New Data on the Domestication of the Two Subspecies Indica and Japonica of the Asian Cultivated Rice (Oryza Sativa) During the D

Total Page:16

File Type:pdf, Size:1020Kb

New Data on the Domestication of the Two Subspecies Indica and Japonica of the Asian Cultivated Rice (Oryza Sativa) During the D Songklanakarin J. Sci. Technol. 38 (5), 495-500, Sep. - Oct. 2016 http://www.sjst.psu.ac.th Original Article New data on the domestication of the two subspecies indica and japonica of the Asian cultivated rice (Oryza sativa) during the Dvaravati Period in Thailand and Lao PDR Preecha Prathepha* Department of Biotechnology, Faculty of Technology, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150 Thailand. Received: 21 October 2015; Accepted: 21 January 2016 Abstract Rice hull imprints on bricks of the Dvaravati Period from four historical sites in Thailand and Lao PDR were measured and classified. In addition, a collection of traditional rice landraces from northern, central, northeastern regions of Thailand, Lao PDR, Vietnam and Cambodia were used to examine rice grain shapes and to test phenol reaction response of rice hulls. The results show that rice hulls in bricks from the Dvaravati Period may be classified into three types of cultivated rice grain shapes, i.e., round, large, and slender types. With the combined methods in archaeology, physiology and ecotype, the present domesticated rice landraces have been combined and by implication, can be possibly traced to types of rice in the Dvaravati Period. It is now suggested that the subspecies indica and japonica of Asian cultivated rice were domesticated at that time. Keywords: rice domestication, historical sites, Dvaravati Period 1. Introduction Rice cultivation in mainland Southeast Asia rice appears by 2000 BC, especially associated with the lower reaches of the The Asian cultivated rice (Oryza sativa L.) may have Red River (Vietnam), the Mekong River (Cambodia) and Chao been domesticated from the wild progenitor (O. rufipogon) Phraya (Thailand) (Fuller et al,. 2010). Based on fundamental dated approximately 10,000-20,000 BP (Jiang and Liu, 2006; questions of when rice cultivation began in Thailand archaeo- Wu et al., 2012). Based on morphological, biochemical, and logical evidence for rice cultivation have been studied at three molecular data, Asian cultivated rice is classified into two archaeological sites (i.e., Pung Hung cave in the northern, subspecies, i.e. japonica and indica (Oka and Morishima, Non Nok Tha in the northeastern, and Kok Phanom Di in the 1982). In eco-geographical terms, the subspecies indica have central region). It appears that around 1,800 to 2,500 years grown throughout tropical Asia at low latitudes and low ago rice cultivation originated in Thailand (Bayard, 1970; elevations, while the subspecies japonica are typically found Solheim, 1970; Watabe et al., 1970). in temperate East Asia, Southeast Asia, and South Asia at Watanabe et al. (1963) reported grain morphology high latitudes and high elevations (Cai et al., 2007). Rice from rice husk contained in bricks of cultivated rice distri- scientists now accept that rice was originally domesticated buted in Thailand during four periods (6th-11th, 11th-15th, 15th- at the Yangtze River area in China (Gross and Zhao, 2014). 18th, and after the 18th century). Grain types were classified into three types, i.e. round, slender, and large types. During the 6th-11th centuries (i.e., Dvaravati Period) in Thailand, rice * Corresponding author. grains with three types were found, with the round type as the Email address: [email protected]; dominant type. In this report, the round type is designated [email protected] as “japonica” or “japonica-like” rice, while the large type of 496 P. Prathepha / Songklanakarin J. Sci. Technol. 38 (5), 495-500, 2016 grains are of the upland variety and are presumably of the domesticated in the Dvaravati Period of Thailand. It is glutinous upland variety. For the slender type, most of the proposed that the study of the morphology of rice grains varieties were probably of the non-glutinous lowland variety. through the comparison of grain morphology of old speci- It is not unlikely that the round type belonged to the gluti- mens with those of the present varieties or rice landraces will nous-lowland variety. This means that the rice grown since identify the specimens of each type and reconstruct the long the 6th century was both glutinous (large type) and non- history of rice-growing societies in Thailand. Thus, the objec- glutinous (slender type). tives of the present study are to classify the grain morpho- Oka and Chang first reported a japonica type of logy of rice hulls imprinted on bricks dated to the Dvaravati cultivated rice found in northern Thailand (Oka and Chang, Period and to survey the phenol response in traditional rice 1963). These rice varieties consisted of both glutinous and landraces and then to determine whether the associations non-glutinous rice. From the geographical distribution, it between grain morphology and the phenol response can be became apparent that the indica type was grown in lowlands, demonstrated in the two subspecies indica or japonica. whereas the japonica type was found in high altitude areas (Vaughan et al., 2008). 2. Materials and Methods Japonica is now subdivided into two subgroups called temperate japonica and tropical japonica or javanica During 2014-2015, several surveys were conducted (Oka, 1988). Temperate japonica rice varieties are distributed to search for bricks that contained molds (or imprint) of rice mainly in the islands of Western Pacific, from Indonesia to grains at selected historical sites in Thailand and Laos PDR. Japan, and in certain parts of the continent in China and Some bricks were collected or their photographs taken from Korea, while tropical japonica rice varieties are distributed on three historical sites of Thailand, all of which are registered mountainous regions at low medium elevations in equatorial at The Fine Arts Department: the Phrathatyaku (No.0003338, area (Oka and Chang, 1963). These two subspecies of Asian 16°19’12"N, 103°31’12"E) in Kalasin province; Umyaku cultivated rice can be distinguished using classical diagnos- (No. 0002909, 16°18’36"N, 103°18’00"E) in Mahasarakham tic traits, including seedling resistance to KClO3, seedling province, both in the northeastern region; and Uthong survival in cold temperatures, grain apiculus hair length, and ancient city (No. 0004914, 14°22’12"N, 99°53’24"E) in phenol reaction (Morishima et al., 1992). The phenol reaction Suphanburi province, central region. In the Lao PDR, some test showed that rice hulls and grains turn dark in color after bricks of the Old Vientiane Wall (17°54’05"N, 102°39’03"E), exposure to a 1-2% aqueous phenol solution; japonica type registered at the Department of Information and Culture in the showed no color change (or a negative response), whereas Vientiane capital, were sampled and photographed. Figure 1 the hull of indica type showed positive response (i.e., a color shows the specimens of imprints of rice husk on bricks from change from yellow to dark brown or black) (Oka and Chang, these historical sites. In addition, a collection of rice landraces 1961). from northern, central, northeastern regions of Thailand, Lao Dvaravati is a culture that the Dvaravati Culture were PDR, Vietnam and Cambodia were used to examine phenol regarded as the first historic culture of present-day Thailand reactions of rice hulls. Samples of 20 rice hulls found in a and has been roughly dated to c. 600-1,000 CE and it is clear cave of an archeological site in Lao PDR were used to analyze that the Dvaravati Period marked a period of cultural growth, grain shape and to examine the phenol reaction. Rice hull social complexity, and incipient urbanization ranging from shapes (length and width and L/W ratio) were analyzed by locations such as Thung Sethi in the upper peninsula, north using VISA Lab’s A-VIS 4.0 (Amornsin, A. 2008. VISA Lab’s to Nakhon Pathom, U-Thong, and then across the central AVIS Software, Mahasarakham University, Thailand, personal plains into the Korat Plateau in the northeast (Glover, 2011). communication). In each of the historical site, 25 good shapes Around 257-357 CE, the communities in the area of the Chao Phraya River developed the highest civilization in the region, with easy access to the sea and settling in a habitat in a river basin suitable for agriculture (Glover, 2011). Since 1968, no investigation had been conducted so far to identify which subspecies of these rice grains had been cultivated during the Dvaravati Period. It is therefore of particular interest to classify the Asian cultivated rice at the subspecies level. Archaeological evidences would address big questions about the past that in most cases cannot be ascertained as written records are absent or limited. This study allows us to formu- late a tentative hypothesis that can be further explored and makes some general conclusions on the history of rice agri- culture in Thailand. Half a century of scientific research has reached no Figure 1. Example of imprints of rice husks on bricks from four conclusions on the subspecies of cultivated rice which were historical sites dated to the Dvaravati Period. P. Prathepha / Songklanakarin J. Sci. Technol. 38 (5), 495-500, 2016 497 of rice hulls imprinted on bricks and 20 rice hulls from a cave width from 1.8 mm to 3.4 mm. The length/width ratio of these in a historical site in Lao PDR were selected to measure grain rice husks examined ranged from 2.42 to 4.5 (Table 1). It is length and width. The ratios of length to width were calcu- suggested that the rice husks examined may be divided into lated and grain shapes were then classified into round (short), three types, i.e. round, large and slender types, each cor- large (medium) and slender (long) types, based on the responding to japonica-like rice, tropical japonica and methods formulated by the International Rice Research indica, respectively.
Recommended publications
  • Global Rice Market Projections Distinguishing Japonica and Indica Rice
    Global Rice Market Projections Distinguishing Japonica and Indica Rice JARQ 54 (1), 63-91 (2020) https://www.jircas.go.jp Global Rice Market Projections Distinguishing Japonica and Indica Rice Global Rice Market Projections Distinguishing Japonica and Indica Rice under Climate Change Tatsuji KOIZUMI* and Gen FURUHASHI Policy Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan Abstract Rice is not strictly a homogeneous commodity, with the international rice market largely divided into the japonica and indica rice markets. Both follow different market structures and the international prices of japonica and indica show different trends. We projected and simulated the future global japonica and indica rice markets under climate change in the long term, using a partial equilibrium model. The Rice Economy Climate Change (RECC) model thus developed covers the japonica and indica rice markets in 24 countries and regions as the entire world rice market. The simulation results suggest that the international price of japonica rice will be more volatile than that of indica rice, and that both price indicators will exhibit different trends due to the impact of long-term climate change. Discipline: Social Science Additional key words: rice varieties, price volatility, MIROC, RCPs, partial equilibrium model Introduction developed the Arkansan Global Rice Model,1 distinguishing only the markets for long-grain and short-/ Rice production and consumption have gradually medium-grain rice in the United States (US), without increased over the years, reaching a trade volume of completely specifying the markets for other types of rice. almost 46 million tons in 2016 (USDA-FAS 2018b). Koizumi and Kanamaru (2016) conducted a simulation However, rice in the global market is not, strictly using a partial equilibrium model to alleviate climate speaking, a homogeneous commodity.
    [Show full text]
  • Progress and Prospect of Breeding Utilization of Green Revolution Gene SD1 in Rice
    agriculture Review Progress and Prospect of Breeding Utilization of Green Revolution Gene SD1 in Rice Youlin Peng 1 , Yungao Hu 1, Qian Qian 2 and Deyong Ren 2,* 1 Rice Research Institute, Southwest University of Science and Technology, Mianyang 621010, China; [email protected] (Y.P.); [email protected] (Y.H.) 2 State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; [email protected] * Correspondence: [email protected] Abstract: Rice (Oryza sativa L.) is one of the most important cereal crops in the world. The iden- tification of sd1 mutants in rice resulted in a semi-dwarf phenotype that was used by breeders to improve yields. Investigations of sd1 mutants initiated the “green revolution” for rice and staved off famine for many people in the 1960s. The smaller plant height conferred by sd1 allele gives the plants lodging resistance even with a high amount of nitrogen fertilizer. Guang-chang-ai-carrying sd1 was the first high-yielding rice variety that capitalized on the semi-dwarf trait, aiming to significantly improve the rice yield in China. IR8, known as the miracle rice, was also bred by using sd1. The green revolution gene sd1 in rice has been used for decades, but was not identified for a long time. The SD1 gene encodes the rice Gibberellin 20 oxidase-2 (GA20ox2). As such, the SD1 gene is instrumental in uncovering the molecular mechanisms underlying gibberellin biosynthesis There are ten different alleles of SD1. These alleles are identified by genome sequencing within several donor lines in breeding for semi-dwarf rice.
    [Show full text]
  • Evaluation of Japonica Rice (Oryza Sativa L.) Varieties and Their Improvement in Terms of Stability, Yield and Cooking Quality by Pure-Line Selection in Thailand
    ESEARCH ARTICLE R ScienceAsia 46 (2020): 157–168 doi: 10.2306/scienceasia1513-1874.2020.029 Evaluation of japonica rice (Oryza sativa L.) varieties and their improvement in terms of stability, yield and cooking quality by pure-line selection in Thailand Pawat Nakwilaia, Sulaiman Cheabuc, Possawat Narumona, Chatree Saensukb, Siwaret Arikita,b, a,b, Chanate Malumpong ∗ a Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140 Thailand b Rice Science Center & Rice Gene Discovery Unit, Kasetsart University, Nakhon Pathom 73140 Thailand c Faculty of Agriculture, Princess of Naradhiwas University, Narathiwat 96000 Thailand ∗Corresponding author, e-mail: [email protected] Received 3 Aug 2019 Accepted 3 Apr 2020 ABSTRACT: Many companies in Thailand have encouraged farmers, especially those in the northern regions, to cultivate DOA1 and DOA2 japonica rice varieties. Recently, the agronomic traits of DOA1 and DOA2 were altered, affecting yield and cooking quality. Thus, the objectives of this study were to evaluate the agronomic traits and cooking quality of DOA1 and DOA2 and those of exotic japonica varieties in different locations, including the Kamphaeng Saen and Phan districts (WS16). DOA2 was improved by pure-line selection. The results showed that the Phan district was better suited to grow japonica varieties than the Kamphaeng Saen district and that DOA2 produced high grain yields in both locations. Furthermore, DOA2 was selected by the pure-line method in four generations, after which five candidate lines, Tana1 to Tana5, were selected for yield trials. The results of yield trials in three seasons (WS17, DS17/18, WS18) confirmed that Tana1 showed high performance in terms of its agronomic traits and grain yield.
    [Show full text]
  • Could Japonica Rice Be an Alternative Variety for Increased Global Food Security and Climate Change Mitigation?
    foods Article Could Japonica Rice Be an Alternative Variety for Increased Global Food Security and Climate Change Mitigation? Daniel Dooyum Uyeh 1,2,3 , Senorpe Asem-Hiablie 4, Tusan Park 1,3,* , Kyungmin Kim 5 , Alexey Mikhaylov 6 , Seungmin Woo 1,2,3 and Yushin Ha 1,2,3,* 1 Department of Bio-Industrial Machinery Engineering, Kyungpook National University, Daegu 41566, Korea; [email protected] (D.D.U.); [email protected] (S.W.) 2 Upland-Field Machinery Research Centre, Kyungpook National University, Daegu 41566, Korea 3 Smart Agriculture Innovation Center, Kyungpook National University, Daegu 41566, Korea 4 Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA 16802, USA; [email protected] 5 Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41566, Korea; [email protected] 6 Financial Research Institute of Ministry of Finance of the Russian Federation, 127006 Moscow, Russia; [email protected] * Correspondence: [email protected] (T.P.); [email protected] (Y.H.) Abstract: The growing importance of rice globally over the past three decades is evident in its strategic place in many countries’ food security planning policies. Still, its cultivation emits substantial greenhouse gases (GHGs). The Indica and Japonica sub-species of Oryza sativa L. are mainly grown, with Indica holding the largest market share. The awareness, economics, and acceptability of Japonica Citation: Uyeh, D.D.; Asem-Hiablie, rice in a food-insecure Indica rice-consuming population were surveyed. The impact of parboiling S.; Park, T.; Kim, K.; Mikhaylov, A.; on Japonica rice was studied and the factors which most impacted stickiness were investigated Woo, S.; Ha, Y.
    [Show full text]
  • Development and Utilization of Resistant Starch in Cooked Rice Grains and Breads Michaael Reed Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Development and utilization of resistant starch in cooked rice grains and breads Michaael Reed Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Food Science Commons Recommended Citation Reed, Michaael, "Development and utilization of resistant starch in cooked rice grains and breads" (2012). Graduate Theses and Dissertations. 12810. https://lib.dr.iastate.edu/etd/12810 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. i Development and utilization of resistant starch in cooked rice grains and breads by Michael Owen Reed A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Food Science and Technology Program of Study Committee: Jay-lin Jane, Major Professor Terri Boyston Olga Zabotina Iowa State University Ames, Iowa 2012 Copyright © Michael Owen Reed, 2012. All rights reserved. ii DEDICATION I dedicate this thesis to my parents, Thomas and Sharon, and to my brother, Brian; for your unending support, encouragement, friendship, and love. You have watched as I became the man I am today and never gave up on me. For the times that I fell short, you were always there for me, showing me that there is a better way.
    [Show full text]
  • Degruyter Revac Revac-2021-0137 272..292 ++
    Reviews in Analytical Chemistry 2021; 40: 272–292 Review Article Vinita Ramtekey*, Susmita Cherukuri, Kaushalkumar Gunvantray Modha, Ashutosh Kumar*, Udaya Bhaskar Kethineni, Govind Pal, Arvind Nath Singh, and Sanjay Kumar Extraction, characterization, quantification, and application of volatile aromatic compounds from Asian rice cultivars https://doi.org/10.1515/revac-2021-0137 crop and deposits during seed maturation. So far, litera- received December 31, 2020; accepted May 30, 2021 ture has been focused on reporting about aromatic com- Abstract: Rice is the main staple food after wheat for pounds in rice but its extraction, characterization, and fi more than half of the world’s population in Asia. Apart quanti cation using analytical techniques are limited. from carbohydrate source, rice is gaining significant Hence, in the present review, extraction, characterization, - interest in terms of functional foods owing to the presence and application of aromatic compound have been eluci of aromatic compounds that impart health benefits by dated. These VACs can give a new way to food processing fl - lowering glycemic index and rich availability of dietary and beverage industry as bio avor and bioaroma com fibers. The demand for aromatic rice especially basmati pounds that enhance value addition of beverages, food, - rice is expanding in local and global markets as aroma is and fermented products such as gluten free rice breads. considered as the best quality and desirable trait among Furthermore, owing to their nutritional values these VACs fi consumers. There are more than 500 volatile aromatic com- can be used in bioforti cation that ultimately addresses the pounds (VACs) vouched for excellent aroma and flavor in food nutrition security.
    [Show full text]
  • Sensory Profile of Rice-Based Snack
    foods Article Sensory Profile of Rice-Based Snack (Nuroongji) Prepared from Rice with Different Levels of Milling Degree Mina K. Kim Department of Food Science and Human Nutrition and Fermented Food Research Center, Jeonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Korea; [email protected]; Tel.: +82-63-270-3879 Received: 22 April 2020; Accepted: 20 May 2020; Published: 26 May 2020 Abstract: Nuroongji is a traditional rice-based snack that is widely consumed in Korea, but there is no reported comprehensive sensory characterization of this popular snack. The objective of this study was to conduct a sensory analysis of Nuroongji made with rice with different degrees of milling. Four different types of Nuroongji samples according to the degree of milling were prepared in the lab and subjected to physiochemical analysis. Descriptive sensory analysis was conducted by a trained panel (n = 8), and a consumer acceptance test was conducted using college students (n = 70). A sensory lexicon describing the flavor and texture characteristics of Nuroongji was developed: it included roasted brown rice, burnt, buckwheat, rice powder, glutinous rice power, and floral. The following texture attributes were evaluated in triplicate: hardness of particles, irregularity of particles, degree of coagulation, number of chews, and residual mouthfeel. Significant differences in flavor and mouthfeel attributes were observed between the Nuroongji samples according to the degree of milling (p < 0.05). Nuroongji made with white rice (N1) had a higher hardness value and less sweetness compared to other samples (p < 0.05). Texture- and mouthfeel-related attributes such as cohesiveness of the mass, irregularity of the surface, and astringency were identified as important characteristics that drive consumer acceptance of Nuroongji products.
    [Show full text]
  • Temperate Rice in Korea. In
    2012 TTP-Citation.inddP-Citation.indd i 55/28/2012/28/2012 33:17:13:17:13 PPMM The International Rice Research Institute (IRRI) was established in 1960 by the Ford and Rockefeller Foundations with the help and approval of the Government of the Philippines. Today, IRRI is one of the 15 nonprofi t international research centers that is a member of the CGIAR Consortium (www.cgiar.org). It is supported in part by government funding agencies, foundations, the private sector, and nongovernment organizations. The responsibility for this publication rests with the International Rice Research Institute. Copyright International Rice Research Institute 2012 This publication is copyrighted by the International Rice Research Institute (IRRI) and is licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (Unported). Unless otherwise noted, users are free to copy, duplicate, or reproduce, and distribute, display, or transmit any of the articles or portions of the articles, and to make translations, adaptations, or other derivative works under the following conditions: Attribution: The work must be attributed, but not in any way that suggests endorsement by IRRI or the author(s). NonCommercial: This work may not be used for commercial purposes. ShareAlike: If this work is altered, transformed, or built upon, the resulting work must be distributed only under the same or similar license to this one. For any reuse or distribution, the license terms of this work must be made clear to others. Any of the above conditions can be waived if permission is obtained from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.
    [Show full text]
  • Reading 20-2 Rice: the Natural History of Rice
    Tropical Horticulture © 2002 Jules Janick, Purdue University Reading 20-2 Rice: The Natural History of Rice Rice has fed more people than any other crop has for thousands of years. The ancient Indian name for rice, Dhanya, means “sustenance for the human race.” Especially in much of Asia, life with- out rice has been unthinkable. Rice feeds more than half of the world population, but most rice is consumed within 10 miles of where it is produced. Rice is the 2nd largest crop in planting acreage after wheat. Global rice production was 596.5 million tons from 155 million hectares (ha) in 1999. The major rice growing regions are found in more than a hundred countries in Asia, Latin America, and Africa (Table 1). But major rice export- ing countries only include Thailand, the United States, Vietnam, Pakistan, and India. About 85% of the total rice production is for human consumption. Rice provides 23% of the global human per capita energy and 16% of the per capita protein (IRRI, 1997). In Asia, where people typically eat rice 2 or 3 times a day, 250 million rice farms (the average rice land per farm is less than 1 ha) produce more than 90% of the world’s rice. For example, Myanmar consumes 195 kg of rice per capita per year, whereas the average annual rice consumptions in Europe and America are 3 kg and 7 kg, respectively. The 3 most populous nations, including China, India, and Indonesia, are rice-based countries, which together have 2.5 billion people (about half of the current world population).
    [Show full text]
  • Rice Riceexport Ice Rsuperfino ARBORIO
    EXPORT Rice RiceEXPORT ICE Rsuperfino ARBORIO Rough, husked (better known as brown rice) or wholly milled, Arborio is a long- grane japonica rice. Its large size ensure a good resistance to cooking and make it an excellent ingredient for risotto, a dish where Arborio provides excellent creaming. This variety competes with Carnaroli for fame and it is definitely one of the most popular on the market. In order to prepare a great risotto with Arborio rice the cooking time is 16-17 minutes. Keep in mind, however, that the cooking time of white rice varies depending on the year, the aging and the degree of processing. Code 005 EAN code 8003285000057 Weight 500 g DMD N.D. 12 months UM Pcs Qty/Box Qty/Layer Qty/Pallet Code 001 EAN code 8003285000019 Weight 1 Kg DMD 12 months UM Pcs Qty/Box 12 Qty/Layer 10 Qty/Pallet 60 List 1 - Rice - 1 Code 009 EAN code 8003285000095 Weight 1 Kg DMD 24 months UM Pcs Qty/Box 6 Qty/Layer 20 Qty/Pallet 100 Code 002 EAN code 8003285000026 Weight 2 Kg DMD 12 months UM Pcs Qty/Box 10 Qty/Layer 10 Qty/Pallet 30 Code 003 EAN code 8003285000033 Weight 5 Kg DMD 12 months UM Pcs Qty/Box 4 Qty/Layer 6 Qty/Pallet 24 2 - Rice - List 1 ICE Rsuperfino BALDO Rough, husked (better known as brown rice) or wholly milled, Baldo is a long- grane japonica rice, characterised by a crystalline structure. It is generally used to cook risotto, but it is also a very suitable choice to prepare rice salads or rice cakes.
    [Show full text]
  • Brown Planthopper: Threat to Rice Production in Asia; Proceedings
    Genetics of and breeding for resistance to the brown planthopper G. S. Khush The development and worldwide distribution of improved rice germplasm with resistance to the brown planthopper (BPH) are a major objective of the International Rice Research Institute’s (IRRI) Genetic Evaluation and Utilization (GEU) program. In its varietal resistance research IRRl has emphasized the identification of resistant germplasm, genetic analysis of the resistant varieties to identify diverse genes for resistance, incor- poration of those genes into an improved-plant type background, and synthesis of breeding lines with multiple resistance to major diseases and insects. The seeds of the IRRl donor parents, breeding lines, and improved varieties are supplied to rice scientists around the world for use in local hybridization programs and for evaluation as commercial varieties. This paper summarizes the various IRRI breeding strategies and the status of varietal resistance to BPH. IRRI STUDIES ON THE GENETICS of resistance to BPH started in 1968. Plant breeders investigated the mode of inheritance of resistance in a large number of resistant varieties and determined the allelic relationships of the newly identified genes. The bulk seedling test is used for screening materials for genetic studies, although the tiller test was used to some extent in early work (Athwal et al 1971). Four resistant varieties—Mudgo, ASD 7, CO22, and MTU 15—were initially analyzed. Mudgo, CO22, and MTU 15, each had a single dominant gene for resistance, which, allele tests revealed, was at the same locus. This locus was designated Bph 1. The resistance in ASD 7 was controlled by a single recessive gene, designated bph 2.
    [Show full text]
  • Textural Properties and Structures of Starches from Indica and Japonica Rice with Similar Amylose Content
    Food Sci. Technol. Res., 15 (3), 299–306, 2009 Textural Properties and Structures of Starches from Indica and Japonica Rice with Similar Amylose Content 1* 2 3 4 Sonoko AYABE , Midori KASAI , Kyoko OHISHI and Keiko HATAE 1 Department of Health and Nutrition, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan 2 Department of Nutrition and Food Science, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan 3 Department of Home Economics, Seitoku University, Matsudo, Chiba 102-8357, Japan 4 Department of Home Economics, Wayo Women’s University, Ichikawa, Chiba 272-8533, Japan Received July 24, 2007; Accepted February 6, 2009 The difference in stickiness between cooked Nipponbare (Japonica rice) and Khao Dawk Mali (In- dica rice) that have similar apparent amylose content was investigated, and the fine structure of starch in both cooked rice and extract from the surface of cooked rice was analyzed. Non-sticky high-amylose rice (Indica rice) was also studied for comparison. The solid content and amount of amylopectin in the ex- tract from the surface of cooked Nipponbare were the highest, followed by cooked Khao Dawk Mali, and cooked high-amylose rice. This difference in solid content and the amount of amylopectin contributed to the stickiness of cooked Nipponbare. This suggests that the stickiness of cooked rice is less when less amy- lopectin is dissolved into cooking water, even when the amylose content and fine structure of the starch in the rice grains is similar. Thus, cooked Khao Dawk Mali is less sticky than cooked Nipponbare, despite having similar amylose content. Keywords: Indica rice, Japonica rice, texture, stickiness, amylose Introduction ality, such as pasting behavior of three long-grain cultivars, There are two general categories of rice grain, Indica (long even though the apparent contents of amylose, crude protein grain) and Japonica rice (short grain), and cooked Japonica and crude fat of milled rice flours were comparable (Patindol rice is considered to be more sticky than cooked Indica rice.
    [Show full text]