No. US7060421 discloses a method of producing a conductor track struc- 35 [0009] In the following, a new method of manufacturing ture on a non-conductive support comprising: providing a plastic article with a metalized surface is disclosed. a non-conductive support having at least a surface Thereby, a plastic article is provided having a metalized formed of a non-conductive supporting material having surface, which is directly disposed on the plastic sub- at least one thermally stable, spinel- based, non-conduc- strate and being composed of a plurality of metal layers. tive metal oxide which is stable and insoluble in aqueous 40 Further, a substrate useful for the manufacturing method acid or alkaline metallization baths dispersed therein; ir- is disclosed. radiating areas of said support on which conductive tracks are to be formed with electromagnetic radiation to Accelerator particles break down the non- conductive metal oxides and release metal nuclei, and subsequently metalizing the irradiated 45 [0010] The accelerator particles are selected from the areas by chemical reduction. group consisting of: CuFe 2O4-δ, Ca0.25Cu0.75TiO3-β, and TiO2-σ, and δ, β, σ is deemed to be 0.05≤δ≤0.8, 0.05≤β SUMMARY OF THE DISCLOSURE ≤0.5, and 0.05≤σ≤1.0 [0011] The average diameter of each accelerator par- [0004] According to one aspect of the present inven- 50 ticle may range from 20 nanometers to 100 microns, al- tion,there isprovided a method of manufacturinga plastic ternatively from 50 nanometers to 10 microns, and alter- article with a metalized surface composed of a plurality natively from 200 nanometers to 4 microns. The accel- of metal layers comprising the steps of: erator particles may be from 1 wt% to 40 wt% of the total weight of the plastic substrate, alternatively from 1 wt% providing a plastic substrate made of a plastic ma- 55 to 30 wt%, and alternatively from 2 wt% to 15 wt%. terial, in which a plurality of accelerator particles are [0012] Particularly suitable accelerators may include: dispersed, the accelerator particles being made of a CuFe2O3.65, CuFe2O3.2, Ca0.25CU0.75TiO2.84, Ca0.25 compound selected from the group consisting of: Cu0.75TiO2.5, TiO, and TiO 1.9. Still further suitable accel-

2 3 EP 2 420 593 B1 4 erators, may include CuFe2O3.65, Ca0.25CU0.75TiO2.84, cancies may have strong reducibility and instability. For and TiO. example, the accelerator particle CuFe2Ox (x<4) has [0013] The accelerator particles may be commercially strong reducibility and instability due to: a) CuFe 2Ox(x<4) provided, or prepared by any technique known to those has oxygen vacancies and oxygen may be efficiently 5 skilled in the art. For example, suitable methods for pre- combined to crystal lattice of CuFe2Ox(x<4); b) In paring the accelerator particle may include steps of: pre- CuFe2Ox(x<4), electron transfer may exist not only be- paring metal oxides/composite metal oxides by any tech- tween Cu+ and Cu2+, Fe2+ and Fe3+, but also between nique known to those skilled in the art, such as co-pre- Cu+ and Fe3+, electron transfer may cause the lost of cipitation, sol-gel, hydrothermal process, solid state sin- electrons which indicates a strong reducibility; c) During 10 tering, etc., or commercially provided; and calcining the the period of forming oxygen vacancies in CuFe2O4, a metal oxides/composite metal oxides at high tempera- large amount of cations may be combined in the crystal- ture in the presence of hydrogen of inert gases to form line lattice thereof, causing a extension of crystalline lat- oxygen vacancies thereof to obtain the accelerator par- tice gap, change of crystalline lattice, and the increasing ticle. of chemical potential energy. Therefore, CuFe2Ox(x<4) [0014] Methods of preparing suitable accelerator par- 15 with oxygen vacancies may have very instable structure ticles are generally known. A method for preparing and oxygen ions may be needed to fill the oxygen vacan-

CuFe2O4-δ may comprise the steps of: adding a mixture cies, which may form a strong reducibility. of Cu(NO3)2 and Fe(NO3)3 into a stirring potassium hy- [0020] According to various embodiments of the droxide solution by a peristaltic pump with a speed of 1 present disclosure, the metal oxide or metal composite milliliter per minutes; heating the solution to a tempera- 20 oxide with a certain range of oxygen vacancies may be ture of 80 °C and keep stirring for 24 hours, PH value of used as accelerator particles, and metal layers may be the solution maintaining at 10 to 11 while stirring; cleaning plated directly on the accelerator particles. precipitates in the solution with distilled water and ace- tone and penetrating the precipitates; dry the penetrated Plastic material precipitates at a temperature of 120 °C for 24 hours and 25 granulating to 300 meshes to form a first end product; [0021] The plastic material may be a calcining the first end product at temperature of 1000 °C plastic, or thermoset otherwise called a thermosetting for a time of 4-6 hours in the presence of high purity ni- plastic. The thermoplastic plastic may be selected from trogen to form CuFe2O4-δ (0.05≤δ≤0.8). the group consisting of polyolefin, , , 30 [0015] Similarly, a method for preparing0.25 Ca polyaromatic ether, polyester-imide, Cu0.75TiO3-β may comprise similar steps. A method for (PC), polycarbonate/acrylonitrile-butadiene-styrene preparing TiO2-σ may comprise calcining nano titanium composite (PC/ABS), polyphenylene oxide (PPO), dioxide in the presence of nitrogen or reduce with reduc- polyphenylene sulfide (PPS), (PI), tion materials (such as NH3, H2, and Mg) to remove ox- (PSU), poly (ether ether ketone) (PEEK), polybenzimi- ygen in the titanium dioxide. The nano titanium dioxide 35 dazole (PBI), liquid crystalline polymer (LCP), and com- may be commercially available. binations thereof. The polyolefin may be [0016] The accelerator may be commercially provided. (PS), (PP), polymethyl methacrylate (PM- In an embodiment, the accelerator particle may be tita- MA) or acrylonitrile-butadiene-styrene (ABS); the poly- nium black (Tilack provided from Akoh Kasei, Japan), or ester may be polycyclohexylene dimethylene terephtha- titanium black (Tilox fromBo Kwang, Korea). 40 late (PCT), poly (diallyl isophthalate) (PDAIP), poly (diallyl [0017] The accelerator particles are used directly as terephthalate) (PDAP), naphthalate (PBN), chemical catalyst for plating. Plating on the accelerators Poly(ethylene terephthalate) (PET), or polybutylene thus not cause plastic degradation. terephthalate (PBT); the polyamide may be polyhexam- [0018] The accelerator particles may be uniformly dis- ethylene adipamide (PA- 66), Nylon 69 (PA- 69), Nylon 64 persed within the plastic. Uniform dispersion of the ac- 45 (PA-64), Nylon 612 (PA-612), polyhexamephylene se- celerator particle in the plastic aids in forming a strong bacamide (PA-610), Nylon 1010 (PA-1010), Nylon 11 adhesion between the metal layer and the plastic sub- (PA-11), Nylon 12 (PA-12), Nylon 8 (PA-8), Nylon 9 (PA- strate. The power applied may be sufficient to remove 9), polycaprolactam (PA-6), poly(p-phenytene tereph- plastic materials in the determined area and expose at thalamide) (PPTA), poly-meta-xylylene adipamide least a first accelerator particle, no extra high power is 50 (MXD6), polyhexamethylene terephthalamide (PA6T), needed to reduce the accelerator particles to pure met- and Nylon 9T (PA9T). The thermoset may be one or more als. Copper plating or nickel plating then may be per- members selected from the group consisting of phenolic formedon the exposedaccelerator particles.The method resin, urea- formaldehyderesin, melamine- formaldehyde has low requirement on energy, has low production cost, resin, epoxy resin, alkyd resin, , and com- and be simple to perform. 55 binations thereof. [0019] The accelerator particle is a metal oxide or a metal composite oxide having oxygen vacancies. The metal oxide or metal composite oxide having oxygen va-

3 5 EP 2 420 593 B1 6

Dispersion of Accelerator(s) in Plastic method in the art. In an embodiment, the determined area may be the entire surface of the plastic substrate, option- [0022] The accelerator particles are dispersed within ally plastic material in the determined area removed by the plastic material by any method of mixture or combi- laser irradiating, corona discharge, chemical corrosion, nation, followed, without limitation, by a molding process. 5 and grinding, to expose the accelerator particles. In an In various embodiments, the accelerator particles may alternative embodiment, the determined area may be a become dispersed in the plastic by using an internal mix- part of a surface of the plastic substrate, optionally plastic er, a singer screw extruder, a twin screw extruder or a material in the determined area removed by laser irradi- mixer. Then, a plastic substrate may be formed with var- ating or corona discharge. ious kinds of shapes during an injection molding, blow 10 [0029] The determined area of the plastic substrate molding, extraction molding, or hot press molding proc- may be irradiated by laser or corona discharge, causing esses. plastic evaporation and forming a diagram in this deter- mined area. In this way, a diagram may be formed on a Additives surface of the plastic substrate, and accelerator particles 15 in the diagram area may be exposed. [0023] The plastic substrate may further comprise one [0030] The laser instrument may be an infrared laser, or more generally known, and commercially available, or an ultraviolet laser, such as a CO 2 laser marking sys- additives selected from the group consisting of: an anti- tem. The laser may have a wavelength ranging from oxidant; a light stabilizer; a lubricant; and inorganic fillers. about 157 nanometers to about 10.6 microns; a scanning [0024] The antioxidant may be antioxidant 1098, 1076, 20 speed of about 500 millimeters per second to about 8000 1010, 168 available from CIBA Holding Inc., located in millimeters per second; a scanning step of about 3 mi- Switzerland. The antioxidant may be about 0.01 wt% to crons to about 9 microns; a delaying time of about 30 about 2 wt% of the plastic substrate. microseconds to about 100 microseconds; a frequency [0025] The light stabilizer may be any such commer- of about 30 kilohertz to about 40 kilohertz; a power of cially available product, including a hindered amine light 25 about 3 watt to about 4 watt; and a filling space of about stabilizer, such as light stabilizer 944 available from CIBA 10 microns to about 50 microns. Holding Inc., located in Switzerland. The light stabilizer [0031] The corona discharge instrument may be a may be about 0.01 wt% to about 2 wt% of the plastic CW1003 corona discharge instrument provided by Sanx- substrate. in Electronics Co., Ltd, Nantong, China. The corona dis- [0026] The lubricant may be selected from the group 30 charge instrument may have a power more than zero to consisting of: methylpolysiloxanes; EVA waxes formed 3 kilowattand aspeed of 1meter per minutes to 20meters from ethylene and vinyl acetate; waxes; per minute. stearates; and combinations thereof. The lubricant may [0032] The power of the laser or corona discharge in- be about 0.01 wt% to about 2 wt% of the plastic substrate. strument may be sufficiently great to expose at least one [0027] The inorganic may be talcum powders, cal- 35 accelerator particle, and alternatively a plurality of accel- cium carbonates, glass fibers, calcium silicate fibers, tin erator particles, but not so strong as to alter or damage oxides, or carbon blacks. Glass fibers may increase the the accelerator particles, or reduce the accelerator par- depth of exposed determined area favoring copper ad- ticles to metals. hesion in further copper plating step; and tin oxide or [0033] Optionally, chemical corrosion is applied to re- carbon black may improve removing speed of the plastic 40 move the entire surface of the plastic substrate. The during the removing step to shorten the process period. chemical corrosion is performed by a corrosion bath of In further embodiments, the inorganic filler may further N,N-dimethylformamide or tetrahydrofuran for a corro- be selected from the group consisting of glass beads, sion time of 5 minutes to 60 minutes. calciumsulfates, barium sulfates, titanium dioxides,pearl [0034] Optionally, grinding is applied to remove the en- powders, wollastonites, diatomites, kaolins, pulverized 45 tire surface of the plastic substrate. The grinding is per- coals, pottery clays, micas, oil shale ashes, aluminosili- formed by a metallurgical sandpaper and exposed sur- cates, aluminas, carbon fibers, silicon dioxides, zinc ox- face of the plastic substrate has a depth ranging from10 ides, and combinations thereof, particularly those without microns to 50 microns. harmful elements (Cr, etc) to the environment and human [0035] The plastic substrate may have a thickness of health. The inorganic filler may be about 1 wt% to about 50 about 500 microns, or more, and the depth of the exposed 70 wt% of the plastic substrate. portion of the plastic substrate may range from about hundreds of nanometers to less than 100 microns. The Plastic Removing determined area may have convexes and concaves in micro-structures, and copper may be f illed in these micro- [0028] Plastic material in a determined area of a sur- 55 structures in the subsequent copper plating and forming face of the plastic substrate is removed to expose the strong adhesion between the substrate and the copper accelerator particle(s). The removing of plastic material layer. In an embodiment, the areas without accelerators in the determined area may be achieved by any know are not irradiated, and, those areas may have low dep-

4 7 EP 2 420 593 B1 8 osition speed and poor adhesion. While, a few metals may comprise a copper salt and a reducer, with a pH may deposit in these areas they may be easily removed value ranging from about 12 to about 13, wherein the by, for example and without limitation, ultrasonic clean- reducer may reduce the copper ion to copper. The re- ing. In this manner, the metalization may be controlled ducer may be selected from the group consisting of gly- in required areas in the surface of the plastic substrate. 5 oxylic acids, hydrazines, sodium hypophosphites, and combinations thereof. In another embodiment, the chem- First Plating ical plating bath for copper plating may comprise 0.12 moles per liter ("mol/L") CuSO4·5H2O, 0.14 mol/L [0036] After removing plastic material in determined Na2EDTA·2H2O, 10 mol/L potassium ferrocyanide, 10 area of the plastic substrate a copper or nickel plating is 10 mg/L (milligram per liter) potassium ferrocyanide, 10 performed. mg/L 2,2’ bipyridine, and about 0.10 mol/L of glyoxylic [0037] After plastic removing, the accelerator particles acid (HCOCOOH), the bath having a pH of about 12.5 are exposed in the determined areas. Thereafter, cop- to about 13 adjusted by NaOH and H 2SO4 solutions. The per-plating or nickel-plating may be applied to the accel- copper plating time may range from about 10 minutes to erator particles. The copper-plating and nickel-plating 15 about 240 minutes. The chemical plating bath for nickel are generally known to those of ordinary skill in the art, plating may comprise 23 grams per liter ("g/L") nickel and may include contacting the exposed plastic substrate sulfate, 18 g/L inferior sodium phosphate, 20 g/L lactic with a copper-plating or a nickel-plating bath (described acid, 15 g/L malic acid, the bath having a pH of about 5.2 below). Without wishing to be bound by the theory, ap- adjusted by a NaOH solution, and a temperature of about plicant believes that the exposed accelerator particles 20 85°C to about 90°C. The nickel plating time may range may favor the copper or nickel ions, to be reduced to from about 8 minutes to about 15 minutes. copper or nickel powders, which may cover the surface [0040] Aurum flash plating is generally known to those of the exposed accelerator particles, and form a dense with ordinary skill in the art. The flash plating bath may copper layer or nickel layer rapidly on the accelerator be a BG-24 neutral aurum bath, which is commercially particles. 25 available from Shenzhen Jingyanchuang Chemical Company, located in Shenzhen, China. Further Plating [0041] The following examples provide additional de- tails of some embodiments of the present disclosure: [0038] Following the first plating, one or more chemi- cal, or electroplating, layers may be applied to the copper 30 EXAMPLE 1 layer or nickel layer. For example, after a first nickel layer, a copper layer may be chemical plated on the first nickel [0042] In the first example: layer and then a second nickel layer may be chemically plated on the copper layer to form a composite plastic a) A mixture of Cu(NO3)2(0.5mol/L) and Fe(NO3)3 article, having a surface layer structure of Ni-Cu-Ni. Al- 35 (0.5mol/L) was added into a stirring potassium hy- ternatively, an aurum layer may be flash layered, or plat- droxide solution by a peristaltic pump with a speed ed, on the composite plastic article to form a plastic article of 1 milliliter per minutes. The mixed solution was having a layer structure of Ni- Cu-Ni-Au. In a further illus- heated to a temperature of 80°C and maintained stir- trative embodiment, after a first copper layer, a nickel ring for 24 hours, PH value of the solution kept at 10 layer, may be plated on the first copper layer, to form a 40 to 11 while stirring. The precipitates in the solution composite plastic article, having a surface layer structure were cleaned with distilled water and acetone, then of Cu-Ni. Alternatively, an aurum layer may be flash lay- the precipitated. Finally, the penetrated precipitates ered, or plated, on the composite plastic article to form were dried at a temperature of 120°C for 24 hours a plastic article having a layer structure of Cu-Ni-Au. and granulated to 300 meshes to form a first end [0039] The nickel layer, or plate, may have a thickness 45 product; rangingfrom 0.1microns to50 microns, alternatively from b) The first end product was calcined at temperature 1 micron to 10 microns, and alternatively from 2 microns of 1000°C for a time of 4 hours in the presence of to 3 microns. The copper layer, or plate, may have a high purity nitrogen, then granulated for a time of 10 thickness ranging from about 0.1 microns to about 100 hours to form CuFe 2O4-δ (0.05≤δ≤0.8) with an aver- 50 microns, alternatively from about 1 microns to about 50 age diameter of 700 nanometers. The CuFe2O4-δ microns, and alternatively from about 5 microns to about was chemically analyzed and results showed that δ 30 microns. The aurum layer may have a thickness rang- =0.35; ing from about 0.01 microns to about 10 microns, alter- c) PC/ABS resin alloy, CuFe 2O4-δ(δ=0.35) powders, natively from about 0.01 microns to about 2 microns, and calcium silicate fiber, and antioxidant 1010 were alternatively from about 0.1 microns to about 1 microns. 55 mixed in a weight ratio of 100:10:30:0.2 in a high Chemical plating baths, electric solutions, and flash plat- speed mixer to prepare a mixture; the mixture was ing baths are generally known to those with ordinary skill then granulated in a twin screw extruder (provided in the art. The chemical plating bath for copper plating from NanjingRubber & MachineryPlant Co.,

5 9 EP 2 420 593 B1 10

Ltd.) and then injection molded to form an plastic ture; the mixture was granulated then injection mold- substrate for a circuit board of an LED lighting; ed to form an plastic substrate for a shell of an electric d) A metal circuit diagram was curved in a deter- connector. mined area of a surface of the plastic substrate with d) A metal circuit diagram was curved in a deter- a DPF-M12 infrared laser, available from TIDE5 mined area of a surface of the plastic substrate with PHARMACEUTICAL CO., LTD, located in Beijing, a CW1003 corona discharge instrument commer- China. The laser had a wavelength of 1064 nanom- cially available from Sanxin Electronics Co., Ltd, lo- eters, a scanning speed of 4000 millimeters per sec- cated in Nantong, China. The instrument had a ond, a step of 9 microns, a delaying time of 30 mi- speed of 1 meter per minute and a power of 2 kilo- croseconds, a frequency of about 40 kilohertz, a10 watt. power of 3 watt, and a filling space of 50 microns; e) The plating step was in the same manner as in the surface of the plastic article was then ultrasoni- step (e) of EXAMPLE 1, with the following excep- cally cleaned; tions: the plastic substrate was immersed in a nickel e) The plastic substrate was immersed in a nickel plating bath for 8 minutes to form a nickel layer hav- plating bath for 10 minutes to form a nickel layer hav- 15 ing a thickness of 2 microns on the accelerators; the ing a thickness of 4 microns on the accelerators; the plastic substrate was immersed in a copper plating plastic substrate was immersed in a copper plating bath for 4 hours to form a copper layer having a thick- bath for 4 hours to form a copper layer having a thick- ness of 15 microns on the nickel layer; thereafter, ness of 15 microns on the nickel layer; thereafter, the plastic substrate was immersed in a nickel plating the plasticsubstrate wasimmersed in a nickel plating 20 bath for 10 minutes to form a nickel layer having a bath for 10 minutes to form a nickel layer having a thickness of 3 microns on the copper layer; then the thickness of 5 microns on the copper layer; then the plastic substrate was flash plated with an aurum lay- plastic substrate was flash plated with an aurum lay- er having a thickness of 0.03 microns on the nickel er having a thickness of 0.03 microns on the nickel layer. layer; where the copper plating bath comprised 0.12 25 mol/L CUSO4. ·5H2O, 0.14 mol/L Na2EDTA·2H2O, EXAMPLE 3 10 mg/L potassium ferrocyanide, 10 mg/L 2,2’ bipy- ridine, 0.10 mol/L glyoxylic acid, having a pH of from [0044] In the third example, the plastic article was pre-

12.5 to 13, which was adjusted by NaOH and H 2SO4 pared in the same manner as in EXAMPLE 1, with the solutions; the nickel plating bath comprised 23 g/L 30 following exceptions: nickel sulfate, 18 g/L inferior sodium phosphate, 20 g/L lactic acid, 15 g/L malic acid, the bath had a PH In step c) titanium black (average diameter of 50 na- value of about 5.2; the flash plating bath was BG- 24 nometers, TiO2-σ, σ=1, Tilack, commercially from neutral aurum bath, which was obtained from SHEN- Akoh Kasei Company, located in Japan), PP resin, ZHEN JINGYANCHUANG CHEMICAL COMPANY, 35 calcium silicate fiber, and antioxidant 1010 were located in Shenzhen, China; the plastic substrate mixed in a weight ratio of 100:10:30:0.2 in a high was formed into a plastic article for a circuit board. speed mixer to prepare a mixture; the mixture was then granulated in a twin screw extruder (provided EXAMPLE 2 from NanjingRubber &Plastics MachineryPlant Co., 40 Ltd.) and then injection molded to form an plastic [0043] In the second example: substrate for a circuit board of an LED lighting; In step d) the metal circuit diagram was curved in a

a) A mixture of CaCO 3, CuO, and TiO 2 powders were determined area of a surface of the plastic substrate evenly mixed according to stoichiometric ratio of by chemical corrosion, with a corrosion material of 45 Ca0.25Cu0.75TiO3 then milled in a ball mill for a milling N,N-dimethylformamide and a corrosion time of 30 time of 8 hours, with absolute alcohol as the milling minutes. mediate. The milled mixture was pre-calcined at a temperature of 800°C for a time of 10 hours to form EXAMPLE 4

Ca0.25Cu0.75TiO3 powders. 50 b) The Ca0.25Cu0.75TiO3 powders were calcined at [0045] Inthe fourth example,the plasticarticle was pre- temperature of 900°C for a time of 4 hours in the pared in the same manner as in EXAMPLE 2, with the presence of argon, then granulated to formfollowing exceptions:

Ca0.25Cu0.75TiO3-β with an average diameter of 500 nanometers. The Ca 0.25Cu0.75TiO3-β was chemical- In step c) the mixture was granulated then injection ly analyzed and results showed that β=0.16. 55 molded to form an plastic substrate for a component c) PP resin, Ca0.25Cu0.75TiO3-β(β=0.16) powders, of bath equipments; and antioxidant 1010, and polyethylene wax were mixed In step d) all the surface of the plastic substrate was in a weight ratio of 100:10:0.2:0.1 to prepare a mix- polished by a metallurgical sandpaper, and exposed

6 11 EP 2 420 593 B1 12

portion of the plastic substrate had a depth of 20 0.01 microns to 10 microns. microns. 9. The method of any one of the preceding claims, wherein the accelerator particles have an average Claims 5 diameter ranging from 20 nanometers to 100 mi- crons. 1. A method of manufacturing a plastic article with a metalized surface composed of a plurality of metal 10. The method of any one of the preceding claims, layers comprising the steps of: wherein the amount of accelerator particles is 1 wt% 10 to 40 wt% of the total weight of the plastic substrate. providing a plastic substrate made of a plastic material, in which a plurality of accelerator par- 11. The method of any one of the preceding claims, ticles are dispersed, the accelerator particles wherein the accelerator particles are made of a com- being made of a compound selected from the pound selected from the group consisting of: 15 group consisting of: CuFe2O4-δ, Ca0.25Cu0.75 CuFe2O3.65, Ca0.25Cu0.75TiO2.84, and TiO. TiO3-β, and TiO2-σ, wherein δ, β, σ is deemed to be 0.05≤δ≤0.8, 0.05≤β≤0.5, and 0.05≤σ≤1.0; 12. The method of any one of the preceding claims, removing plastic material in a determined area wherein the plastic material is selected from group of a surface of the plastic substrate; consisting of a thermoplastic and a thermoset. plating the exposed surface of the plastic sub- 20 strate to form a first metal layer; 13. The method of claim 12, wherein- the thermoplastic plating the first metal layer to form a second met- plastic is selected from the group consisting of poly- al layer; and olefin, polycarbonate (PC), polyester, polyamide, optionally, subsequent plating of further metal polyaromatic ether, polyester-imide, polycarbonate/ layers. 25 acrylonitrile-butadiene-styrene composite (PC/ ABS), polyphenylene oxide (PPO), polyphenylene 2. The method of claim 1, wherein the accelerator is sulfide (PPS), polyimide (PI), polysulfone (PSU), po- evenly distributed throughout the plastic substrate. ly (ether ether ketone) (PEEK), polybenzimidazole (PBI), liquid crystalline polymer (LCP), and combi- 3. The method of any one of the preceding claims,30 nations thereof; and the thermoset is selected from wherein plastic material in the determined area is the group consisting of: phenolic resin, urea- formal- removed by a process selected from a group con- dehyde resin, melamine-formaldehyde resin, epoxy sisting of laser irradiating, corona discharge, chem- resin, alkyd resin, polyurethane, and combinations ical corrosion, and grinding. thereof. 35 4. The method of any one of the preceding claims, 14. A plastic article comprising: wherein the second metal layer is electroplated or chemical plated. a plastic substrate being made of a plastic ma- terial, in which a plurality of accelerator particles 5. The method of any one of the preceding claims,40 are dispersed, the accelerator particles being wherein the metal layers are made of a metal select- made of a compound selected from the group

ed from the group consisting of nickel, copper and consisting of: CuFe2O4-δ, Ca0.25Cu0.75TiO3-β, aurum. and TiO2-σ, wherein δ, β, σ is deemed to be 0.05≤δ≤0.8, 0.05≤β≤0.5, and 0.05≤σ≤1.0; and 6. The method of claim 5, wherein the first metal layer 45 a metalized surface directly disposed on the consists of nickel or copper. plastic substrate and being composed of a plu- rality of metal layers. 7. The method of claim 6, wherein the metal surface of the plastic article consists of sequentially plated met- 15. A plastic substrate being made of a plastic material, al layers having a structure selected from the group 50 in which a plurality of accelerator particles are dis- consisting of Ni-Cu-Ni; Ni-Cu-Ni-Au; Cu-Ni; and Cu- persed, the accelerator particles being made of a Ni-Au. compound selected from the group consisting of:

CuFe2O4-δ, Ca0.25Cu0.75TiO3-β, and TiO 2-σ, wherein 8. The method of claim 7, wherein the nickel layers δ, β, σ is deemed to be 0.05 ≤δ≤0.8, 0.05≤β≤0.5, and each have a thickness ranging from 0.1 microns to 55 0.05≤σ≤1.0 50 microns; the copper layers each have a thickness ranging from 0.1 microns to 100 microns; and the aurum layers each have a thickness ranging from

7 13 EP 2 420 593 B1 14

Patentansprüche bis 50 Mikrometer aufweisen, die Kupferschichten jeweils eine Dicke im Bereich von 0,1 Mikrometer 1. Verfahren zur Herstellung eines Kunststoffartikels bis 100 Mikrometer aufweisen und die Goldschich- mit einer metallisierten Oberfläche, der aus einer ten jeweils eine Dikke im Bereich von 0,01 Mikrome- Vielzahl von Metallschichten zusammengesetzt ist, 5 ter bis 10 Mikrometer aufweisen. wobeidas Verfahren diefolgenden Schritte aufweist: 9. Verfahren nach einem der vorhergehenden Ansprü- Bereitstellen eines Kunststoffsubstrats, das aus che, wobei die Beschleunigerteilchen einen mittle- einem Kunststoffmaterial hergestellt ist, in dem ren Durchmesser im Bereich von 20 Nanometer bis eine Vielzahl von Beschleunigerteilchen disper- 10 100 Mikrometer aufweisen. giert ist, wobei die Beschleunigerteilchen aus ei- ner Verbindung hergestellt sind, die aus der 10. Verfahren nach einem der vorhergehenden Ansprü-

Gruppe bestehend aus CuFe2O4-δ, Ca0.25 che, wobei die Menge der Beschleunigerteilchen 1 Cu0,75TiO3-β und TiO2-σ ausgewählt ist, wobei Gew.-% bis 40 Gew.-% des Gesamtgewichts des für δ, β, σ gilt: 0,05≤δ≤0,8, 0,05≤ß≤0,5 und 15 Kunststoffsubstrats beträgt. 0,05≤σ≤1,0; Entfernen des Kunststoffmaterials in einem be- 11. Verfahren nach einem der vorhergehenden Ansprü- stimmten Bereich einer Oberfläche des Kunst- che, wobei die Beschleunigerteilchen aus einer Ver- stoffsubstrats; bindung hergestellt sind, die aus der Gruppe beste- 20 Plattieren der freigelegten Oberfläche des hend aus CuFe2O3,65, Ca0,25Cu0,75TiO2,84 und TiO Kunststoffsubstrats zum Ausbilden einer ersten ausgewählt ist. Metallschicht; Plattieren der ersten Metallschicht zum Ausbil- 12. Verfahren nach einem der vorhergehenden Ansprü- den einer zweiten Metallschicht; und che, wobei das Kunststoffmaterial aus der Gruppe optional nachfolgendes Plattieren weiterer Me- 25 bestehend aus einem Thermoplast und einem Du- tallschichten. roplast ausgewählt ist.

2. Verfahren nach Anspruch 1, wobei der Beschleuni- 13. Verfahren nach Anspruch 12, wobei der thermopla- ger gleichmäßig über das gesamte Kunststoffsub- stische Kunststoff aus der Gruppe bestehend aus strat verteilt ist. 30 Polyolefin, Polycarbonat (PC), Polyester, Polyamid, polyaromatischem Ether, Polyesterimid, Polycarbo- 3. Verfahren nach einem der vorhergehenden Ansprü- nat-Acrylnitril-Butadien-Styrol-Gemisch (PC/ABS), che, wobei Kunststoffmaterial in dem bestimmten Polyphenylenoxid (PPO), Polyphenylensulfid Bereich durch ein Verfahren entfernt wird, das aus (PPS), Polyimid (PI), Polysulfon (PSU), Poly(ethe- einer Gruppe bestehend aus Laserbestrahlung, Ko- 35 retherketon) (PEEK), Polybenzimidazol (PBI), Flüs- ronaentladung, chemischer Korrosion und Schleifen sigkristallpolymer (LCP) und deren Kombinationen ausgewählt ist. ausgewählt ist, und wobei das Duroplast aus der Gruppe bestehend aus Phenolharz, Harnstoff- 4. Verfahren nach einem der vorhergehenden Ansprü- Formaldehydharz, Melamin-Formaldehydharz, Ep- che, wobei die zweite Metallschicht galvanisiert oder 40 oxidharz, Alkydharz, Polyurethan und deren Kombi- chemisch plattiert wird. nationen ausgewählt ist.

5. Verfahren nach einem der vorhergehenden Ansprü- 14. Kunststoffartikel, aufweisend: che, wobei die Metallschichten aus einem Metall her- gestellt sind, das aus der Gruppe bestehend aus Nik- 45 ein Kunststoffsubstrat, das aus einem Kunst- kel, Kupfer und Gold ausgewählt ist. stoffmaterial hergestellt ist, in dem eine Vielzahl von Beschleunigerteilchen dispergiert sind, wo- 6. Verfahren nach Anspruch 5, wobei die erste Metall- bei die Beschleunigerteilchen aus einer Verbin- schicht aus Nickel oder Kupfer besteht. dung hergestellt sind, die aus der Gruppe be- 50 stehend aus CuFe2O4-δ, Ca0,25Cu0,75TiO3-ß 7. Verfahren nach Anspruch 6, wobei die Metallfläche und TiO2-σ ausgewählt ist, wobei für δ, β, σ gilt: des Kunststoffartikels aus aufeinanderfolgend plat- 0,05≤δ≤0,8, 0,05≤β≤0,5 und 0,05≤σ≤1,0; und tieren Metallschichten besteht, die eine Struktur auf- eine metallisierte Oberfläche, die unmittelbar weisen, die aus der Gruppe bestehend aus Ni-Cu- auf dem Kunststoffsubstrat angeordnet ist und Ni, Ni- Cu-Ni-Au, Cu- Ni und Cu- Ni-Au ausgewählt ist. 55 aus einer Vielzahl von Metallschichten zusam- mengesetzt ist. 8. Verfahren nach Anspruch 7, wobei die Nickelschich- ten jeweils eine Dicke im Bereich von 0,1 Mikrometer 15. Kunststoffsubstrat, das aus einem Kunststoffmate-

8 15 EP 2 420 593 B1 16

rialhergestellt ist, indem eine Vielzahlvon Beschleu- 7. Procédé selon la revendication 6, dans lequel la sur- nigerteilchen dispergiert sind, wobei die Beschleu- face métallique de l’article plastique consiste en des nigerteilchen aus einer Verbindung hergestellt sind, couches métalliques plaquées séquentiellement qui die aus der Gruppe bestehend aus CuFe204-δ, ont une structure sélectionnée dans le groupe cons- 5 Ca0,25Cu0,75TiO3-β und TiO2-σ, ausgewählt ist, wo- titué de Ni-Cu-Ni, Ni-Cu-Ni-Au, Cu-Ni, et Cu-Ni-Au. bei für δ, β, σ gilt: 0,05≤8≤0,8, 0,05≤β≤0,5 und 0,05≤σ≤1,0. 8. Procédé selon la revendication 7, dans lequel les couches de nickel ont une épaisseur comprise dans la plage entre 0,1 micromètres et 50 micromètres, Revendications 10 les couches de cuivre ayant respectivement une épaisseur comprise dans la plage entre 0,1 micro- 1. Procédé de fabrication d’un article plastique ayant mètres et 100 micromètres, et les couches d’or ayant une surface métallisée composée d’une pluralité de respectivement une épaisseur comprise dans la pla- couches métalliques, comprenant les étapes ge entre 0,01 micromètres et 10 micromètres. suivantes : 15 9. Procédé selon l’une quelconque des revendications prévoir un substrat plastique réalisé en une ma- précédentes, dans lequel les particules accélératri- tière plastique, dans lequel est dispersée une ces ont un diamètre moyen compris dans la plage pluralité de particules accélératrices, les parti- entre 20 nanomètres et 100 micromètres. cules accélératrices étant réalisées en un com- 20 posé sélectionné dans le groupe constitué de 10. Procédé selon l’une quelconque des revendications CuFe2O4-δ, Ca0,25Cu0,75TiO3-ß, et TiO2-σ, où précédentes, dans lequel la quantité de particules pour δ β, σ: 0,05≤δ≤0,8, 0,05≤ß≤0,5 et 0,05 accélératrices est de 1 % en poids à 40 % en poids ≤σ≤1,0 ; du poids total du substrat plastique. enlever la matière plastique dans une zone dé- 25 terminée d’une surface du substrat plastique ; 11. Procédé selon l’une quelconque des revendications plaquer la surface exposée du substrat plasti- précédentes, dans lequel les particules accélératri- que pour former une première couche ces sont réalisées en un composé sélectionné dans

métallique ; le groupe constitué de : CuFe2O3,65, Ca0,25Cu0,75 30 plaquer la première couche métallique pour for- TiO2,84 et TiO. mer une deuxième couche métallique, et, le cas échéant, plaquer ultérieurement d’autres 12. Procédé selon l’une quelconque des revendications couches métalliques. précédentes, dans lequel la matière plastique est sélectionnée dans le groupe constitué d’un thermo- 2. Procédé selon la revendication 1, dans lequel l’ac- 35 plastique et d’une résine thermodurcissable. célérateur estdistribué régulièrement sur l’ensemble du substrat plastique. 13. Procédé selon la revendication 12, dans lequel le plastique thermoplastique est sélectionné dans le 3. Procédé selon l’une quelconque des revendications groupe constitué de polyoléfine, polycarbonate précédentes, dans lequel la matière plastique dans 40 (PC), polyester, polyamide, éther polyaromatique, la zone déterminée est enlevée par un procédé sé- polyesterimide, un mélange de polycarbonate/ lectionné dans un groupe constitué de rayonnement acrylonitrile-butadiène-styrène (PC/ABS), poly(oxy- laser, décharge corona, corrosion chimique, et meu- de de phénylène) (PPO), poly (sulfure de phénylène) lage. (PPS), polyimide (PI), polysulfone (PSU), polyéthe- 45 réthercétone (PEEK), polybenzimidazole (PBI), po- 4. Procédé selon l’une quelconque des revendications lymère à cristaux liquides (LCP), et leurs précédentes, dans lequel la deuxième couche mé- combinaisons ; et dans lequel la résine thermodur- tallique est plaquée par électrolyse ou plaquée de cissable est sélectionnée dans le groupe constitué façon chimique. de résine phénolique, résine d’urée-formaldéhyde, 50 résine mélamine-formaldéhyde, résine époxyde, ré- 5. Procédé selon l’une quelconque des revendications sine alkyde, polyuréthane, et leurs combinaisons. précédentes, dans lequel les couches métalliques sont réalisées en un métal sélectionné dans le grou- 14. Article plastique, comprenant : pe constitué de nickel, cuivre, et or. 55 un substrat plastique réalisé en une matière 6. Procédé selon la revendication 5, dans lequel la pre- plastique, dans lequel est dispersée une plura- mière couche métallique consiste en nickel ou cui- lité de particules accélératrices, les particules vre. accélératrices étant réalisées en un composé

9 17 EP 2 420 593 B1 18

sélectionné dans le groupe constitué de CuFe2O4-δ, Ca0,25Cu0,75TiO3-ß, et TiO2-σ, où pour δ ß, σ: 0,05≤δ≤0,8, 0,05ß≤≤0,5 et 0,05≤σ≤1,0 ; et une surface métallique disposée directement 5 sur le substrat plastique et étant composée d’une pluralité de couches métalliques.

15. Substrat plastique réalisé en une matière plastique, dans lequel est dispersée une pluralité de particules 10 accélératrices, les particules accélératrices étant réalisées en un composé sélectionné dans le groupe

constitué de CuFe2O4-δ, Ca0,25Cu0,75TiO3-ß, et TiO2-σ, où pour δ β, σ: 0,05≤δ≤0,8, 0,05≤ß≤0,5 et 0,05≤σ≤1,0. 15

20

25

30

35

40

45

50

55

10 EP 2 420 593 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 2003031803 A1 [0003] • US 7060421 B [0003]

11