Assignment 1 How Does an NPTEL Online Course Work? the Due Date for Submitting This Assignment Has Passed

Total Page:16

File Type:pdf, Size:1020Kb

Assignment 1 How Does an NPTEL Online Course Work? the Due Date for Submitting This Assignment Has Passed 1/23/2021 Artificial Intelligence Search Methods For Problem Solving - - Unit 4 - Week 1 X (https://swayam.gov.in) (https://swayam.gov.in/nc_details/NPTEL) [email protected] NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Artificial Intelligence Search Methods For Problem Solving (course) Announcements (announcements) About the Course (preview) Ask a Question (forum) Progress (student/home) Mentor (student/mentor) Unit 4 - Week 1 Course outline Assignment 1 How does an NPTEL online course work? The due date for submitting this assignment has passed. Due on 2020-09-30, 23:59 IST. As per our records you have not submitted this assignment. Pre-requisite Assignment The questions in this assignment are recall based, essentially to remind you about the key points in the long history of the desire and quest for building Week 0 thinking machines. 1) ________ is often referred to as the “first programmer” 1 point Week 1 Charles Babbage The Notion of Mind in Lady Ada Lovelace Philosophy (unit? unit=6&lesson=119) Gottfried Wilhelm von Leibniz Alan Turing Reasoning = Computation (unit?unit=6&lesson=120) No, the answer is incorrect. Score: 0 Concepts and Categories Accepted Answers: (unit?unit=6&lesson=121) Lady Ada Lovelace How did AI get its name? 2) Who among the following was the first to build a calculating machine? 1 point (unit?unit=6&lesson=122) The Chess Saga (unit? Blaise Pascal unit=6&lesson=123) Gottfried Wilhelm von Leibniz A Brief History of AI (unit? Thomas de Colmar unit=6&lesson=124) Galileo Galilei The Worlds in our Minds No, the answer is incorrect. (unit?unit=6&lesson=125) Score: 0 Accepted Answers: Epiphemona in Computers Blaise Pascal (unit?unit=6&lesson=126) 3) What can you recall about the “Dartmouth conference” discussed in the lectures? Please note that you will get a zero for even one false positive 1 point Week 1- Feedback : Artificial Intelligence Search Methods It was organized in 1956 to develop ideas about “thinking machines” for problem Solving (unit? unit=6&lesson=13) It was organized by John McCarthy, Alan Turing and Marvin Minsky at Dartmouth College The term “Artificial Intelligence” was coined at Dartmouth Quiz : Assignment 1 (assessment?name=117) Turing devised the Turing test at Dartmouth Lecture Materials (unit? No, the answer is incorrect. Score: 0 unit=6&lesson=172) Accepted Answers: Week 2 It was organized in 1956 to develop ideas about “thinking machines” The term “Artificial Intelligence” was coined at Dartmouth Week 3 4) Who said the following? - “Thoughts themselves are symbolic representations” 1 point Week 4 Rene Descartes John McCarthy Week 5 Galileo Galilei Gottfried Wilhelm von Leibniz Week 6 No, the answer is incorrect. Score: 0 Week 7 Accepted Answers: Rene Descartes Week 8 5) The “Universal Grammar” is ______________________ 1 point Week 9 a theory by Chomsky that says: all humans are born with a common grammar Week 10 a grammar not designed for any particular natural language a grammar that describes the structure of the Universe Week 11 a worldwide standard for English grammar N th i i t https://onlinecourses.nptel.ac.in/noc20_cs81/unit?unit=6&assessment=117 1/4 1/23/2021 Artificial Intelligence Search Methods For Problem Solving - - Unit 4 - Week 1 No, the answer is incorrect. Week 12 Score: 0 Accepted Answers: DOWNLOAD VIDEOS a theory by Chomsky that says: all humans are born with a common grammar a grammar not designed for any particular natural language 6) Can you recall the picture, given in Figure 1, from the lectures? In what context was it used? 1 point To entertain the idea that AI is better than humans at solving pathfinding problems To illustrate that bad town planning leads to poor utilization of land To express the richness, ambiguity and impreciseness of natural language This natural language conversation scenario being proposed as an alternate Turing test No, the answer is incorrect. Score: 0 Accepted Answers: To express the richness, ambiguity and impreciseness of natural language 7) The “Logic Theorist” was ____________________ 1 point a mathematician who worked on Logic a computer program to find proofs a program designed by Simon and Newell a logic based chess player No, the answer is incorrect. Score: 0 Accepted Answers: a computer program to find proofs a program designed by Simon and Newell 8) Which of the following statements is/are true about “Physical Symbol System Hypothesis”? 1 point It is an approach to AI, based on the assumption that all aspects of intelligence can be achieved by the manipulation of symbols It was proposed by Allen Newell and Herbert A. Simon in the mid 1960s A physical symbol system understands the laws of physics The three laws of robotics were especially devised for physical symbol systems No, the answer is incorrect. Score: 0 Accepted Answers: It is an approach to AI, based on the assumption that all aspects of intelligence can be achieved by the manipulation of symbols It was proposed by Allen Newell and Herbert A. Simon in the mid 1960s 9) ______ was the first general-purpose mobile robot to be able to reason about its own actions. 1 point ELIZA SHAKEY SHRDLU Blue Gene No, the answer is incorrect. Score: 0 Accepted Answers: SHAKEY 10) ELIZA ... 1 point was the first general-purpose mobile robot was a simple natural language processing program written at MIT could manipulate the users input to generate its responses was the first to win the Loebner prize N th i i t https://onlinecourses.nptel.ac.in/noc20_cs81/unit?unit=6&assessment=117 2/4 1/23/2021 Artificial Intelligence Search Methods For Problem Solving - - Unit 4 - Week 1 No, the answer is incorrect. Score: 0 Accepted Answers: was a simple natural language processing program written at MIT could manipulate the users input to generate its responses 11) Which of the following address the question whether machines can be intelligent? 1 point Loebner Prize Turing Test Rorschach Test Winograd Schemas No, the answer is incorrect. Score: 0 Accepted Answers: Loebner Prize Turing Test Winograd Schemas 12) As discussed in the lectures, which of the following is/are successfully deployed embodied robots in the current times? 1 point Nadine, the social companion AlphaGo, the playing companion Iva, the chatting companion Kirobo, the space companion No, the answer is incorrect. Score: 0 Accepted Answers: Nadine, the social companion Kirobo, the space companion 13) Which of the following AI agents demonstrated that machines can beat the best humans at chess? 1 point Deep Thought Blue Gene Deep Blue Chess Machine No, the answer is incorrect. Score: 0 Accepted Answers: Deep Blue 14) As discussed in the “Artificial Intelligence: Search Methods for Problem Solving - Prologue”, this course is about 1 point Problem solving Model Based Reasoning Experience Based Reasoning Memory Based Reasoning No, the answer is incorrect. Score: 0 Accepted Answers: Problem solving Model Based Reasoning 15) The motorcycle soon overtook the school bus because it was going too fast. What was going too fast? 1 point the motorcycle the school bus No, the answer is incorrect. Score: 0 Accepted Answers: the motorcycle 16) The motorcycle soon overtook the school bus because it was going too slow. What was going too slow? 1 point the motorcycle the school bus No, the answer is incorrect. Score: 0 Accepted Answers: the school bus 17) Suresh told Ramesh that he scolded him because he had hit the little dog. Who had hit the little dog? 1 point Suresh Ramesh No, the answer is incorrect. Score: 0 Accepted Answers: Ramesh 18) Suresh told Ramesh that he scolded him because he had hit the little dog. Who did the scolding? 1 point https://onlinecourses.nptel.ac.in/noc20_cs81/unit?unit=6&assessment=117 3/4 1/23/2021 Artificial Intelligence Search Methods For Problem Solving - - Unit 4 - Week 1 Suresh Ramesh No, the answer is incorrect. Score: 0 Accepted Answers: Suresh 19) Snigdha told Ramesh that she scolded him because she was in a bad mood. Who was in a bad mood? 1 point Snigdha Ramesh No, the answer is incorrect. Score: 0 Accepted Answers: Snigdha 20) The above five questions involve anaphora resolution . For a computer program to answer the above five questions correctly it would 1 point need to be able to search over the internet for similar sentences need to be able to parse the natural language sentences to extract the answers need a lot of common-sense knowledge about the world need to understand the semantics of gender when talking about people and languages (in many Indian languages nouns and verbs have gender associated with them) need to be able to use data science effectively No, the answer is incorrect. Score: 0 Accepted Answers: need a lot of common-sense knowledge about the world need to understand the semantics of gender when talking about people and languages (in many Indian languages nouns and verbs have gender associated with them) https://onlinecourses.nptel.ac.in/noc20_cs81/unit?unit=6&assessment=117 4/4.
Recommended publications
  • Biographies of Computer Scientists
    1 Charles Babbage 26 December 1791 (London, UK) – 18 October 1871 (London, UK) Life and Times Charles Babbage was born into a wealthy family, and started his mathematics education very early. By . 1811, when he went to Trinity College, Cambridge, he found that he knew more mathematics then his professors. He moved to Peterhouse, Cambridge from where he graduated in 1814. However, rather than come second to his friend Herschel in the final examinations, Babbage decided not to compete for an honors degree. In 1815 he co-founded the Analytical Society dedicated to studying continental reforms of Newton's formulation of “The Calculus”. He was one of the founders of the Astronomical Society in 1820. In 1821 Babbage started work on his Difference Engine designed to accurately compile tables. Babbage received government funding to construct an actual machine, but they stopped the funding in 1832 when it became clear that its construction was running well over-budget George Schuetz completed a machine based on the design of the Difference Engine in 1854. On completing the design of the Difference Engine, Babbage started work on the Analytical Engine capable of more general symbolic manipulations. The design of the Analytical Engine was complete in 1856, but a complete machine would not be constructed for over a century. Babbage's interests were wide. It is claimed that he invented cow-catchers for railway engines, the uniform postal rate, a means of recognizing lighthouses. He was also interested in locks and ciphers. He was politically active and wrote many treatises. One of the more famous proposed the banning of street musicians.
    [Show full text]
  • Women in Computing
    History of Computing CSE P590A (UW) PP190/290-3 (UCB) CSE 290 291 (D00) Women in Computing Katherine Deibel University of Washington [email protected] 1 An Amazing Photo Philadelphia Inquirer, "Your Neighbors" article, 8/13/1957 2 Diversity Crisis in Computer Science Percentage of CS/IS Bachelor Degrees Awarded to Women National Center for Education Statistics, 2001 3 Goals of this talk ! Highlight the many accomplishments made by women in the computing field ! Learn their stories, both good and bad 4 Augusta Ada King, Countess of Lovelace ! Translated and extended Menabrea’s article on Babbage’s Analytical Engine ! Predicted computers could be used for music and graphics ! Wrote the first algorithm— how to compute Bernoulli numbers ! Developed notions of looping and subroutines 5 Garbage In, Garbage Out The Analytical Engine has no pretensions whatever to originate anything. It can do whatever we know how to order it to perform. It can follow analysis; but it has no power of anticipating any analytical relations or truths. — Ada Lovelace, Note G 6 On her genius and insight If you are as fastidious about the acts of your friendship as you are about those of your pen, I much fear I shall equally lose your friendship and your Notes. I am very reluctant to return your admirable & philosophic 'Note A.' Pray do not alter it… All this was impossible for you to know by intuition and the more I read your notes the more surprised I am at them and regret not having earlier explored so rich a vein of the noblest metal.
    [Show full text]
  • Ai: Early History 1 and Applications
    AI: EARLY HISTORY 1 AND APPLICATIONS All men by nature desire to know... —ARISTOTLE, Opening sentence of the Metaphysics Hear the rest, and you will marvel even more at the crafts and resources I have contrived. Greatest was this: in the former times if a man fell sick he had no defense against the sickness, neither healing food nor drink, nor unguent; but through the lack of drugs men wasted away, until I showed them the blending of mild simples wherewith they drive out all manner of diseases. It was I who made visible to men’s eyes the flaming signs of the sky that were before dim. So much for these. Beneath the earth, man’s hidden blessing, copper, iron, silver, and gold—will anyone claim to have discovered these before I did? No one, I am very sure, who wants to speak truly and to the purpose. One brief word will tell the whole story: all arts that mortals have come from Prometheus. —AESCHYLUS, Prometheus Bound 1.1 From Eden to ENIAC: Attitudes toward Intelligence, Knowledge, and Human Artifice Prometheus speaks of the fruits of his transgression against the gods of Olympus: his purpose was not merely to steal fire for the human race but also to enlighten humanity through the gift of intelligence or nous: the rational mind. This intelligence forms the foundation for all of human technology and ultimately all human civilization. The work of Aeschylus, the classical Greek dramatist, illustrates a deep and ancient awareness of the extraordinary power of knowledge. Artificial intelligence, in its very direct concern for Prometheus’s gift, has been applied to all the areas of his legacy—medicine, psychology, biology, astronomy, geology—and many areas of scientific endeavor that Aeschylus could not have imagined.
    [Show full text]
  • Ada Lovelace the first Computer Programmer 1815 - 1852
    Ada Lovelace The first computer programmer 1815 - 1852 Biography Ada Lovelace Day I Born on December 10th, 1815 in London as Augusta Ada Byron Each second Tuesday in October is Ada Lovelace Day. A day to raise the I Parents separated when she was a baby profile of women in science, technology, engineering, and maths to create new role models for girls and women in these fields. During this day the I Father Lord Byron was a poet and died when she was 8 years old accomplishments of those women are celebrated. I Mother Lady Wentworth was a social reformer I Descended from a wealthy family I Early interest in mathematics and science, encouraged by her mother Portrait I Obtained private classes and got in touch with intellectuals, e.g. Mary Sommerville who tutored her and later introduced Lovelace to Charles Babbage at the age of 17 I Married in 1835 William King at the age of 19, shortly after becoming the Countess of Lovelace I By 1839, she had given birth to 3 children I Continued studying maths, supported among others by Augustus De Morgan, a math professor in London who taught her via correspondence I In 1843, she published a translation of an Italian academic paper about Babbage's Analytical Engine and added her famous note section (see Contributions) I Died on November 27th, 1852 at the age of 36 Contributions I First computer programmer, roughly a century before the electronic computer I A two decade lasting correspondence with Babbage about his idea of an Analytical Engine I Developed an algorithm that would enable the Analytical Engine to calculate a sequence of Bernoulli numbers, unfortunately, the machine was never built I First person to realize the power of computer programs: Not only used for calculations with numbers I Combined arts and logic, calling it poetical science Figure 3:Ada Lovelace I First reflections about artificial intelligence, but she rejected the idea Bernoulli Numbers Quotes I Play an important role in several domains of mathematics, e.g.
    [Show full text]
  • Connectionism and the Chinese-Room About Twenty Years
    Connectionism and the Chinese-Room About twenty years ago, John Searle began a huge body of discourse with his rejection of a computational theory of mind. Searle is arguing against "strong AI”, his term for computational theory of mind . Strong AI would claim that an appropriately programmed computer can posses cognitive states, that it really is or has a mind. Searle is arguing generally against a computational approach to mind. To this end, he utilizes a now infamous thought experiment, known as the Chinese-Room. At the core of Searle‟s thought experiment there is a human simulating a computer. The human in the room is given meaningless symbols in Chinese script and instructions in English for manipulating them according to their shapes. By following the instructions and correlating the symbols he appears to those outside the room to understand the Chinese language. In reality he understands nothing; he is just manipulating the symbols according to their syntactic properties. Since he is doing in essence what a computer does and he doesn‟t understand Chinese, then no computer can ever come to genuinely understand Chinese, or anything for that matter. At least, not the way humans do. To understand the effects of Searle‟s argument, we must first understand what exactly he is arguing against. Searle directs his efforts at what he calls Strong AI. At the time, this term encompassed all computational theories of mind. To fully analyse the effects of Searle‟s experiment, it is helpful to distinguish two separate types of computational theory. This will be done by examining the use and dismissal of standard symbolic atoms.
    [Show full text]
  • Lovelace & Babbage and the Creation of the 1843 'Notes'
    Lovelace & Babbage and the Creation of the 1843 ‘Notes’ John Fuegi and Jo Francis Flare/MITH Augusta Ada Lovelace worked with Charles Babbage to create a description of Babbage’s unbuilt invention, the Analytical Engine, a highly advanced mechanical calculator often considered a forerunner of the electronic calculating computers of the 20th century. Ada Lovelace’s “Notes,” describing the Analytical Engine, published in Taylor’s Scientific Memoirs in 1843, contained a ground-breaking description of the possibilities of programming the machine to go beyond number-crunching to “computing” in the wider sense in which we understand the term today. This article expands on research first presented by the authors in their documentary film, To Dream Tomorrow. What shall we do to get rid of Mr. Babbage and known to have crossed the intellectual thresh- his calculating Machine? Surely if completed it old between conceptualizing computing as would be worthless as far as science is con- only for calculation on the one hand, and on cerned? the other hand, computing as we know it —British Prime Minister Sir Robert Peel, 18421 today: with wider applications made possible by symbolic substitution. The Analytical Engine does not occupy common In an early background interview at the ground with mere ‘calculating machines.’ … In Science Museum (London) for the historical enabling mechanism to combine together gen- documentary film about collaboration between eral symbols, in successions of unlimited variety Lovelace and Babbage, To Dream Tomorrow,3 and extent, a uniting link is established between Babbage authority Doron Swade mentioned the operations of matter and the abstract mental that he thought Babbage and Lovelace had processes of the most abstract branch of mathe- “very different qualities of mind.” Swade’s matical science.
    [Show full text]
  • A Brief History of Computers
    History of Computers http://www.cs.uah.edu/~rcoleman/Common/History/History.html A Brief History of Computers Where did these beasties come from? Ancient Times Early Man relied on counting on his fingers and toes (which by the way, is the basis for our base 10 numbering system). He also used sticks and stones as markers. Later notched sticks and knotted cords were used for counting. Finally came symbols written on hides, parchment, and later paper. Man invents the concept of number, then invents devices to help keep up with the numbers of his possessions. Roman Empire The ancient Romans developed an Abacus, the first "machine" for calculating. While it predates the Chinese abacus we do not know if it was the ancestor of that Abacus. Counters in the lower groove are 1 x 10 n, those in the upper groove are 5 x 10 n Industrial Age - 1600 John Napier, a Scottish nobleman and politician devoted much of his leisure time to the study of mathematics. He was especially interested in devising ways to aid computations. His greatest contribution was the invention of logarithms. He inscribed logarithmic measurements on a set of 10 wooden rods and thus was able to do multiplication and division by matching up numbers on the rods. These became known as Napier’s Bones. 1621 - The Sliderule Napier invented logarithms, Edmund Gunter invented the logarithmic scales (lines etched on metal or wood), but it was William Oughtred, in England who invented the sliderule. Using the concept of Napier’s bones, he inscribed logarithms on strips of wood and invented the calculating "machine" which was used up until the mid-1970s when the first hand-held calculators and microcomputers appeared.
    [Show full text]
  • Pioneers of Computing
    Pioneers of Computing В 1980 IEEE Computer Society учредило Золотую медаль (бронзовую) «Вычислительный Пионер» Пионерами учредителями стали 32 члена IEEE Computer Society, связанных с работами по информатике и вычислительным наукам. 1 Pioneers of Computing 1.Howard H. Aiken (Havard Mark I) 2.John V. Atanasoff 3.Charles Babbage (Analytical Engine) 4.John Backus 5.Gordon Bell (Digital) 6.Vannevar Bush 7.Edsger W. Dijkstra 8.John Presper Eckert 9.Douglas C. Engelbart 10.Andrei P. Ershov (theroretical programming) 11.Tommy Flowers (Colossus engineer) 12.Robert W. Floyd 13.Kurt Gödel 14.William R. Hewlett 15.Herman Hollerith 16.Grace M. Hopper 17.Tom Kilburn (Manchester) 2 Pioneers of Computing 1. Donald E. Knuth (TeX) 2. Sergei A. Lebedev 3. Augusta Ada Lovelace 4. Aleksey A.Lyapunov 5. Benoit Mandelbrot 6. John W. Mauchly 7. David Packard 8. Blaise Pascal 9. P. Georg and Edvard Scheutz (Difference Engine, Sweden) 10. C. E. Shannon (information theory) 11. George R. Stibitz 12. Alan M. Turing (Colossus and code-breaking) 13. John von Neumann 14. Maurice V. Wilkes (EDSAC) 15. J.H. Wilkinson (numerical analysis) 16. Freddie C. Williams 17. Niklaus Wirth 18. Stephen Wolfram (Mathematica) 19. Konrad Zuse 3 Pioneers of Computing - 2 Howard H. Aiken (Havard Mark I) – США Создатель первой ЭВМ – 1943 г. Gene M. Amdahl (IBM360 computer architecture, including pipelining, instruction look-ahead, and cache memory) – США (1964 г.) Идеология майнфреймов – система массовой обработки данных John W. Backus (Fortran) – первый язык высокого уровня – 1956 г. 4 Pioneers of Computing - 3 Robert S. Barton For his outstanding contributions in basing the design of computing systems on the hierarchical nature of programs and their data.
    [Show full text]
  • Ada and the First Computer
    Ada and the First Computer The collaboration between Ada, countess of Lovelace, and computer pioneer Charles Babbage resulted in a landmark publication that described how to program the world’s first computer by Eugene Eric Kim and Betty Alexandra Toole eople called Augusta Ada King’s father “mad and bad” for his wild ways, but he was better known as Lord Byron, the poet. Ada inherited her famous father’s P way with words and his zest for life. She was a beautiful, flirtatious woman who hobnobbed with England’s elite and who died at the youthful age of 36, the same age at which her father died. And like Byron, Ada is best known for something she wrote. In 1843 she published an influential set of notes that described Charles Babbage’s An- alytical Engine, the first automatic, general-purpose computing machine ever designed. Although the Analytical Engine was never built—largely because Babbage could not raise the funds for its construction—Ada’s notes included a program for using it to com- pute a series of figures called Bernoulli numbers [see box on page 78]. Ada’s notes established her importance in computer science, but her fascinating life and lineage—and her role as a female pioneer in a field in which women have always been notoriously underrepresented—have lately turned her into an icon. In addition to numerous biographies, she has inspired plays and novels written by the likes of such lu- minaries as Tom Stoppard and Arthur C. Clarke. Conceiving Ada, a movie loosely based on her life, was released by Fox Lorber in February.
    [Show full text]
  • Le Dodici Muse
    Le dodici Muse Master Scienziati in Azienda XVI Edizione 2015-2016 Indice Il perché delle dodici muse .................................. 3 Biografie delle dodici muse .................................. 6 Teano da Crotone, filosofa della Magna Grecia .................. 6 Teano da Crotone, philosopher of the Magna Grecia ............ 6 Ipazia di Alessandria: scienziata perseguitata o istigatrice pagana? ................................................................. 7 Hypatia of Alexandria: victimised scientist or inciter heathen?8 Trotula de Ruggiero, la donna che curava le donne ............. 9 Trotula de Ruggiero, women healer .............................. 10 Ildegarda da Bingen “Protettrice delle battaglie” ............. 12 Hildegar of Bingen “protector of battles” ....................... 13 Il magico mondo di Émilie du Châtelet .......................... 15 The magic world of Émilie du Châtelet .......................... 16 Caroline Herschel: una stella nella scienza ..................... 16 Caroline Herschel: a star in science .............................. 17 Marie Sophie Germain: il valore velato delle donne ........... 18 Marie Sophie Germain: the veiled value of women ............ 20 Augusta Ada Byron: l’incantatrice di numeri. .................. 21 Augusta Ada Byron: The enchantress of numbers. ............. 23 Maria Montessori : una vita dedicata all’infanzia .............. 25 Maria Montessori: a life dedicated to childhood ............... 25 Il fiocco di Lise: la storia di Lise Meitner ........................ 26 Lise’s
    [Show full text]
  • “The Computer” “The from Tomecek M
    GRAB & GO EXCERPT TO WRITE ABOUT “The Computer” From What a Great Idea! Inventions That Changed the World by Stephen M. Tomecek Today computers are just about everywhere, from the ignition system of our cars to the tuners in our digital radios. Millions of us use personal computers in our homes for everything from video games to home finances. This very book was written on one! Although computers are thought of as modern, high-tech devices, they actually date back to 1822, when Charles Babbage, an English mathematician, was looking for an easier way to count numbers. How It Works To understand how the computer was invented, we must first define exactly what a computer is. Simply stated, it’s a programmable device that helps solve problems by processing information following a series of instructions. In 1812, Babbage came up with the idea of using punched cards to input data into an “analytical engine.” He built a series of calculators leading to his prototype machine. Unfortunately, Babbage’s groundbreaking ideas couldn’t be turned into reality due to the limits of the equipment of the day. Picking up on some of Babbage’s ideas, an American inventor named Herman Hollerith was determined to come up with a way of automatically tabulating census data. Hollerith had worked on the 1880 U.S. census and found it to be very time-consuming. By the 1890 census, he had a working device which used punched cards to input data via an electric card reader. Impact Through the early part of the twentieth century, electric calculators flourished, but they had their limits.
    [Show full text]
  • Frameworks for Intelligent Systems
    Frameworks for Intelligent Systems CompSci 765 Meeting 3 Pat Langley Department of Computer Science University of Auckland Outline of the Lecture • Computer science as an empirical discipline • Physical symbol systems • List structures and list processing • Reasoning and intelligence • Intelligence and search • Knowledge and intelligence • Implications for social cognition 2 Computer Science as an Empirical Discipline! In their Turing Award article, Newell and Simon (1976) make some important claims: • Computer science is an empirical discipline, rather than a branch of mathematics. • It is a science of the artificial, in that it constructs artifacts of sufficient complexity that formal analysis is not tractable. • We must study these computational artifacts as if they were natural systems, forming hypotheses and collecting evidence. They propose two hypotheses based on their founding work in list processing and artificial intelligence.! 3 Laws of Qualitative Structure! The authors introduce the idea of laws of qualitative structure, which are crucial for any scientific field’s development: • The cell doctrine in biology • Plate tectonics in geology • The germ theory of disease • The atomic theory of matter They propose two such laws, one related to mental structures and another and the other to mental processes. 4 Physical Symbol Systems! Newell and Simon’s first claim, the physical symbol system hypothesis, states that: • A physical symbol system has the necessary and sufficient means for general intelligent action. They emphasize general cognitive abilities, such as humans exhibit, rather than specialized ones. This is a theoretical claim that is subject to empirical tests, but the evidence to date generally supports it.! 5 More on Physical Symbol Systems! What do Newell and Simon mean by a physical symbol system? • Symbols are physical patterns that are stable unless modified.
    [Show full text]