THE GEOLOGY and PETROLOGY of the MERELANI TANZANITE DEPOSIT, NE TANZANIA Bernard Olivier Dissertation Presented for the Degree O

Total Page:16

File Type:pdf, Size:1020Kb

THE GEOLOGY and PETROLOGY of the MERELANI TANZANITE DEPOSIT, NE TANZANIA Bernard Olivier Dissertation Presented for the Degree O THE GEOLOGY AND PETROLOGY OF THE MERELANI TANZANITE DEPOSIT, NE TANZANIA Bernard Olivier Dissertation presented for the degree of Doctor of Philosophy at the University of Stellenbosch, South Africa. Promoter: Prof R. Scheepers December 2006 Declaration I, the undersigned, hereby declare that the work contained in this dissertation is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. Bernard Olivier Date: 21/04/06 ii Abstract Tanzanite, a blue/violet gemstone variety of zoisite (Ca2Al2O.AlOH[Si2O7][SiO4]) is only produced in NE Tanzania. The only known locality is an approximately 7km2 deposit in the Merelani area. It is one of the most sought after gemstones in the world with an industry sales value of between hundred and fifty and two hundred million dollars per year. At the current production rates and estimated resources the tanzanite deposit has a life expectancy of around 20 years. Despite the economical and scientific importance as well as the geological uniqueness of the deposit very little research has been conducted on the geology and petrology of the deposit and the characteristics of tanzanite. The primary aim of the research summarised in this dissertation was to gain an understanding of the geological conditions that led to the formation of this unique variety of zoisite. In order to achieve this, a variety of geological disciplines were addressed including the lithostratigraphic setting, the deformational history, the metamorphic history and conditions, the geochemical and isotopic composition, the mineral chemistry as well as the physical and optical properties of the tanzanite. Extensive field work was conducted over a seven year period, which included surface and underground mapping, surface trenching, surface and underground core drilling, structural measurements and an intensive sampling programme. Various analytical techniques were used in order to petrologically and mineralogically investigate both the deposit and tanzanite itself, including optical microscopy, XRF analyses, laser-ablation ICP-MS, quantitative chemical analyses by means of the electron microprobe, XRD analyses, back-scattered electron microscopy, isotope analyses, fluid-inclusion studies, Vis/UV/NIR spectroscopy, IR spectroscopy, and EPR studies. This study revealed an intricate and complex geological history for the formation of tanzanite. The deposition of carbon-rich layers, formed during the development of a sequence of shallow shelf sediments consisting primarily of various organic carbon (δ13C between –22,85 ‰ and –26,74 ‰) -rich mudstone horizons and limestone beds is iii seen as the first phase of the mineralisation process. These Archaean sediments were deposited in a back- or fore-arc spreading basin. The organic carbon-rich mudstone layers acted as the first phase of vanadium accumulation in the stratigraphic sequence, and are intercalated with a material with a volcanic origin (metabasites), which most likely contributed to the enrichment of amongst others V. Early diagenetic processes were followed by an extended metamorphic and deformation (D1) history, reaching upper granulite facies conditions (10 – 12 kbar and 850 oC to 1000 oC) at ca. 1000 Ma. The high-grade metamorphic history was followed by multiphase retrograde deformation events (D2 and D3) that developed as a result of crustal uplift. The D2 event probably occurred between 850 and 600 Ma at P-T conditions estimated at between 8 to 7 kbar and 700 to 650 oC. A third stage of deformation (D3) resulted in the formation of overprinting structures and occurred during the later stages of the Pan-African (550 – 500Ma) event during amphibolite/greenschist facies conditions (7 to 6 kbar and 600 to 520 oC). The deformational history of the deposit played a critical role in the mineralisation processes. Of the four main deformation events identified, three played a critical role in the mineralisation process. The first event led to the development of early structural features as defined by F1, S1 and L1. This was followed by a multiphase D2 event consisting of three different orders of folding (F2a, F2b and F2c) and the formation of boudinage. The association between tanzanite and boudins as well as the stacking and multiple duplication of the boudinaged ore-zone through isoclinal folding resulted in multiple “ore-shoots”. These ore-shoots follow the plunge of the F2c fold closures and results in mine-able features within the ore-body. The third deformation event led to complex structural overprinting of the earlier fabric as observed in S3 and L3 and resulted in the deformation of the F2 structures through crosscutting F3 folds. Calc-silicate layers developed in the stratigraphic sequence as a result of metamorphic and metasomatic interaction between calcium enriched (boudinaged calc-silicates) and depleted horizons (graphitic gneisses) during a skarn-forming episode. V-rich green grossular garnet (tsavorite) crystallised in tension zones within and in proximity to the boudins during prograde metamorphism. Tanzanite mineralisation occurred during the iv retrograde stages at ca. 585 ± 28 Ma with P-T conditions estimated at ca. 5 to 6 kbar and 650 ± 50 oC. Two distinctive tanzanite-forming processes are distinguished. The first involves the formation of tanzanite as a result of retrograde reaction of grossular garnet. The second process involves the migration of V and Ca -enriched fluids along brittle shear zones to tension sites where fluids reacted with wall rock during a drop in P-T conditions to precipitate tanzanite. Fluid inclusion and stable-isotope studies concluded that the ore-forming fluids were derived from the dehydration of the metasedimentary sequence and consisted of a mixture of H2O, CH4, H2S and N2. Mineralogical investigation of tanzanite indicated that trace concentrations of vanadium within its crystals structure causes its blue / violet colour. It was proved that the vanadium originated from the abundant organically derived graphite within the deposit. Spectroscopic and EPR analyses revealed the importance of the Ti4+ / Ti3+ ratio within the crystal structure of tanzanite with regard to its colour characteristics. The heating of tanzanite results in a couple valence exchange reaction Ti 3+ + V 4+ → Ti 4+ + V 3+ which causes an increase the blue / violet colour of tanzanite. The research conducted led to the development of a successful geological model for the tanzanite mining and treatment activities in the Merelani area of NE Tanzania. As such the research contributed to the establishment of a successful tanzanite mine, based on sound geological principles, which may act as a role model for other gemstone mines worldwide. v Uittreksel Tanzaniet is ‘n blou edelsteen variëteit van die zoisiet groep van minerale (Ca2Al2O.AlOH[Si2O7][SiO4]) en word slegs gemyn in die Merelani gebied in noordoos Tanzanië. Tanzaniet is een van die mees gesogte gekleurde edelstene in die wêreld met ‘n industriële verkoopswaarde van tussen honderd en vyftig en twee honderd miljoen Amerikaanse dollar per jaar. Die Merelani myngebied beslaan ‘n gebied van ongeveer 7 km2 en die afsetting het ‘n lewensverwagting van ongeveer 20 jaar teen die huidige tempo van ontginning en beraamde reserwes. Ten spyte van die ekonomiese en wetenskaplike waarde asook die uniekheid van die afsetting is daar baie min navorising gedoen op die geologie en petrologie van die afsetting en die mineralogiese eienskappe van die mineraal. Die hoof doel van die navorsing vervat in die proefskrif was om die geologiese toestande wat gelei het tot die vorming van tanzaniet te verstaan. Om die doel te bereik is ‘n verskeidenheid van geologiese dissiplines nagevors insluitende die litostratigrafiese opeenvolging, die vervormingsgeskiedenis, die metamorfe toestande en geskiedenis, die geochemie en isotoop samestelling, die mineraalchemie en ook die fisiese en optiese eienskappe van tanzaniet. Laasgenoemde is spesifiek toegepas om die oorsake van kleur en kleur verandering van tanzaniet a.g.v verhitting te bestudeer. Uitgebreide veldwerk is oor ‘n tydperk van sewe jaar onderneem insluitende oppervlak en ondergrondse kartering, oppervlak en ondergrondse kern-boorwerk, sloot-karterings, strukturele data versameling en rotsmonstering. ‘n Verskeidenheid analitiese tegnieke is toegepas om beide die afsetting en die tanzaniet petrologies en mineralogies te ondersoek. Die tegnieke het ingesluit; optiese mikroskopie, XSF (X-Straal Fluorisensie) analise, LA IGP-MS (Laser ablasie induktief gekoppelde massa spektrometrie), kwantitatiewe en semi-kwantitatiewe chemiese analises d.m.v elektron mikrosondes (golflengte dispersie, energie dispersie en teruggekaatste elektron analise), XSD (X- straal diffraksie analises), stabiele isotoop analises, vloeistofinsluitsel mikrotermometriese studies, Raman – sonde analise, spektroskopiese analise (sigbare, vi ultraviolet en naby-infrarooi golflengtes) en EPR (elektron paramagnetiese resonans) studies. Die navorsing het ‘n ingewikkelde en komplekse geologiese geskiedenis vir die vorming van tanzaniet aan die lig gebring. Koolstofryke moddersteen en kalksteen lae is afgeset tydens die ontwikkeling van ‘n opeenvolging van sedimente in ‘n vlak see omgewing. Die isotopiese samestelling van die koolstof (δ13C tussen –22,85 ‰ and – 26,74 ‰) dui aan dat organiese koolstof dominant was in die opeenvolging. Die Argaiëse sedimente was afgeset tydens die ontwikkeling van agter-eiland kom of ‘n kom-omgewing voor ‘n subduksiesone.
Recommended publications
  • Thomas, R., Rericha, A., Pohl, WL, Davidson, P
    Originally published as: Thomas, R., Rericha, A., Pohl, W. L., Davidson, P. (2018): Genetic significance of the 867 cm−1 out-of- plane Raman mode in graphite associated with V-bearing green grossular. - Mineralogy and Petrology, 112, 5, pp. 633—645. DOI: http://doi.org/10.1007/s00710-018-0563-1 1 Genetic significance of the 867 cm-1 out-of-plane Raman mode in graphite associated with V-bearing green grossular Rainer Thomasa Adolf Rerichab Walter L. Pohlc Paul Davidsond Paul Davidson [email protected] 0000-0002-6129-0748 a Helmholtz-Centre Potsdam, German Research Centre for Geoscience – GFZ, Section 4.3. Chemistry and Physics of Earth Materials, Telegrafenberg, D-14473 Potsdam, Germany b Alemannenstr. 4a, D-14612 Falkensee, Germany c Austrian Academy of Sciences, Dr. Ignaz Seipel-Platz 2, 1010 Vienna, Austria d ARC Centre of Excellence in Ore Deposits, University of Tasmania, Hobart 7001, Australia Keywords: Tsavorite Green V-grossular Graphite Raman scattering Fluid and melt inclusions Sulfur 2 Abstract SE Kenya is the world’s largest producer of green vanadium grossular gemstones (tsavorite). Samples from one of the mines near Mwatate, and of occurrences in Tanzania yielded remarkable new insights into the genesis of tsavorite. Graphite is intimately associated with V-grossular and is one of the keys to understanding its origin. In the course of this study we found five different types of graphite. Surprisingly, in one graphite type the “Raman- forbidden” and IR-active 867 cm-1 band was observed. In this communication, we attempt to find an explanation for this unusual phenomenon.
    [Show full text]
  • Gem Wealth of Tanzania GEMS & GEMOLOGY Summer 1992 Fipe 1
    By Dona M.Dirlarn, Elise B. Misiorowski, Rosemaiy Tozer, Karen B. Stark, and Allen M.Bassett The East African nation of Tanzania has he United Republic of Tanzania, the largest of the East great gem wealth. First known by Western- 1African countries, is composed of mainland Tanzania and ers for its diamonds, Tanzania emerged in the island of Zanzibar. 1t is regarded by many as the birthplace the 1960s as a producer of a great variety of of the earliest ancestors of Homo sapiens. To the gem indus- other gems such as tanzanite, ruby, fancy- try, however, Tanzania is one of the most promising fron- colored sapphire, garnet, and tourmaline; to date, more than 50 gem species and vari- tiers, with 50 gem species and varieties identified, to date, eties have been produced. As the 1990s from more than 200 occurrences. begin, De Beers has reinstated diamond "Modem" mining started in the gold fields of Tanzania in exploration in Tanzania, new gem materials the late 1890s (Ngunangwa, 19821, but modem diamond min- such as transparent green zoisite have ing did not start until 1925, and nearly all mining of colored appeared on the market, and there is stones has taken place since 1950. Even so, only a few of the increasing interest in Tanzania's lesser- gem materials identified have been exploited to any significant known gems such as scapolite, spinel, and extent: diamond, ruby, sapphire, purplish blue zoisite (tan- zircon. This overview describes the main zanite; figure l),and green grossular [tsavorite)and other gar- gems and gem resources of Tanzania, and nets.
    [Show full text]
  • TUCSON 2018 Spinel—In Pink and Lavender Hues—In Suites and Sets As Customers Found the Scarcity and High Prices of Red Spinel Prohibitive
    Contributing Editors Emmanuel Fritsch, University of Nantes, CNRS, Team 6502, Institut des Matériaux Jean Rouxel (IMN), Nantes, France (fritsch@cnrs- imn.fr) Gagan Choudhary, Gem Testing Laboratory, Jaipur, India ([email protected]) Christopher M. Breeding, GIA, Carlsbad ([email protected]) manite. Many dealers posted strong sales of pastel-colored spinel—in pink and lavender hues—in suites and sets as TUCSON 2018 customers found the scarcity and high prices of red spinel prohibitive. In a similar vein, Margit Thorndal of Madagas- Every February the gem and mineral world descends on car Imports reported strong demand for purple-lavender Tucson, transforming the downtown convention center spinel and purple sapphire from Madagascar, as well as teal and a great many of the city’s hotels into a fascinating col- hues of unheated Montana sapphire. lage of traders bearing goods from all over the planet (fig- We noted that electric blues, teals, hot pinks, hot yel- ures 1 and 2). low greens, and pastel-colored gems were quite popular. Many of the exhibitors we spoke with described 2018 Bill Larson of Pala International pointed to this trend and as the strongest year since 2008. Although traffic wasn’t showed us a number of spectacular examples from his in- especially heavy at the AGTA and GJX shows, most deal- ventory. Fine blue zircon from Cambodia was prominent, ers there enjoyed brisk sales and healthy demand for high- as was attractive sphene from Zimbabwe and Madagascar. quality goods. Some of the same trends from last year were Dave Bindra of B&B Fine Gems said his company was evident.
    [Show full text]
  • A PROPOSED NEW CLASSIFICATION for GEM-QUALITY GARNETS by Carol M
    A PROPOSED NEW CLASSIFICATION FOR GEM-QUALITY GARNETS By Carol M. Stockton and D. Vincent Manson Existing methods of classifying garnets ver the past two decades, the discovery of new types have proved to be inadequate to deal with 0 of garnets in East Africa has led to a realization that some new types of garnets discovered garnet classification systems based on the early work of recently. A new classification system based gemologists such as B. W. Anderson are no longer entirely on the chemical analysis of more than 500 satisfactory. This article proposes a new system of classifi- gem garnets is proposed for use in gemology. cation, derived from chemical data on a large collection of Chemical, optical, and physical data for a transparent gem-quality garnets, that requires only representative collection of 202 transparent gemquality stones are summarized. Eight determination of refractive index, color, and spectral fea- garnet species arc defined-gross~~lar, tures to classify a given garnet. Thus, the jeweler- andradite, pyrope, pyrope-almandine, gemologist familiar with standard gem-testing techniques almandine~almandine-spessartine, can readily and correctly characterize virtually any garnet spessartine, and pyrope-spessartine-and he or she may encounter, and place it within one of eight methods of identification are described. rigorously defined gem species: grossular, andradite, Properties that can be determined with pyrope, pyrope-almandine, almandine, almandine-spes- standard gem-testing equipment sartine, spessartine, and pyrope-spessartine. Several varie- (specifically, refractive index, color, and tal categories (e.g., tsavorite, chrome pyrope, rhodolite, absorption spectrum) can be used to and malaia*) are also defined.
    [Show full text]
  • Updated 2012
    American Federation of Mineralogical Societies AFMS Approved Reference List of Lapidary Material Names “Gem List” August 1996 Updated January 2003 AFMS Pubications Committee B. Jay Bowman, Chair Internet version of Approved Lapidary Material Names. This document can only be downloaded at http://www.amfed.org/rules APPROVED NAMES FOR LAPIDARY LABELS Prepared by the American Federation Nomenclature Committee and approved by the American Federa- tion Uniform Rules Committee, this list is the authorized guide and authority for Lapidary Label Names for exhibitors and judges in all competition under AFMS Uniform Rules. All materials are listed alpha- betically with two columns on a page. The following criteria are to assist in the selection and judging of material names on exhibit labels. 1. The name of any listed material (except tigereye), which has been cut to show a single chatoyant ray, may be preceded by “CAT’S-EYE”; the name of any material which has been cut to show asterism (two or more crossed rays) may be preceded by “STAR”, i.e.: CATS-EYE DIOPSIDE, CAT’S-EYE QUARTZ, STAR BERYL, STAR GARNET, etc. 2. This list is not all-inclusive as to the names of Lapidary materials which may at some time be exhibited. If a mineral or rock not included in this list is exhibited, the recognized mineralogical or petrological name must be used. The names of valid minerals and valid mineral varieties listed in the latest edition of the Glossary of Mineral Species by Michael Fleisher, or any other authorized reference, will be acceptable as Lapidary names. Varieties need only have variety name listed and not the root species.
    [Show full text]
  • Tucson 2015 Treasures of the Salsigne Mine Hands-On
    March/April 2015 / Volume 24 / No. 2 Tucson 2015 Treasures of the Salsigne Mine Hands-on look at diamond inclusions Communicate colour with confidence Discover our new Coloured Stones Grading Course, in association with GemeWizard® — the leader in gem digital colour communication. At just £795, this course will provide you with a grounding in colour grading, an essential skill required for a successful career in the gem and jewellery trade. For more information or to sign up contact [email protected]. Join us. The Gemmological Association of Great Britain, 21 Ely Place, London, EC1N 6TD, UK. T: +44 (0) 20 7404 3334 F: +44 (0) 20 7404 8843. Registered charity no. 1109555. A company limited by guarantee and registered in England No. 1945780. Registered Office: 3rd Floor, 1-4 Argyll Street, London W1F 7LD. Coloured Stones_A4_03-2015.indd 1 06/03/2015 11:17:46 Contents Mar/Apr 2015 March/April 2015 / Volume 24 / No. 2 The 2015 10 Tucson Experience Gary Roskin reviews the largest gathering of gem and mineral shows in the world Tucson 2015 Treasures of the Salsigne Mine Hands-on look at diamond inclusions Hands-on Diamonds Grenville Millington looks at the various crystal inclusions in diamond Cover Picture Distorted crystal group in a light brown diamond by Grenville Millington FGA. The diamond is approximately 2.8 mm across. See Grenville’s article on crystal inclusions 22 on page 22. Communicate colour Published by Look before 26 The Gemmological Association you beep of Great Britain (Gem-A) 21 Ely Place, London EC1N 6TD Kerry Gregory tests a mystery set t: +44 (0)20 7404 3334 with confidence of stones that aren’t what they seem f: +44 (0)20 7404 8843 e: [email protected] w: www.gem-a.com Discover our new Coloured Stones Grading Course, in association Registered charity no.
    [Show full text]
  • Trapiche Tourmaline
    The Journal of Gemmology2011 / Volume 32 / Nos. 5/8 Trapiche tourmaline The Gemmological Association of Great Britain The Journal of Gemmology / 2011 / Volume 32 / No. 5–8 The Gemmological Association of Great Britain 27 Greville Street, London EC1N 8TN, UK T: +44 (0)20 7404 3334 F: +44 (0)20 7404 8843 E: [email protected] W: www.gem-a.com Registered Charity No. 1109555 Registered office: Palladium House, 1–4 Argyll Street, London W1F 7LD President: Prof. A. H. Rankin Vice-Presidents: N. W. Deeks, R. A. Howie, E. A. Jobbins, M. J. O'Donoghue Honorary Fellows: R. A. Howie Honorary Life Members: H. Bank, D. J. Callaghan, T. M. J. Davidson, J. S. Harris, J. A. W. Hodgkinson, E. A. Jobbins, J. I. Koivula, M. J. O’Donoghue, C. M. Ou Yang, E. Stern, I. Thomson, V. P. Watson, C. H. Winter Chief Executive Officer: J. M. Ogden Council: J. Riley – Chairman, S. Collins, B. Jackson, S. Jordan, C. J. E. Oldershaw, L. Palmer, R. M. Slater Members’ Audit Committee: A. J. Allnutt, P. Dwyer-Hickey, E. Gleave, J. Greatwood, G. M. Green, K. Gregory, J. Kalischer Branch Chairmen: Midlands – P. Phillips, North East – M. Houghton, North West – J. Riley, South East – V. Wetten, South West – R. M. Slater The Journal of Gemmology Editor: Dr R. R. Harding Deputy Editor: E. A. Skalwold Assistant Editor: M. J. O’Donoghue Associate Editors: Dr A. J. Allnutt (Chislehurst), Dr C. E. S. Arps (Leiden), G. Bosshart (Horgen), Prof. A. T. Collins (London), J. Finlayson (Stoke on Trent), Dr J.
    [Show full text]
  • Gems and Placers—A Genetic Relationship Par Excellence
    Article Gems and Placers—A Genetic Relationship Par Excellence Dill Harald G. Mineralogical Department, Gottfried-Wilhelm-Leibniz University, Welfengarten 1, D-30167 Hannover, Germany; [email protected] Received: 30 August 2018; Accepted: 15 October 2018; Published: 19 October 2018 Abstract: Gemstones form in metamorphic, magmatic, and sedimentary rocks. In sedimentary units, these minerals were emplaced by organic and inorganic chemical processes and also found in clastic deposits as a result of weathering, erosion, transport, and deposition leading to what is called the formation of placer deposits. Of the approximately 150 gemstones, roughly 40 can be recovered from placer deposits for a profit after having passed through the “natural processing plant” encompassing the aforementioned stages in an aquatic and aeolian regime. It is mainly the group of heavy minerals that plays the major part among the placer-type gemstones (almandine, apatite, (chrome) diopside, (chrome) tourmaline, chrysoberyl, demantoid, diamond, enstatite, hessonite, hiddenite, kornerupine, kunzite, kyanite, peridote, pyrope, rhodolite, spessartine, (chrome) titanite, spinel, ruby, sapphire, padparaja, tanzanite, zoisite, topaz, tsavorite, and zircon). Silica and beryl, both light minerals by definition (minerals with a density less than 2.8–2.9 g/cm3, minerals with a density greater than this are called heavy minerals, also sometimes abbreviated to “heavies”. This technical term has no connotation as to the presence or absence of heavy metals), can also appear in some placers and won for a profit (agate, amethyst, citrine, emerald, quartz, rose quartz, smoky quartz, morganite, and aquamarine, beryl). This is also true for the fossilized tree resin, which has a density similar to the light minerals.
    [Show full text]
  • Winter 2005 Gems & Gemology
    G EMS & G VOLUME XLI WINTER 2005 EMOLOGY W INTER 2005 P AGES 295–388 Dr. Edward J. Gübelin V OLUME (1913–2005) 41 N O. 4 THE QUARTERLY JOURNAL OF THE GEMOLOGICAL INSTITUTE OF AMERICA ® Winter 2005 VOLUME 41, NO. 4 EDITORIAL _____________ 295 One Hundred Issues and Counting... Alice S. Keller 297 LETTERS ________ FEATURE ARTICLES _____________ 298 A Gemological Pioneer: Dr. Edward J. Gübelin Robert E. Kane, Edward W. Boehm, Stuart D. Overlin, Dona M. Dirlam, John I. Koivula, and Christopher P. Smith pg. 299 Examines the prolific career and groundbreaking contributions of Swiss gemologist Dr. Edward J. Gübelin (1913–2005). 328 Characterization of the New Malossi Hydrothermal Synthetic Emerald Ilaria Adamo, Alessandro Pavese, Loredana Prosperi, Valeria Diella, Marco Merlini, Mauro Gemmi, and David Ajò Reports on a hydrothermally grown synthetic emerald manufactured since 2003 in the Czech Republic. Includes the distinctive features that can be used to separate this material from natural and other synthetic emeralds. pg. 337 REGULAR FEATURES _____________________ 340 Lab Notes Yellow CZ imitating cape diamonds • Orange diamonds, treated by multiple processes • Pink diamonds with a temporary color change • Unusually large novelty-cut diamond • Small synthetic diamonds • Diaspore “vein” in sapphire • Unusual pearl from South America • Unusually small natural-color black cultured pearls • Identification of turquoise with diffuse reflectance IR spectroscopy 350 Gem News International Ornamental blueschist from northern Italy • Emerald phantom crystal • Unusual trapiche emerald earrings • Large greenish yellow grossular from Africa • Opal triplet resembling an eye • Green orthoclase feldspar from pg. 340 Vietnam • New discoveries of painite in Myanmar • Gem plagioclase reported- ly from Tibet • Spinel from southern China • Update on tourmaline from Mt.
    [Show full text]
  • GEMSTONE DURABILITY: DESIGN to DISPLAY by Deborah Dupont Martin
    GEMSTONE DURABILITY: DESIGN TO DISPLAY By Deborah Dupont Martin Knowledge of the durability of a gem- n today's market, most jewelers no longer deal solely stone is critical to understanding the I with traditional gems such as diamonds, rubies, sap- risks involved in the various setting, re- phires, and pearls. The increasing availability and popu- pair, and cleaning procedures commonly larity of a wide range of colored stones-tanzanite, used by the jeweler. Some gemstones need tsavorite, iolite, and tourmaline (figure l), to name a few - attention in display because of their reac- has opened a host of new possibilities in jewelry, but it has tion to heat and/or light. This article re- views gemstone durability considerations also added a n~ultitude'ofnew risks. for 31 species and their varieties as they While many in the trade are qualified to deal effec- affect design decisions as well as repair, tively with most of these stones, virtually everyone cleaning, and display of the piece. I11 all associated with the design, manufacture, and sale of cases, tlie'reader is advised to consult an jewelry should be aware of the potential problems of a experienced bench jeweler before attempt- particular gem material. The designer must lznow which ing any potentially damaging procedures. mounting will protect the stone best while still enhancing The recon~ii~endatioiisin this article are its natural beauty. The bench jeweler is responsible for offered from a gemological viewpoint and determining what stones are at risk in which setting or as g~~idelinesonly. repair procedures. The salesperson, who has the greatest customer contact, must not only be aware of these design and bench considerations, but must also lznow the rules involved in various cleaning procedures and be able to ABOUT THE AUTHOR advise the customer regarding precautions in care and Ms.
    [Show full text]
  • Tiffany Colored Gemstones | 1
    Tiffany Colored Gemstones | 1 Tiffany has a longstanding legacy as a purveyor of the world’s most exceptional and rare colored gemstones, introducing gemstones that had never been used in jewelry until Tiffany popularized them. While many jewelers showcase rubies, emeralds and sapphires, Tiffany is proud to include a wide range of colored gemstones in its designs, encompassing the full spectrum of color. Colored gemstones have been integral to establishing Tiffany’s reputation as a world- renowned jeweler. Prior to the mid-19th century, colored gemstones were rarely used in American jewelry. This all changed in 1876, when a young gemologist, Dr. George Frederick Kunz (1856–1932), sold an exceptional tourmaline to founder Charles Lewis Tiffany (1812–1902). Soon after, Dr. Kunz joined the company and embarked on a lifelong quest for the most extraordinary gemstones for Tiffany’s clientele. The treasures introduced by this intrepid globetrotter constituted the world’s greatest collection of gemstones, including exotic yellow beryl from Sri Lanka (Ceylon), green demantoid garnets from Russia’s Ural Mountains and ocean-blue aquamarines from Brazil. Kunz was equally passionate about American gemstones, adding Montana sapphires, Maine tourmalines, and garnets and topazes from Utah to Tiffany’s burgeoning vault. In 1902, a lilac pink stone that had been found in California was delivered to Kunz. The stone was a variety of spodumene, a newly discovered gemstone. A fellow gemologist named the stone “kunzite” after the man who made beautiful gemstones his lifelong passion. This stone is the first of several Tiffany legacy gemstones that the luxury house proudly introduced to the world.
    [Show full text]
  • Western Mineral Resources
    Garnet—An Essential Industrial Mineral and January’s Birthstone Photograph of a mineral arnet is one of the most specimen containing large G common minerals in the crystals of the garnet world. Occurring in almost any mineral spessartine (red), showing the distinctive color, it is most widely known “euhedral isometric” for its beauty as a gem stone. crystal form of garnet. Used Because of its hardness and since ancient times for other properties, garnet is also an jewelry, the first industrial use of garnet was prob- essential industrial mineral used ably in coated sandpaper in abrasive products, non-slip manufactured in the United surfaces, and filtration. To help States by Henry Hudson Barton in 1878. The United manage our Nation’s resources of States currently consumes such essential minerals, the U.S. about 16 percent of the Geological Survey (USGS) pro- global production of indus- vides crucial data and scientific trial garnet. (Copyrighted photo by Stan Celestian/ information to industry, policy- courtesy of Glendale Com- makers, and the public. munity College). Garnet as a Gem Stone in 1878. Garnet is an important industrial ing aluminum and other soft metals for mineral because it is relatively hard, rating 6 use in aircraft and ships; deburring welds Garnet is familiar to many people as to about 8 on the “Mohs scale of hardness,” and grinding and polishing optical lenses; January’s birthstone and as the New York where diamond is the hardest at 10. Conse- producing high-quality, scratch-free semi- State gem stone. It has been used as a gem quently, garnet is an excellent abrasive for conductor materials; finishing hard rubber, stone since prehistoric times.
    [Show full text]