Development and Utilization of Resistant Starch in Cooked Rice Grains and Breads Michaael Reed Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Moisture-Temperature Relationship in Starch Gelatinization
MOISTURE-TEMPERATURE RELATIONSHIP IN STARCH OELATINIZATION by GUSTAVO ENRIQUE PEREZ B. S., Purdue University, 1961 A MASTER'S THESIS submitted in partial fulfillment of the re<|uirements for the degree MASTER OP SCIENCE Department of Flour and Feed Milling Industries KANSAS STATE UNIVERSITY Manhattan, Kansas 1963 Approved by: to ^'"^ TABLE OP CONTENTS INTRODUCTION 1 REVIEW OP LITERATURE 1 Starch Granule Struetiire 1 The Nature of Starch Gelatlnlzatlon 5 Degradation of the Starch Molecules by Beta-amylase ,. 12 Starch Retr©gradation 14 MATERIALS AND METHODS 16 Part I 16 Beta-amylolyslB 16 Hot Paste Viscosity 17 Part II 17 Beta-amylolysls ,, 17 Hot Paste Viscosity , I8 RESULTS AND DISCUSSION 19 Wheat Starch 22 Unmodified Corn Starch , 26 Waxy Corn Starch 30 Non-glutinous Sorghum Starch 34 Qeinnan Rice Starch 38 CONCLUSIONS 42 ACKNOWLEDGMENTS 44 LITERATURE CITED 43 INTRODUCTION Widespread uses of starch are due mainly to two Important properties, film and viscous paste formation. These two char- acteristic properties have been studied tinder varied conditions by many research workers. Formation of films and viscous pastes Is altered by factors such as H-lon concentration, composition of the starch, structxire of the granule, and time and temperature of cooking. These basic factors affect the final starch product In appearance, texture, yield, flavor, and digestibility/' This in- vestigation was undertaken to relate moisture and temperature to the gelatlnlzatlon and pasting properties of various starches. The effect of percent moisture and degree of heating as re- lated to the percent gelatlnlzation of the starch is a problem faced by maniifaeturers of starch-containing foods. -
Influence of Drying Temperature, Water Content, and Heating Rate on Gelatinization of Corn Starches
J. Agric. Food Chem. 2006, 54, 4235−4245 4235 Influence of Drying Temperature, Water Content, and Heating Rate on Gelatinization of Corn Starches FILIZ ALTAY AND SUNDARAM GUNASEKARAN* Department of Biological Systems Engineering, 460 Henry Mall, University of WisconsinsMadison, Madison, Wisconsin 53706 The gelatinization properties of starch extracted from corn and waxy corn dried at different temperatures were determined at various water contents and heating rates by differential scanning calorimetry. All gelatinization transition temperatures increased with drying temperature and heating rate. Onset and peak temperatures remained relatively constant, whereas end temperature decreased in the presence of excess water. The gelatinization enthalpy (∆Hg) of corn starch decreased with drying temperature at 50% water; however, it remained constant for waxy corn starch. The effects of water content and heating rate on ∆Hg were dependent on each other. The minimum water levels required for gelatinization of starch extracted from corn dried at 20 and 100 °C are 21 and 29%, respectively. The activation energy (Ea) was calculated using an Arrhenius-type equation and two first-order models; the degree of conversion (R) was predicted using a newly proposed model that produced good results for both Ea and R. KEYWORDS: Corn starch; waxy corn; transition temperatures; differential scanning calorimetry; gelatinization kinetics INTRODUCTION the gelatinization onset, peak, and end temperatures and endotherm peak width and a decrease in gelatinization enthalpy Gelatinization is a phase transition of starch granules from (10). an ordered to a disordered state during heating with excess water At intermediate water levels, two endothermic transitions have (1, 2). The disordered state consists of melting of ordered been reported for the disorganization of starch crystallites (11). -
Global Rice Market Projections Distinguishing Japonica and Indica Rice
Global Rice Market Projections Distinguishing Japonica and Indica Rice JARQ 54 (1), 63-91 (2020) https://www.jircas.go.jp Global Rice Market Projections Distinguishing Japonica and Indica Rice Global Rice Market Projections Distinguishing Japonica and Indica Rice under Climate Change Tatsuji KOIZUMI* and Gen FURUHASHI Policy Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan Abstract Rice is not strictly a homogeneous commodity, with the international rice market largely divided into the japonica and indica rice markets. Both follow different market structures and the international prices of japonica and indica show different trends. We projected and simulated the future global japonica and indica rice markets under climate change in the long term, using a partial equilibrium model. The Rice Economy Climate Change (RECC) model thus developed covers the japonica and indica rice markets in 24 countries and regions as the entire world rice market. The simulation results suggest that the international price of japonica rice will be more volatile than that of indica rice, and that both price indicators will exhibit different trends due to the impact of long-term climate change. Discipline: Social Science Additional key words: rice varieties, price volatility, MIROC, RCPs, partial equilibrium model Introduction developed the Arkansan Global Rice Model,1 distinguishing only the markets for long-grain and short-/ Rice production and consumption have gradually medium-grain rice in the United States (US), without increased over the years, reaching a trade volume of completely specifying the markets for other types of rice. almost 46 million tons in 2016 (USDA-FAS 2018b). Koizumi and Kanamaru (2016) conducted a simulation However, rice in the global market is not, strictly using a partial equilibrium model to alleviate climate speaking, a homogeneous commodity. -
Progress and Prospect of Breeding Utilization of Green Revolution Gene SD1 in Rice
agriculture Review Progress and Prospect of Breeding Utilization of Green Revolution Gene SD1 in Rice Youlin Peng 1 , Yungao Hu 1, Qian Qian 2 and Deyong Ren 2,* 1 Rice Research Institute, Southwest University of Science and Technology, Mianyang 621010, China; [email protected] (Y.P.); [email protected] (Y.H.) 2 State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; [email protected] * Correspondence: [email protected] Abstract: Rice (Oryza sativa L.) is one of the most important cereal crops in the world. The iden- tification of sd1 mutants in rice resulted in a semi-dwarf phenotype that was used by breeders to improve yields. Investigations of sd1 mutants initiated the “green revolution” for rice and staved off famine for many people in the 1960s. The smaller plant height conferred by sd1 allele gives the plants lodging resistance even with a high amount of nitrogen fertilizer. Guang-chang-ai-carrying sd1 was the first high-yielding rice variety that capitalized on the semi-dwarf trait, aiming to significantly improve the rice yield in China. IR8, known as the miracle rice, was also bred by using sd1. The green revolution gene sd1 in rice has been used for decades, but was not identified for a long time. The SD1 gene encodes the rice Gibberellin 20 oxidase-2 (GA20ox2). As such, the SD1 gene is instrumental in uncovering the molecular mechanisms underlying gibberellin biosynthesis There are ten different alleles of SD1. These alleles are identified by genome sequencing within several donor lines in breeding for semi-dwarf rice. -
Evaluation of Japonica Rice (Oryza Sativa L.) Varieties and Their Improvement in Terms of Stability, Yield and Cooking Quality by Pure-Line Selection in Thailand
ESEARCH ARTICLE R ScienceAsia 46 (2020): 157–168 doi: 10.2306/scienceasia1513-1874.2020.029 Evaluation of japonica rice (Oryza sativa L.) varieties and their improvement in terms of stability, yield and cooking quality by pure-line selection in Thailand Pawat Nakwilaia, Sulaiman Cheabuc, Possawat Narumona, Chatree Saensukb, Siwaret Arikita,b, a,b, Chanate Malumpong ∗ a Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140 Thailand b Rice Science Center & Rice Gene Discovery Unit, Kasetsart University, Nakhon Pathom 73140 Thailand c Faculty of Agriculture, Princess of Naradhiwas University, Narathiwat 96000 Thailand ∗Corresponding author, e-mail: [email protected] Received 3 Aug 2019 Accepted 3 Apr 2020 ABSTRACT: Many companies in Thailand have encouraged farmers, especially those in the northern regions, to cultivate DOA1 and DOA2 japonica rice varieties. Recently, the agronomic traits of DOA1 and DOA2 were altered, affecting yield and cooking quality. Thus, the objectives of this study were to evaluate the agronomic traits and cooking quality of DOA1 and DOA2 and those of exotic japonica varieties in different locations, including the Kamphaeng Saen and Phan districts (WS16). DOA2 was improved by pure-line selection. The results showed that the Phan district was better suited to grow japonica varieties than the Kamphaeng Saen district and that DOA2 produced high grain yields in both locations. Furthermore, DOA2 was selected by the pure-line method in four generations, after which five candidate lines, Tana1 to Tana5, were selected for yield trials. The results of yield trials in three seasons (WS17, DS17/18, WS18) confirmed that Tana1 showed high performance in terms of its agronomic traits and grain yield. -
Starch Retrogradation in Tuber : Mechanisms and Its Implications on Microstructure and Glycaemic Features of Potatoes
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Starch retrogradation in tuber: mechanisms and its implications on microstructure and glycaemic features of potatoes A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in School of Food and Advanced Technology at Massey University, Palmerston North, Manawatū, New Zealand Yu-Fan Nicole Chen 2020 Thesis committee Chief supervisor: Dr. Jaspreet Singh, Associate Professor, Massey University. Co-supervisor: Dr. Joceyln Midgely, Agri-Food Science & Technology Manager, Simplot Australia Pty. Ltd. Co-supervisor: Prof. Richard Archer, Logan Campbell Professor of Food Technology, Massey University. Examiners Mr. Allan Hardacre, Senior Research Officer, Massey University. Mr. Marco Morgenstern, Team Leader Food Structure Engineering, Plant & Food Research. Dr. Qiang Liu, Research Scientist, Agriculture and Agri-Food Canada. Dedicated to my loving parents and my partner. Abstract An increase in the occurrence of diabetes mellitus, cardiovascular disease and obesity in recent years led to the project “Starch retrogradation in tuber: mechanisms and its implications on microstructure and glycaemic features of potatoes”. Potato products can play a role in mitigating these hyperglycaemic events, if starch in these processed products is slowly digested and/or starch-derived glucose is released into the circulation in a slower and more attenuated manner. Three stages were envisaged for the project with an aim to create slowly digestible starch in whole potato tuber (in tuber) through starch retrogradation. -
Redalyc.Rheological, Pasting, Thermal and Retrogradation Properties Of
Ciência e Tecnologia de Alimentos ISSN: 0101-2061 [email protected] Sociedade Brasileira de Ciência e Tecnologia de Alimentos Brasil WON, Chuin; Ik JIN, Yong; CHANG, Dong-Chil; KIM, Misook; LEE, Youngseung; GANESAN, Palanivel; LEE, Yun-Kyung; Hyuk CHANG, Yoon Rheological, pasting, thermal and retrogradation properties of octenyl succinic anhydride modified potato starch Ciência e Tecnologia de Alimentos, vol. 37, núm. 2, abril-junio, 2017, pp. 321-327 Sociedade Brasileira de Ciência e Tecnologia de Alimentos Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=395951059023 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative a Food Science and Technology ISSN 0101-2061 DDOI http://dx.doi.org/10.1590/1678-457X.23616 Rheological, pasting, thermal and retrogradation properties of octenyl succinic anhydride modified potato starch Chuin WDN1, Yong Ik JIN2, Dong-Chil CHANG2, Misook KIM3, Youngseung LEE3, Palanivel GANESAN4, Yun-Kyung LEE1, Yoon Hyuk CHANG1* Abstract The objective of the present study was to investigate the rheological, pasting, and thermal properties of octenyl succinic anhydrate (DSA)-modified potato starch. Potato starch was modified using different concentrations of DSA (0, 1, 3, and 5%, v/v). The degree of substitution (DS) for the DSA-modified starch ranged from 0.0012 to 0.0055. The amylose leaching values of native and DSA-modified potato starch with different DS levels were in the range of 47.09-87.32%. -
Water Relations in High Ratio White Cake Batters and Cellulose Substituted White Cake Batters Oleane Carden Zenoble Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1982 Water relations in high ratio white cake batters and cellulose substituted white cake batters Oleane Carden Zenoble Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Food Science Commons Recommended Citation Zenoble, Oleane Carden, "Water relations in high ratio white cake batters and cellulose substituted white cake batters " (1982). Retrospective Theses and Dissertations. 8325. https://lib.dr.iastate.edu/rtd/8325 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are sphced into the film along with adjacent pages. This may have necessitated cutting through an image and duphcating adjacent pages to assure complete continuity. -
Could Japonica Rice Be an Alternative Variety for Increased Global Food Security and Climate Change Mitigation?
foods Article Could Japonica Rice Be an Alternative Variety for Increased Global Food Security and Climate Change Mitigation? Daniel Dooyum Uyeh 1,2,3 , Senorpe Asem-Hiablie 4, Tusan Park 1,3,* , Kyungmin Kim 5 , Alexey Mikhaylov 6 , Seungmin Woo 1,2,3 and Yushin Ha 1,2,3,* 1 Department of Bio-Industrial Machinery Engineering, Kyungpook National University, Daegu 41566, Korea; [email protected] (D.D.U.); [email protected] (S.W.) 2 Upland-Field Machinery Research Centre, Kyungpook National University, Daegu 41566, Korea 3 Smart Agriculture Innovation Center, Kyungpook National University, Daegu 41566, Korea 4 Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA 16802, USA; [email protected] 5 Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41566, Korea; [email protected] 6 Financial Research Institute of Ministry of Finance of the Russian Federation, 127006 Moscow, Russia; [email protected] * Correspondence: [email protected] (T.P.); [email protected] (Y.H.) Abstract: The growing importance of rice globally over the past three decades is evident in its strategic place in many countries’ food security planning policies. Still, its cultivation emits substantial greenhouse gases (GHGs). The Indica and Japonica sub-species of Oryza sativa L. are mainly grown, with Indica holding the largest market share. The awareness, economics, and acceptability of Japonica Citation: Uyeh, D.D.; Asem-Hiablie, rice in a food-insecure Indica rice-consuming population were surveyed. The impact of parboiling S.; Park, T.; Kim, K.; Mikhaylov, A.; on Japonica rice was studied and the factors which most impacted stickiness were investigated Woo, S.; Ha, Y. -
Effects of Starch Chemical Structures on Gelatinization and Pasting Properties
„ Żywność. Technologia. Jakość ” 4(17)Supl., 1998 Y.-Y. CHEN, A. E. MCPHERSON, M. RADOSAVLJEVIC, V. LEE, K.-S. WONG, J. JANE EFFECTS OF STARCH CHEMICAL STRUCTURES ON GELATINIZATION AND PASTING PROPERTIES Abstract Chemical structures, including amylose contents, amylopectin molecular sizes, branch chain lengths and distributions, and starch phosphate monoester and phospholipid contents, of a wide varieties of star ches were analyzed. Thermal properties of starch gelatinization and retrogradation and starch pasting properties were also investigated. Results of the studies have shown that amylopectin branch chain lengths and their distributions govern the starch gelatinization temperature. Short average branch chain lengths and large proportions of short branch chains (DPI 1-16) relative to chains of DP 18-20 (a shoulder found in many starches) are likely to result in low gelatinization temperatures. Phosphate monoester derivatives also lower gelatinization temperature. With the same amylopectin structure, increasing amylose contents lower the starch gelatinization temperature. Methods of starch isolation also affect starch gelatinization temperature. Amylose contents significantly affect the pasting properties of starch. Normal cereal starches contain lipids and phospholipids, which display higher pasting temperatures, lower peak viscosity, and lower shear thinning than their waxy starch counterparts. Without lipids, normal potato starch displays a higher peak viscosity than waxy potato starch. Branch chain length of amylopectin also affects the pa sting properties of starch. The presence of very long branch chains restrict starch swelling and increase the pasting temperature of starch and decrease the shear thinning. Phosphate monoester derivatives decrease the pasting temperature and enhance the viscosity by charge repelling. In contrast, phospholipids, by complexing with amylose and long branch chains of amylopectin, restrict the starch swelling and reduce the viscosity. -
I Effect of Shortening Replacement with Oatrim on the Physical and Rheological Properties of Cakes
i Effect of Shortening Replacement with Oatrim on the Physical and Rheological Properties of Cakes Suyong Lee, Sanghoon Kim, and George E. Inglett ABSTRACT Cereal Chem. 82(2):120-124 Oatrim (oat -glucan amylodextrins) was evaluated as a fat substitute cakes were investigated during baking and correlated with the differential in a cake system. The physical and rheological properties of cakes scanning calorimetry results. The oscillatory shear storage moduli containing shortening replaced with 20, 40, and 60% by weight of Oatrim decreased upon initial heating, then increased due to starch gelatinization, were characterized. The increase in the specific gravity of the cakes and and finally reached a plateau value that varied based on the sample the decrease in the viscosity as more shortening was replaced with Oatrim composition. Moreover, increased replacement of shortening with Oatrini were correlated with the change in the cake volume. The number of air resulted in higher observed oscillatory shear storage moduli. The cakes bubbles present in the cake batters varied significantly: however, the size prepared with up to 20% by weight of Oatrim did not evidence significant of the observed bubbles did not change. The cakes containing more changes in softness (P < 0.01) and generally exhibited similar physical Oatrim displayed a higher starch gelatinization temperature due to the properties to the control cake. amylodextrins in the Oatrim. The dynamic rheological properties of the As one of the principal and essential nutritional components of Oatrim can he used in most foods as a powder or gel. In a diet, fat contributes pleasing flavor and texture to food products, previous study. -
Effects of Sugars and Sugar Alcohols on the Gelatinization Temperatures of Wheat, Potato, and Corn Starches
foods Article Effects of Sugars and Sugar Alcohols on the Gelatinization Temperatures of Wheat, Potato, and Corn Starches Matthew C. Allan, MaryClaire Chamberlain and Lisa J. Mauer * Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; [email protected] (M.C.A.); [email protected] (M.C.) * Correspondence: [email protected]; Tel.: +1-(765)-494-9111 Received: 13 May 2020; Accepted: 3 June 2020; Published: 8 June 2020 Abstract: The gelatinization temperature (Tgel) of starch increases in the presence of sweeteners due to sweetener-starch intermolecular interactions in the amorphous regions of starch. Different starch botanical sources contain different starch architectures, which may alter sweetener-starch interactions and the effects of sweeteners on Tgels. To document these effects, the Tgels of wheat, potato, waxy corn, dent corn, and 50% and 70% high amylose corn starches were determined in the presence of eleven different sweeteners and varying sweetener concentrations. Tgels of 2:1 sweetener solution:starch slurries were measured using differential scanning calorimetry. The extent of Tgel elevation was affected by both starch and sweetener type. Tgels of wheat and dent corn starches increased the most, while Tgels of high amylose corn starches were the least affected. Fructose increased Tgels the least, and isomalt and isomaltulose increased Tgels the most. Overall, starch Tgels increased more with increasing sweetener concentration, molar volume, molecular weight, and number of equatorial and exocyclic hydroxyl groups. Starches containing more short amylopectin chains, fewer amylopectin chains that span through multiple clusters, higher number of building blocks per cluster, and shorter inter-block chain lengths exhibited the largest Tgel increases in sweetener solutions, attributed to less stable crystalline regions.