Marine Litter Prevention

Total Page:16

File Type:pdf, Size:1020Kb

Marine Litter Prevention Marine Litter Prevention Reducing plastic waste leakage into waterways and oceans through circular economy and sustainable waste management As a federally owned enterprise, GIZ supports the German Government in achieving its objectives in the field of international cooperation for sustainable development. Published by: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Registered offices Bonn and Eschborn, Germany Friedrich-Ebert-Allee 36 + 40 53113 Bonn, Germany T +49 228 44 60 - 0 F +49 228 44 60 - 17 66 E [email protected] I www.giz.de Project description: Advisory Project: Concepts for Sustainable Solid Waste Management and Circular Economy Authors: Pascal Renaud for GIZ, Joachim Stretz and Jacky Lateheru for the Resources and Waste Advisory Group (RWA), Rabah Kerbachi as individual consultant Edited by: Ellen Gunsilius, Johannes Paul, Steffen Blume, Daniel Hinchliffe, Barbara Ölz, Michael Funcke-Bartz, Uwe Becker and Ina Tessnow- von Wysocki for GIZ Design/layout: Jeanette Geppert pixelundpunkt kommunikation, Frankfurt Printing and distribution: Druckreif GmbH, Frankfurt Printed on 100% recycled paper, certified to FSC standards Photo credits/sources: Shutterstock: p. 10; CET Annaba: p. 17 ; Ikhlasul Amal, p. 18; Storebrukkebruse: p. 26; UN Photo / Kim Haughton: p. 31; Hippone Sub: p. 60; Maison de l’environnement Annaba: p. 60; GIZ / Florian Kopp: p. 14, 20; GIZ: p. 19; GIZ/ Jacky Lateheru and Joachim Stretz: p. 34, 40, 43, 46, 47, 50, 83; GIZ / Rabah Kerbachi: p. 61-67, 73; GIZ / Pascal Renaud: cover, p. 3, 24, 32-33, 56, 75, 76, 93 URL links: This publication contains links to external websites. Responsibility for the content of the listed external sites always lies with their respective publishers. When the links to these sites were first posted, GIZ checked the third-party content to establish whether it could give rise to civil or criminal liability. However, the constant review of the links to external sites cannot reasonably be expected without concrete indication of a violation of rights. If GIZ itself becomes aware or is notified by a third party that an external site it has provided a link to gives rise to civil or criminal liability, it will remove the link to this site immediately. GIZ expressly dissociates itself from such content. GIZ is responsible for the content of this publication. Eschborn, June 2018 2 3 TABLE OF CONTENTS Executive Summary 8 Introduction 10 Figures 5 Pictures 6 Acronyms 7 1. Approaches for preventing marine litter 14 1.1 Integrated sustainable waste management 15 1.2 Circular economy in packaging value chains 24 1.3 Cross-sectoral cooperation within a source-to-sea approach 27 1.4 ‘Glocal’ governance for marine litter prevention 29 2. Methodological approach for assessing plastic leakage into the ocean in the two case studies 34 2.1 Assumptions and structure 35 2.2 Data gathering and estimation of transmission factors 37 2.3 Comparison to other marine litter assessment methodologies 38 3. Case study: Sidoarjo Regency, Indonesia 40 3.1 Context of Indonesia and Sidoarjo 41 3.2 Solid waste management situation in Sidoarjo 42 3.3 Marine plastic litter generation in Sidoarjo 45 3.4 Potential impact of existing development scenarios in Sidoarjo 52 3.5 Conclusions and recommendations based on the case study of Sidoarjo 54 4. Case study: Annaba Province, Algeria 56 4.1 Context of Algeria and Annaba 57 4.2 Solid waste management in Annaba and marine litter prevention activities 58 4.3 Sources and pathways of marine plastic litter generation in Annaba 60 4.4 Quantitative estimation of marine plastic litter generation in Annaba 67 4.5 Conclusions and recommendations based on the case study of Annaba 72 Discussion and Outlook 76 Annex 79 Endnotes 101 4 Figures Fig. 1 Pathways of litter into the ocean 13 Fig. 2 Conceptual dimensions for preventing plastic leakage into waterways and the ocean 15 Fig. 3 The ‘Two triangles’ integrated solid waste management representation 16 Fig. 4 Waste hierarchy 21 Fig. 5 Regional map on waste management and marine litter challenges, South Eastern Europe 28 Fig. 6 Simplified transmission model 36 Fig. 7 Data and transmission factors 37 Fig. 8 Assessment of some transmission factors 38 Fig. 9 Map of Sidoarjo Regency (EAWAG, 2015) 42 Fig. 10 Waste sample composition, estimated weight-%, Sidoarjo, 2017 48 Fig. 11 Solid waste management parameters with focus on plastic waste, Sidoarjo, 2017 49 Fig. 12 Transmission factors for plastic waste, Sidoarjo, 2017 51 Fig. 13 Results for estimated marine plastic litter generation, Sidoarjo, 2017 52 Fig. 14 Comparison of parameters of development scenarios, Sidoarjo 53 Fig. 15 Comparison of scenarios 2017-2022, Sidoarjo 53 Fig. 16 Map of Annaba Province 58 Fig. 17 River Seybouse and hydrological system in Annaba 62 Fig. 18 Solid waste management parameters with focus on plastic waste, Annaba, 2017 68 Fig. 19 Transmission factors for plastic waste, Annaba, 2017 69 Fig. 20 Results for estimated marine plastic litter generation, Annaba, 2017 70 Fig. 21 Comparison of changed input data for 2014 and 2017, Annaba 71 Fig. 22 Comparison of results for 2017 (baseline) and 2014 (scenario 1), Annaba 71 Fig. 23 Recommendations based on the two case studies 77 5 Pictures of case studies Waste at Djenen El Bey beach, Annaba 01 Waste at Djenen El Bey beach, Annaba 03 Waste at lake close to sea at Sidi Salem, Annaba 32 Waste at lake close to sea at Sidi Salem, Annaba 33 Waste in canal, Sidoarjo 34 Coastal area, Sidoarjo 40 Informal waste accumulation, Sidoarjo 43 Open dumping and burning, Sidoarjo 43 Temporary disposal site, Sidoarjo 43 Diaper in a waterway, Sidoarjo 43 Informal recycling, Sidoarjo 46 Accumulation in irrigation canal, Sidoarjo 46 Waste accumulation in water, Sidoarjo 46 Clean neighbourhood, Sidoarjo 46 Waste in mangroves, Sidoarjo 47 Waste trap in a canal, Sidoarjo 47 Floating barrier, Sidoarjo 47 Waste composition analysis, Sidoarjo 47 Wast accumulation along canal, Sidoarjo 50 Djenen El Bey, Annaba 56 Waste accumulation at the beach of Sidi Salem, Annaba 56 Beach clean-up campaign, Annaba 60 Diving cleanup, Annaba 60 Wild dumpsite next to the sea at Sidi Salem 61 Wild dumpsite next to the sea at Sidi Salem 61 Unmanaged waste at coastal roadside, Annaba 61 Waste accumulation at roadside, Annaba 61 Waste in the Belt canal, Annaba 62 Waste in the Belt canal, Annaba 62 Fly-tipping of plastic waste in a river, Annaba 63 Waste in the Belt canal, Annaba 63 Waste accumulation next to river, Annaba 63 Waste at riverside, Annaba 63 Wastewater entering the sea, Annaba 63 Wastewater entering the sea, Annaba 64 Plastic waste at coastline, Annaba 65 Parking at Djenen El Bey beach, Annaba 66 Waste at coastline, Annaba 66 Plastic waste in cliffs, Annaba 67 Plastic waste at coastline, Annaba 67 Plastic waste at coastline, Annaba 67 Waste at the beach of Sidi Salem, Annaba 73 Waste along coastline, Annaba 75 Boat and waste bin at harbour, Annaba 76 Waste disposal into canal, Sidoarjo 83 Waste accumulation at the beach of Sidi Salem, Annaba 92 6 Acronyms AND Agence nationale des déchets / Algerian National Agency for Waste Management APEC Asia-Pacific Economic Cooperation ASEAN Association of Southeast Asian Nations BMZ German Federal Ministry for Economic Cooperation and Development CBD Convention on Biological Diversity CET Centre d’enfouissment technique / Sanitary landfill in Algeria DHW Direction de l’Hydraulique de la Wilaya d’Annaba / Water Management Authority of the Annaba Province DLHK Dinas Lingkungan Hidup dan Kebersihan / Department of Environment and Cleansing in Sidoarjo DPUPR Department of Public Works and Spatial Planning in Sidoarjo EPR Extended Producer Responsibility G7 Group of Seven G20 Group of Twenty GIZ Deutsche Gesellschaft für Internationale Zusammenarbeit GPA Global Programme of Action against Pollution from Land-Based Sources ISWA International Solid Waste Association KfW Kreditanstalt für Wiederaufbau / KfW Development Bank LBS Land-based sources MAP Mediterranean Action Plan NGO Non-governmental organisation ONA Office National de l’Assainissement / National Office in charge of sewage treatment in Annaba PET Polyethylene terephtalate PROGDEM Programme dédié à la gestion des déchets ménagers et assimilés / Algerian programme on waste management RDF Refuse-derived fuel t Metric tonne (1,000 kilogram) TPS Tempat Pembuangan Sementara / Temporary Disposal Sites in Sidoarjo TPS-3R Tempat Pengolahan Sampah Terpadu berbasis Reduce-Reuse-Recycle / 3Rs based Integrated Waste Treatment Plants in Sidoarjo TPST Tempat Pengolahan Sampah Terpadu / Integrated Waste Treatment Plants in Sidoarjo UNCLOS United Nations Convention on the Law of the Sea UN United Nations UNEA United Nations Environment Assembly UNEP United Nations Environment Programme UNGA United Nations General Assembly WEF World Economic Forum WTO World Trade Organisation 7 EXECUTIVE SUMMARY SIGNIFICANTLY REDUCING MARINE POLLUTION BY 2025, AS ENVISAGED BY THE UNITED NATIONS SUSTAINABLE DEVELOPMENT GOALS, REQUIRES CONCERTED INTERNATIONAL ACTION. Several international forums have adopted declarations and action plans to achieve this. A crucial challenge lies in translating global commitments into national, regional and local action. This study deals with the question of how decision-makers can improve their municipal solid waste management systems and move towards a circular economy in order to prevent plastic leakage into waterways and the ocean. It focuses on plastic waste from human settlements as a substantial share of marine litter consists of plastics
Recommended publications
  • What Is Nonpoint Source Pollution?
    What is Nonpoint Source Pollution? Nonpoint Source Pollution, or people pollution, is a contamination of our ground water, waterways, and ocean that results from everyday activities such as fertilizing the lawn, walking pets, changing motor oil and littering. With each rainfall, pollutants generated by these activities are washed into storm drains that flow into our waterways and ocean. They also can soak into the ground contaminating the ground water below. Each one of us, whether we know it or not, contributes to nonpoint source pollution through our daily activities. As a result, nonpoint source pollution is the BIGGEST threat to many of our ponds, creeks, lakes, wells, streams, rivers and bays, our ground water and the ocean. The collective impact of nonpoint source pollution threatens aquatic and marine life, recreational water activities, the fishing industry, tourism and our precious drinking water resources. Ultimately, the cost becomes the burden of every New Jersey resident. But there's good news - in our everyday activities we can stop nonpoint source pollution and keep our environment clean. Simple changes in YOUR daily lifestyle can make a tremendous difference in the quality of New Jersey's water resources. Here are just a few ways you can reduce nonpoint source pollution. LITTER: Place litter, including cigarette butts and fast food containers, in trash receptacles. Never throw litter in streets or down storm drains. Recycle as much as possible. FERTILIZERS: Fertilizers contain nitrates and phosphates that, in abundance, cause blooms of algae that can lead to fish kills. Avoid the overuse of fertilizers and do not apply them before a heavy rainfall.
    [Show full text]
  • Litter Decomposition on Directly Revegetated Tailings at the Kidston Gold Mine, North Queensland, Australia1
    LITTER DECOMPOSITION ON DIRECTLY REVEGETATED TAILINGS AT THE KIDSTON GOLD MINE, NORTH QUEENSLAND, AUSTRALIA1 Andrew H. Grigg2 Abstract. An investigation of litter decomposition was undertaken at the Kidston Gold Mine in north Queensland, Australia with the aim of assessing the status of nutrient cycling capacity on a directly-revegetated tailings dam. Weight losses from leaf litter contained in litterbags placed in a 5-year old revegetated section of the dam were not significantly different from losses observed at two unmined reference sites over the 18 month study period, representing a rapid improvement in nutrient cycling capacity in the reconstructed ecosystem. However, fitted decay curves for each site predicted a slower decay constant and a longer litter half-life on the dam, which indicated that full pre-mining capability had not yet been achieved. Weight loss in the reconstructed system was most constrained by the low build-up of microbial biomass within the surface soil, which is expected to take at least 10 years to achieve pre-mining levels. In contrast, weight losses in the unmined sites appeared more related to the abundance of invertebrate fauna rather than microbial content. The results presented here of a developing system suggest that the importance of different factors affecting decomposition will reflect those that are most limiting over the course of ecosystem recovery. Additional Key Words: nutrient cycling, ecosystem recovery, microbial biomass, invertebrates. _____________________ 1Paper presented at the 2002 National Meeting of the American Society of Mining and Reclamation, Lexington KY, June 9-13, 2002. Published by ASMR, 3134 Montavesta Rd., Lexington, KY 40502.
    [Show full text]
  • ANIMAL AGRICULTURE: Waste Management Practices GAO/RCED-99-205
    United States General Accounting Office Report to the Honorable Tom Harkin, GAO Ranking Minority Member, Committee on Agriculture, Nutrition, and Forestry, U.S. Senate July 1999 ANIMAL AGRICULTURE Waste Management Practices GAO/RCED-99-205 United States General Accounting Office GAO Washington, D.C. 20548 Resources, Community, and Economic Development Division B-282871 July 26, 1999 The Honorable Tom Harkin Ranking Minority Member Committee on Agriculture, Nutrition, and Forestry United States Senate Dear Senator Harkin: The production of livestock and poultry animals, also known as animal agriculture, is important to the economic well-being of the nation, producing $98.8 billion per year in farm revenue. This production also contributes to the viability of many rural communities and the sustainability of an adequate food supply for the American public. However, concern over pollution resulting from intensive livestock and poultry production—in which large numbers of animals are held in confined production facilities—has increased in recent years. Nationwide, about 130 times more animal waste1 is produced than human waste—roughly 5 tons for every U.S. citizen—and some operations with hundreds of thousands of animals produce as much waste as a town or a city.2 These large volumes of waste threaten surface water and groundwater quality in the event of waste spills, leakage from waste storage facilities, and runoff from fields on which an excessive amount of waste has been applied as fertilizer. Furthermore, as animal production is increasingly concentrated in larger operations and in certain regions of the country, commonly used animal waste management practices may no longer be adequate for preventing water pollution.
    [Show full text]
  • Marine Litter Legislation: a Toolkit for Policymakers
    Marine Litter Legislation: A Toolkit for Policymakers The views expressed in this publication are those of the authors and do not necessarily reflect the views of the United Nations Environment Programme. No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, DCPI, UNEP, P.O. Box 30552, Nairobi, Kenya. Acknowledgments This report was developed by the Environmental Law Institute (ELI) for the United Nations Environment Programme (UNEP). It was researched, drafted, and produced by Carl Bruch, Kathryn Mengerink, Elana Harrison, Davonne Flanagan, Isabel Carey, Thomas Casey, Meggan Davis, Elizabeth Hessami, Joyce Lombardi, Norka Michel- en, Colin Parts, Lucas Rhodes, Nikita West, and Sofia Yazykova. Within UNEP, Heidi Savelli, Arnold Kreilhuber, and Petter Malvik oversaw the development of the report. The authors express their appreciation to the peer reviewers, including Catherine Ayres, Patricia Beneke, Angela Howe, Ileana Lopez, Lara Ognibene, David Vander Zwaag, and Judith Wehrli. Cover photo: Plastics floating in the ocean The views expressed in this report do not necessarily reflect those of the United Nations Environment Programme. © 2016. United Nations Environment Programme. Marine Litter Legislation: A Toolkit for Policymakers Contents Foreword ..................................................................................................
    [Show full text]
  • The Global E-Waste Monitor 2020 Quantities, Flows, and the Circular Economy Potential
    The Global E-waste Monitor 2020 Quantities, flows, and the circular economy potential Authors: Vanessa Forti, Cornelis Peter Baldé, Ruediger Kuehr, Garam Bel Contributions by: S. Adrian, M. Brune Drisse, Y. Cheng, L. Devia, O. Deubzer, F. Goldizen, J. Gorman, S. Herat, S. Honda, G. Iattoni, W. Jingwei, L. Jinhui, D.S. Khetriwal, J. Linnell, F. Magalini, I.C. Nnororm, P. Onianwa, D. Ott, A. Ramola, U. Silva, R. Stillhart, D. Tillekeratne, V. Van Straalen, M. Wagner, T. Yamamoto, X. Zeng Supporting Contributors: 2 The Global E-waste Monitor 2020 Quantities, flows, and the circular economy potential Authors: Vanessa Forti, Cornelis Peter Baldé, Ruediger Kuehr, Garam Bel Contributions by: S. Adrian, M. Brune Drisse, Y. Cheng, L. Devia, O. Deubzer, F. Goldizen, J. Gorman, S. Herat, S. Honda, G. Iattoni, W. Jingwei, L. Jinhui, D.S. Khetriwal, J. Linnell, F. Magalini, I.C. Nnororm, P. Onianwa, D. Ott, A. Ramola, U. Silva, R. Stillhart, D. Tillekeratne, V. Van Straalen, M. Wagner, T. Yamamoto, X. Zeng 3 With the current documented formal collection and recycling rate of 17.4%, a potential raw computers, printed wiring boards, connectors, relays, wires, and cables (McPherson, material value of $10 billion USD can be recovered from e-waste, and 4 Mt of secondary Thorpe, and Blake 2004 & Herat 2008). The recycling of plastic containing BFR represents a raw materials would become available for recycling. Focusing only on iron, aluminium, major challenge for e-waste recycling because of the costs related to the separation of plastic and copper and comparing emissions resulting from their use as virgin raw materials or containing PBDEs and PBBs from other plastic.
    [Show full text]
  • Executive Summary: Litter in America
    executive summary: litter in america 2009 national litter research findings and recommendations EXECUTIVE SUMMARY Litter in America: National Findings and Recommendations P. Wesley Schultz, California State University Steven R. Stein, Environmental Resources Planning LLC Keep America Beautiful (KAB) is a non-profit organization dedicated to community improvement through litter prevention, waste reduction/recycling, and beautification. KAB was founded in 1953 and has grown into the nation’s leading community involvement organization, with more than 1,200 local affiliates and participating organizations. Much of the litter prevention work completed by KAB and its affiliates is based on seminal research conducted in the 1960s and 1970s about the sources and causes of litter. In an effort to update and advance the research foundation for their litter prevention activities, KAB funded a series of studies in 2008 and 2009 with financial support from Philip Morris USA, an Altria Company. These studies focused on two broad topics: litter and littering behavior. With regard to litter, the research team explored the composition of litter across America: its volume, locations and costs to local communities and businesses. With regard to littering behavior, the research team explored how often people litter, the individual and contextual variables that contribute to littering, and the effectiveness of various approaches to reducing littering rates. Technical reports from these two sets of studies are available through the KAB website (www.kab.org/research09). In this integrated executive summary, we summarize the basic methodology and results from the two funded studies, highlight key findings, and offer recommendations for ways to integrate these findings into litter prevention activities.
    [Show full text]
  • Chapter 9 Agricultural Waste Management Systems
    Part 651 Agricultural Waste Management Field Handbook Chapter 9 Agricultural Waste Management Systems (210–VI–AWMFH, Amend. 47, December 2011) Chapter 9 Agricultural Waste Management Systems Part 651 Agricultural Waste Management Field Handbook Issued December 2011 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all pro- grams.) Persons with disabilities who require alternative means for commu- nication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW., Washington, DC 20250–9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. (210–VI–AWMFH, Amend. 47, December 2011) Acknowledgments Chapter 9 was originally prepared and printed in 1992 under the direction of James N. Krider (retired), national environmental engineer, Soil Conser- vation Service (SCS), now Natural Resources Conservation Service (NRCS). James D. Rickman (retired), environmental engineer, NRCS, Fort Worth, Texas, provided day-to-day coordination in the development of the hand- book. Authors for chapter 9 included L.M. “Mac” Safley, North Carolina State University, Raleigh, NC; William H. Boyd, environmental engineer, Lincoln, Nebraska; A.
    [Show full text]
  • 2018 California Ocean Litter Prevention Strategy
    ATMOSP ND HE A RI IC C N A A D E M I C N O I S L T A R N A O T I I T O A N N U .S E . C D R E E PA M RT OM MENT OF C 2018 California Ocean Litter Prevention Strategy: Addressing Marine Debris from Source to Sea June 2018 California Ocean Litter Prevention Strategy: Addressing Marine Debris from Source to Sea June 2018 Cover photo courtesy of Heal the Bay. Acknowledgment: The California Ocean Litter Prevention Strategy was developed through expert input from numerous California stakeholders. Funding was provided by the California Ocean Protection Council (OPC) and NOAA Marine Debris Program (NOAA MDP). Many thanks go to the workshop participants and others who contributed to the Strategy and will participate in its implementation. We would also like to thank Miho Ligare and Nina Venuti of California Sea Grant, Eben Schwartz of the California Coastal Commission, and Angela Howe of the Surfrider Foundation for their participation on the workshop planning team. We also thank NOAA MDP staff for assistance with workshop facilitation and note-taking, and for their help preparing the document for publication. The Strategy was drafted by California Sea Grant (M. Ligare and N. Venuti) under the direction of OPC (Holly Wyer) and NOAA MDP (Sherry Lippiatt). For citation purposes, please use: California Ocean Protection Council and National Oceanic and Atmospheric Administration Marine Debris Program. (2018). California Ocean Litter Prevention Strategy: Addressing Marine Debris from Source to Sea. For more information, please contact: California Ocean Protection Council Holly Wyer, Program Manager [email protected] (916)-653-0538 NOAA Marine Debris Program Sherry Lippiatt, California Regional Coordinator [email protected] (510)-410-2602 This publication does not constitute an endorsement of any commercial product or intend to be an opinion beyond scientific or other results obtained by the National Oceanic and Atmospheric Administration (NOAA).
    [Show full text]
  • Download As Part of Our Toolkit
    BUILDING VALUE TOGETHER BUILDING VALUE 3 TOGETHER Up Front The end-of-life for materials can often be the start of something new. That’s why we work not only to manage waste 19 responsibly, but also to collaborate with Waste Solutions our stakeholders to find ways to create new value—together. 49 Climate Change About This Report Waste Management is committed to consistent public disclosure and discussion of our progress through the publication of our Sustainability Report. In the past, we have published a comprehensive report every two years and an update of key data in between. Our last comprehensive report was published in 2018, with available data and key discussion items updated in 2019. Going forward, we are taking a new approach to reporting by publishing content in two different formats to further enhance reporting transparency: • Our annual Sustainability Report details the progress on our most material issues over the past year and is now available as an interactive website and PDF. 60 • Complementing our report is a new Environmental, Social and Governance (ESG) Workforce Resource Hub that houses easily accessible, detailed information and data related to many aspects of our ESG performance, policies and initiatives. The Hub also houses GRI and SASB Indexes and an archive of past reports. This report generally covers ESG performance for 2019 and early 2020 and, unless otherwise noted in the report, the report boundary is Waste Management’s wholly owned operations, which are in the United States, Canada and India. All data is for the year ended December 31, 2019, except where noted.
    [Show full text]
  • EPA's Guide for Industrial Waste Management
    Guide for Industrial Waste Management Protecting Land Ground Water Surface Water Air Building Partnerships Introduction EPA’s Guide for Industrial Waste Management Introduction Welcome to EPA’s Guide for Industrial Waste Management. The pur- pose of the Guide is to provide facility managers, state and tribal regulators, and the interested public with recommendations and tools to better address the management of land-disposed, non-haz- ardous industrial wastes. The Guide can help facility managers make environmentally responsible decisions while working in partnership with state and tribal regulators and the public. It can serve as a handy implementation reference tool for regulators to complement existing programs and help address any gaps. The Guide can also help the public become more informed and more knowledgeable in addressing waste management issues in the community. In the Guide, you will find: • Considerations for siting industrial waste management units • Methods for characterizing waste constituents • Fact sheets and Web sites with information about individual waste constituents • Tools to assess risks that might be posed by the wastes • Principles for building stakeholder partnerships • Opportunities for waste minimization • Guidelines for safe unit design • Procedures for monitoring surface water, air, and ground water • Recommendations for closure and post-closure care Each year, approximately 7.6 billion tons of industrial solid waste are generated and disposed of at a broad spectrum of American industrial facilities. State, tribal, and some local governments have regulatory responsibility for ensuring proper management of these wastes, and their pro- grams vary considerably. In an effort to establish a common set of industrial waste management guidelines, EPA and state and tribal representatives came together in a partnership and developed the framework for this voluntary Guide.
    [Show full text]
  • Proper Disposal of Household Hazardous Waste Never Dump Any of These Products Down the Drain!
    Proper Disposal of Household Hazardous Waste Never dump any of these products down the drain! PRODUCT HAZARD* PROPER DISPOSAL Weed killer, insecticides, slug Poisonous Take to Disposal of Toxics (DoT). bait, rose dust, mothballs, fl ea powder Wood preservatives Poisonous Take to DoT Empty pesticide containers Poisonous residue Rinse container three times. Save rinse water and use as full-strength pesticide. Wrap HERBICIDES PESTICIDES & container in plastic bag and discard it in trash. Paint Flammable, poisonous, Use up leftover paint: give a wall an extra varies depending on product coat or use as a base coat on another project. Oil-based paint or paint containing lead: take to DoT. Unusable latex paint: fi ll with kitty litter or other solidifying agent (sawdust, ashes), stir until fi rmed up or allow contents to harden. Dispose of in the trash with the lid off . Call the Recycling Hotline 360-676-5723 for other options. Used paint thinner Flammable Recycle by storing in a closed jar until PAINTS & SOLVENTS PAINTS particles settle. Strain off the clear liquid for reuse. Take the remaining sludge to DoT. Turpentine, furniture stripper, Flammable Take to DoT. mineral spirits Used motor oil Poisonous Recycle. Take to DoT or a satellite location listed on the back of the brochure. For locations in your area, call the Recycling Hotline at 360-676-5723. Antifreeze Poisonous Take to DoT or a satellite location—do NOT pour antifreeze down the drain. Batteries: rechargeable, Corrosive (acid), poisonous Car: trade in for new battery, set out for BATTERIES button cell, cell phone, curbside pick-up, or take to DoT.
    [Show full text]
  • Waste Transfer Stations: a Manual for Decision-Making Acknowledgments
    Waste Transfer Stations: A Manual for Decision-Making Acknowledgments he Office of Solid Waste (OSW) would like to acknowledge and thank the members of the Solid Waste Association of North America Focus Group and the National Environmental Justice Advisory Council Waste Transfer Station Working Group for reviewing and providing comments on this draft document. We would also like to thank Keith Gordon of Weaver Boos & Gordon, Inc., for providing a technical Treview and donating several of the photographs included in this document. Acknowledgements i Contents Acknowledgments. i Introduction . 1 What Are Waste Transfer Stations?. 1 Why Are Waste Transfer Stations Needed?. 2 Why Use Waste Transfer Stations? . 3 Is a Transfer Station Right for Your Community? . 4 Planning and Siting a Transfer Station. 7 Types of Waste Accepted . 7 Unacceptable Wastes . 7 Public Versus Commercial Use . 8 Determining Transfer Station Size and Capacity . 8 Number and Sizing of Transfer Stations . 10 Future Expansion . 11 Site Selection . 11 Environmental Justice Considerations . 11 The Siting Process and Public Involvement . 11 Siting Criteria. 14 Exclusionary Siting Criteria . 14 Technical Siting Criteria. 15 Developing Community-Specific Criteria . 17 Applying the Committee’s Criteria . 18 Host Community Agreements. 18 Transfer Station Design and Operation . 21 Transfer Station Design . 21 How Will the Transfer Station Be Used? . 21 Site Design Plan . 21 Main Transfer Area Design. 22 Types of Vehicles That Use a Transfer Station . 23 Transfer Technology . 25 Transfer Station Operations. 27 Operations and Maintenance Plans. 27 Facility Operating Hours . 32 Interacting With the Public . 33 Waste Screening . 33 Emergency Situations . 34 Recordkeeping. 35 Environmental Issues.
    [Show full text]